Koordinatlarda \boldsymbol{h}-Konveks İki Fonksiyonun Çarpımı İçin Bazı HermiteHadamard Tipli Eşitsizlikler Üzerine

On Some Hadamard-Type Inequalities for Product of Two h-Convex Functions On the Co-ordinates

M. Emin ÖZDEMİR ${ }^{1}$, Mohammad Amer LATIF ${ }^{2}$ and Ahmet Ocak AKDEMİR ${ }^{3, *}$
${ }^{1}$ Department of Mathematics Education, Uludağ University, Bursa, Turkey
${ }^{1}$ Department of Mathematics, University of Hail, Saudi Arabia
${ }^{1}$ Department of Mathematics, Ağrı İbrahim Çeçen University, Ağrl, Turkey
*Sorumlu yazar / Corresponding Author: aocakakdemir@gmail.com

Geliş Tarihi / Received Date: 15 November 2016
Kabul Tarihi / Accepted Date: 25 December 2016

Abstract

Öz: Bu çalışmada, koordinatlarda h-konveks fonksiyonların çarpımı için Hadamard tipli eşitsizlikler oluşturulmuştur. Elde edilen sonuçlar literatürde bazı iyi bilinen sonuçları genelleştirmiştir.

Anahtar Kelimeler - Koordinatlar, Hadamard eşitsizliği, h-konveks fonksiyonlar.

Abstract

In this paper, Hadamard-type inequalities for product of h-convex functions on the co-ordinates on the rectangle from the plane are established. Obtained results generalize the corresponding to some wellknown results given before now.

Keywords - co-ordinates, Hadamard's inequality, h-convex functions

1.Introduction

Let $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ be a convex function and $a, b \in I$ with $a<b$. Then the following double inequality:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{2} \tag{1.1}
\end{equation*}
$$

is known as Hadamard's inequality for convex mapping. For particular choice of the function f in (1.1) yields some classical inequalities of means.

Definition 1. (See [11]) A function $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ is said to Godunova-Levin function or f is said to belong to the class $Q(I)$ if f is non-negative and for all $x, y \in I$ and for $\alpha \in(0,1)$ we have the inequality:

$$
f(\alpha x+(1-\alpha) y) \leq \frac{f(x)}{\alpha}+\frac{f(y)}{1-\alpha} .
$$

The class $Q(I)$ was firstly described in [11] by Godunova-Levin. Some further properties of it can be found in [10], [15] and [16]. Among others, it is noted that non-negative monotone and nonnegative convex functions belongs to this class of functions. In [6], Breckner introduced s-convex functions as a generalization of convex functions. In [7], he proved the important fact that the setvalued map is s-convex only if associated support function is s-convex. A number of properties and connections with s-convexity in the first sense are discussed in paper [12]. It is clear that $s-$ convexity is merely convexity for $s=1$.

Definition 2. (See [6]) Let $s \in(0,1]$ be fixed real number. A function $f:[0, \infty) \rightarrow[0, \infty)$ is said to be s - convex in the second sense, or that f belongs to the class K_{s}^{2}, if

$$
f(\alpha x+(1-\alpha) y) \leq \alpha^{s} f(x)+(1-\alpha)^{s} f(y)
$$

for all $x, y \in[0, \infty)$ and $\alpha \in[0,1]$.
Definition 3. (See [10]) A function $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ is said to be P-function or that f is said to belong to the class $P(I)$ if f is non-negative and for all $x, y \in I$ and $\alpha \in[0,1]$, if

$$
f(\alpha x+(1-\alpha) y) \leq f(x)+f(y) .
$$

In [9], Dragomir and Fitzpatrick proved the following variant of Hadamard's inequality which holds for s-convex function in the second sense:

Theorem 1. Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the second sense, where $s \in(0,1)$ and let $a, b \in[0, \infty), a<b$. If $f \in L_{1}([a, b])$ then the following inequalities hold:

$$
\begin{equation*}
2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+f(b)}{s+1} \tag{1.2}
\end{equation*}
$$

The constant $k=\frac{1}{s+1}$ is the best possible in the second inequality in (1.2).
In [9], Dragomir and Fitzpatrick also proved the following Hadamard-type inequality which holds for s-convex functions in the first sense:

Theorem 2. Suppose that $f:[0, \infty) \rightarrow[0, \infty)$ is an s-convex function in the first sense, where $s \in(0,1)$ and let $a, b \in[0, \infty)$. If $f \in L_{1}([a, b])$ then the following inequalities hold:

$$
\begin{equation*}
f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x \leq \frac{f(a)+s f(b)}{s+1} \tag{1.3}
\end{equation*}
$$

The above inequalities are sharp.
A modification for convex functions which is also known as co-ordinated convex(concave) functions was introduced by Dragomir in [8] as following:

Let us now consider a bidimensional interval $\Delta=[a, b] \times[c, d]$ in R^{2} with $a<b$ and $c<d$. A mapping $f: \Delta \rightarrow \mathrm{R}$ is said to be convex on Δ if the following inequality:

$$
f(\alpha x+(1-\alpha) z, \alpha y+(1-\alpha) w) \leq \alpha f(x, y)+(1-\alpha) f(z, w)
$$

holds, for all $(x, y),(z, w) \in \Delta$ and $\alpha \in[0,1]$. If the inequality reversed then f is said to be concave on Δ. A function $f: \Delta \rightarrow \mathrm{R}$ is said to be convex on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathrm{R}, f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathrm{R}, f_{x}(v)=f(x, v)$ are convex where defined for all $x \in a, b], y \in c, d]$.

A formal definition for co-ordinated convex functions may be stated as follow [see [23]]:
Definition 4. A function $f: \Delta \rightarrow \mathrm{R}$ is said to be convex on the co-ordinates on Δ if the following inequality:
$f(t x+(1-t) y, s u+(1-s) w) \leq t s f(x, u)+t(1-s) f(x, w)+s(1-t) f(y, u)+(1-t)(1-s) f(y, w)$
holds for all $t, s \in 0,1]$ and $(x, u),(x, w),(y, u),(y, w) \in \Delta$.
Clearly, every convex mapping $f: \Delta \rightarrow \mathrm{R}$ is convex on the co-ordinates. Furthermore, there exists co-ordinated convex function which is not convex. In [8], Dragomir established the following inequalities of Hadamard's type for convex functions on the co-ordinates on a rectangle from the plane R^{2}.

Theorem 3. Suppose $f: \Delta \rightarrow \mathrm{R}$ is convex function on the co-ordinates on Δ. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.4}\\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{4}
\end{align*}
$$

In [1], Alomari and Darus proved the following inequalities of Hadamard-type as above for $s-$ convex functions in the second sense on the co-ordinates on a rectangle from the plane R^{2}.

Theorem 4. Suppose $f: \Delta \rightarrow \mathrm{R}$ is s-convex function (in the second sense) on the co-ordinates on Δ. Then one has the inequalities:

$$
\begin{align*}
& 4^{s-1} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.5}\\
& \leq \frac{f(a, c)+f(b, c)+f(a, d)+f(b, d)}{(s+1)^{2}}
\end{align*}
$$

Also in [4] (see also [5]), Alomari and Darus established the following inequalities of Hadamardtype similar to (1.5) for s-convex functions in the first sense on the co-ordinates on a rectangle from the plane R^{2}.

Theorem 5. Suppose $f: \Delta \rightarrow \mathrm{R}$ is s-convex function on the co-ordinates on Δ in the first sense. Then one has the inequalities:

$$
\begin{align*}
& f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.6}\\
& \leq \frac{f(a, c)+s f(b, c)+s f(a, d)+s^{2} f(b, d)}{(s+1)^{2}}
\end{align*}
$$

The above inequalities are sharp.
For refinements, counterparts, generalizations and new Hadamard-type inequalities see the papers [1, $2,3,4,5,8,9,10,12,21,22,23,24]$.

In [17], Pachpatte established two Hadamard-type inequalities for product of convex functions. An analogous results for s - convex functions is due to Kırmacı et al. [13].

Theorem 6. Let $f, g:[a, b] \subset R \rightarrow[0, \infty)$ be convex functions on $[a, b], a<b$. Then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{3} M(a, b)+\frac{1}{6} N(a, b) \tag{1.7}
\end{equation*}
$$

and

$$
\begin{equation*}
2 f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{6} M(a, b)+\frac{1}{3} N(a, b) \tag{1.8}
\end{equation*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.

Theorem 7. Let $f, g:[a, b] \subseteq \mathrm{R} \rightarrow \mathrm{R} a, b \in[a, b], a<b$, be functions such that g and $f g$ are in $L_{1}([a, b])$. If f is convex and non-negative on $[a, b]$ and if g is s-convex on $[a, b]$ for some $s \in(0,1)$. Then

$$
\begin{align*}
& 2^{s} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right) \tag{1.9}\\
& \leq \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x+\frac{1}{(s+1)(s+2)} M(a, b)+\frac{1}{s+2} N(a, b)
\end{align*}
$$

and

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{1}{s+2} M(a, b)+\frac{1}{(s+1)(s+2)} N(a, b) \tag{1.10}
\end{equation*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
The class of h-convex functions was introduced by S. Varosanec in [19] (see [19] for further properties of h-convex functions).

Definition 5. Let $h: J \subseteq \mathrm{R} \rightarrow \mathrm{R}$, where $(0,1) \subseteq J$, be a positive function. A function $f: I \subseteq \mathrm{R} \rightarrow \mathrm{R}$ is said to be h-convex or that f is said to belong to the class $S X(h, I)$, if f is non-negative and for all $x, y \in I$ and $\alpha \in(0,1)$, we have

$$
f(\alpha x+(1-\alpha) y) \leq h(\alpha) f(x)+h(1-\alpha) f(y)
$$

if the inequality is reversed then f is said to be h-concave and we say that f belongs to the class $S V(h, I)$.

Remark 1. Obviously, if $h(\alpha)=\alpha$, then all the non-negative convex functions belong to the class $S X(h, I)$ and all non-negative concave functions belong to the class $S V(h, I)$. Also note that if $h(\alpha)=\frac{1}{\alpha}$, then $S X(h, I)=Q(I)$; if $h(\alpha)=1$, then $S X(h, I) \supseteq P(I)$; and if $h(\alpha)=\alpha^{s}$, where $s \in(0,1)$, then $S X(h, I) \supseteq K_{s}^{2}$.

In [18], Sarıkaya et al. established the following inequalities of Hadamard's type for product of $h-$ convex functions.

Theorem 8. Let $f \in S X\left(h_{1}, I\right), g \in S X\left(h_{2}, I\right), a, b \in I, a<b$, be functions such that $f g \in L_{1}([a, b])$ and $h_{1} h_{2} \in L_{1}([0,1])$, then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq M(a, b) \int_{0}^{1} h_{1}(t) h_{2}(t) d t+N(a, b) \int_{0}^{1} h_{1}(t) h_{2}(1-t) d t \tag{1.11}
\end{equation*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
Theorem 9. Let $f \in S X\left(h_{1}, I\right), g \in S X\left(h_{2}, I\right), a, b \in I, a<b$, be functions such that $f g \in L_{1}([a, b])$ and $h_{1} h_{2} \in L_{1}([0,1])$, then

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}\right) g\left(\frac{a+b}{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \tag{1.12}\\
& \quad \leq M(a, b) \int_{0}^{1} h_{1}(t) h_{2}(1-t) d t+N(a, b) \int_{0}^{1} h_{1}(t) h_{2}(t) d t
\end{align*}
$$

where $M(a, b)=f(a) g(a)+f(b) g(b)$ and $N(a, b)=f(a) g(b)+f(b) g(a)$.
In [20], Sarıkaya et al. established the following inequality of Hadamard's type which involving $h-$ convex functions:

Theorem 10. Let $f \in S X(h, I), a, b \in I$ with $a<b, f \in L_{1}([a, b])$ and $g:[a, b] \rightarrow \mathrm{R}$ is nonnegative, integrable and symmetric about $\frac{a+b}{2}$. Then

$$
\begin{equation*}
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x \leq \frac{f(a)+f(b)}{2} \int_{a}^{b}\left(h\left(\frac{b-x}{b-a}\right)+h\left(\frac{x-a}{b-a}\right)\right) g(x) d x . \tag{1.13}
\end{equation*}
$$

In [14], authors proved the following results for product of two convex functions on the co-ordinates on rectagle from the plane R^{2}.

Theorem 11. Let $f, g:[a, b] \subseteq \mathrm{R} \rightarrow \mathrm{R}$ be convex functions on the co-ordinates on Δ with $a<b, c<d$. Then
$\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \leq \frac{1}{9} L(a, b, c, d)+\frac{1}{18} M(a, b, c, d)+\frac{1}{36} N(a, b, c, d)$
where

$$
\begin{aligned}
& L(a, b, c, d)=f(a, c) g(a, c)+f(b, c) g(b, c)+f(a, d) g(a, d)+f(b, d) g(b, d) \\
& M(a, b, c, d)=f(a, c) g(a, d)+f(a, d) g(a, c)+f(b, c) g(b, d)+f(b, d) g(b, c) \\
& +f(b, c) g(a, c)+f(b, d) g(a, d)+f(a, c) g(b, c)+f(a, d) g(b, d) \\
& N(a, b, c, d)=f(b, c) g(a, d)+f(b, d) g(a, c)+f(a, c) g(b, d)+f(a, d) g(b, c)
\end{aligned}
$$

Theorem 12. Let $f, g:[a, b] \subseteq \mathrm{R} \rightarrow \mathrm{R}$ be convex functions on the co-ordinates on Δ with $a<b, c<d$. Then

$$
\begin{gather*}
4 f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \tag{1.15}\\
+\frac{5}{36} L(a, b, c, d)+\frac{7}{36} M(a, b, c, d)+\frac{2}{9} N(a, b, c, d)
\end{gather*}
$$

where $L(a, b, c, d), M(a, b, c, d)$, and $N(a, b, c, d)$ as in Theorem 10.
Similar to definition of co-ordinated convex functions Latif and Alomari gave the notion of $h-$ convexity of a function f on a rectangle from the plane \mathbf{R}^{2} and h-convexity on the co-ordinates on a rectangle from the plane R^{2} in [23], as follows:

Definition 6. (See [23]) Let us consider a bidimensional interval $\Delta=[a, b] \times[c, d]$ in \mathbf{R}^{2} with $a<b$ and $c<d$. Let $h: J \subseteq \mathrm{R} \rightarrow \mathrm{R}$, where $(0,1) \subseteq J$, be a positive function. A mapping $f: \Delta \rightarrow R$ is said to be h-convex on Δ, if f is non-negative and if the following inequality:

$$
f(\alpha x+(1-\alpha) z, \alpha y+(1-\alpha) w) \leq h(\alpha) f(x, y)+h(1-\alpha) f(z, w)
$$

holds, for all $(x, y),(z, w) \in \Delta$ and $\alpha \in(0,1)$. Let us denote this class of functions by $S X(h, \Delta)$. The function f is said to be h-concave if the inequality reversed. We denote this class of functions by $S V(h, \Delta)$.

A function $f: \Delta \rightarrow \mathrm{R}$ is said to be h-convex on the co-ordinates on Δ if the partial mappings $f_{y}:[a, b] \rightarrow \mathrm{R}, \quad f_{y}(u)=f(u, y)$ and $f_{x}:[c, d] \rightarrow \mathrm{R}, f_{x}(v)=f(x, v)$ are h-convex where defined for all $x \in a, b], y \in c, d]$. A formal definition of h-convex functions may also be stated as follows:

Definition 7. (See [23]) A function $f: \Delta \rightarrow \mathrm{R}$ is said to be h-convex on the co-ordinates on Δ, if the following inequality:

$$
\begin{aligned}
& f(t x+(1-t) y, s u+(1-s) w) \leq h(t) h(s) f(x, u)+h(t) h(1-s) f(x, w) \\
& \quad+h(s) h(1-t) f(y, u)+h(1-t) h(1-s) f(y, w)
\end{aligned}
$$

holds for all $t, s \in[0,1]$ and $(x, u),(x, w),(y, u),(y, w) \in \Delta$.

Lemma 1. (See [23]) Every h-convex mapping $f: \Delta \rightarrow \mathrm{R}$ is h-convex on the co-ordinates, but the converse is not generally true.

The main purpose of the present paper is to establish new Hadamard-type inequalities like those given above in the Theorem 11-12, but now for product of two h-convex functions on the coordinates on rectangle from the plane R^{2}.

2. Main Results

In this section we establish some Hadamard's type inequalities for product of two h-convex functions on the co-ordinates on rectangle from the plane. In the sequel of the paper h_{1} and h_{2} are positive functions defined on J, where $(0,1) \subseteq J \subseteq \mathrm{R}$ and f and g are non-negative functions defined on $\Delta=[a, b] \times[c, d]$.

Theorem 13. Let $f, g: \Delta=[a, b] \times[c, d] \rightarrow R$ where $a<b$ and $c<d$, be functions such that $f g \in$ $\left.L^{2}(\Delta), h_{1} h_{2} \in L_{1}[0,1]\right)$. If f is h_{1}-convex on the co-ordinates on Δ and if g is h_{2}-convex on the co-ordinates on Δ, then

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.1}\\
& \quad \leq p^{2} L(a, b, c, d)+p q M(a, b, c, d)+q^{2} N(a, b, c, d)
\end{align*}
$$

where $L(a, b, c, d), \quad M(a, b, c, d), \quad N(a, b, c, d)$ as in Theorem 10 and $p=\int_{0}^{1} h_{1}(t) h_{2}(t) d t$ and $q=\int_{0}^{1} h_{1}(t) h_{2}(1-t) d t$.

Proof. Since $f, g: \Delta=[a, b] \times[c, d] \rightarrow R$ be functions such that $f g \in L^{2}(\Delta)$ and f is h_{1}-convex on the co-ordinates on Δ and g is h_{2}-convex on the co-ordinates on Δ, therefore the partial mappings

$$
\begin{aligned}
& f_{y}:[a, b] \rightarrow \mathrm{R}, f_{y}(x)=f(x, y) \\
& g_{y}:[a, b] \rightarrow \mathrm{R}, g_{y}(x)=g(x, y)
\end{aligned}
$$

and

$$
\begin{aligned}
& f_{x}:[c, d] \rightarrow \mathrm{R}, f_{x}(y)=f(x, y) \\
& g_{x}:[c, d] \rightarrow \mathrm{R}, g_{x}(y)=g(x, y)
\end{aligned}
$$

are $h_{1}-, h_{2}$ - convex on $[a, b]$ and $[c, d]$, respectively, for all $x \in[a, b]$ and $y \in[c, d]$, Now by $\operatorname{applying}(1.11)$ to $f_{x}(y) g_{x}(y)$ on $[c, d]$ we get

$$
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) d y \leq p\left[f_{x}(c) g_{x}(c)+f_{x}(d) g_{x}(d)\right]+q\left[f_{x}(c) g_{x}(d)+f_{x}(d) g_{x}(c)\right]
$$

That is

$$
\frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \leq p[f(x, c) g(x, c)+f(x, d) g(x, d)]+q[f(x, c) g(x, d)+f(x, d) g(x, c)]
$$

Integrating over $[a, b]$ and dividing both sides by $b-a$, we have

$$
\begin{align*}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.2}\\
& \quad \leq p\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x\right] \\
& \quad+q\left[\frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+\frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x\right] .
\end{align*}
$$

Now by applying (1.11) to each integral on R.H.S of (2.2) again, we get

$$
\begin{aligned}
& \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x \leq p[f(a, c) g(a, c)+f(b, c) g(b, c)]+q[f(a, c) g(b, c)+f(b, c) g(a, c)] \\
& \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \leq p[f(a, d) g(a, d)+f(b, d) g(b, d)]+q[f(a, d) g(b, d)+f(b, d) g(a, d)] \\
& \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x \leq p[f(a, c) g(a, d)+f(b, c) g(b, d)]+q[f(a, c) g(b, d)+f(b, c) g(a, d)] \\
& \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x \leq p[f(a, d) g(a, c)+f(b, d) g(b, c)]+q[f(a, d) g(b, c)+f(b, d) g(a, c)]
\end{aligned}
$$

On substitution of these inequalities in (2.2) yields

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad \leq p^{2}[f(a, c) g(a, c)+f(b, c) g(b, c)]+p q[f(a, c) g(b, c)+f(b, c) g(a, c)] \\
& \quad+p^{2}[f(a, d) g(a, d)+f(b, d) g(b, d)]+p q[f(a, d) g(b, d)+f(b, d) g(a, d)]
\end{aligned}
$$

$$
\begin{aligned}
& +p q[f(a, c) g(a, d)+f(b, c) g(b, d)]+q^{2}[f(a, c) g(b, d)+f(b, c) g(a, d)] \\
& +p q[f(a, d) g(a, c)+f(b, d) g(b, c)]+q^{2}[f(a, d) g(b, c)+f(b, d) g(a, c)] \\
& =p^{2} L(a, b, c, d)+p q M(a, b, c, d)+q^{2} N(a, b, c, d)
\end{aligned}
$$

This completes the proof.
Remark 2. If we take $h_{1}(t)=h_{2}(t)=t$, then inequality (2.1) reduces to the inequality (1.14).
Theorem 14. Let $f, g: \Delta=[a, b] \times[c, d] \rightarrow R$ where $a<b$ and $c<d$, be functions such that $f g \in$ $\left.L^{2}(\Delta), h_{1} h_{2} \in L_{1}[0,1]\right)$. If f is $h_{1}-$ convex on the co-ordinates on Δ and if g is $h_{2}-$ convex on the co-ordinates on Δ, then

$$
\begin{align*}
& \frac{1}{4 h_{1}^{2}\left(\frac{1}{2}\right) h_{2}^{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.3}\\
& \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) d y d x \\
& +\left(q^{2}+2 p q\right) L(a, b, c, d)+\left(p^{2}+p q+q^{2}\right) M(a, b, c, d)+\left(p^{2}+2 p q\right) N(a, b, c, d)
\end{align*}
$$

where $L(a, b, c, d), M(a, b, c, d)$, and $N(a, b, c, d)$ as in Theorem 10 and $p=\int_{0}^{1} h_{1}(t) h_{2}(t) d t$ and $q=\int_{0}^{1} h_{1}(t) h_{2}(1-t) d t$.

Proof. Now applying (1.12) to $\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right)$, we get

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.4}\\
& \quad \leq \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
& +q\left[f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)\right] \\
& +p\left[f\left(a, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)+f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)\right]
\end{align*}
$$

and

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.5}\\
& \leq \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& +q\left[f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right)+f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right)\right] \\
& +p\left[f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right)+f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right)\right]
\end{align*}
$$

Adding (2.4) and (2.5) and multiplying both sides by $\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)}$, we get

$$
\begin{align*}
& \frac{1}{2\left[h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)^{2}\right.} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \tag{2.6}\\
& \quad \leq \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
& \quad+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& \quad+q\left[\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)\right] \\
& +p\left[\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(a, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right)+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right)\right] \\
& \quad+q\left[\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right)+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right)\right]
\end{align*}
$$

$$
+p\left[\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right)+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right)\right]
$$

Applying (1.12) to each term within the brackets, we have

$$
\begin{aligned}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(a, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y \\
& +q[f(a, c) g(a, c)+f(a, d) g(a, d)]+p[f(a, c) g(a, d)+f(a, d) g(a, c)] \\
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(b, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y \\
& \quad+q[f(b, c) g(b, c)+f(b, d) g(b, d)]+p[f(b, c) g(b, d)+f(b, d) g(b, c)] \\
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(a, \frac{c+d}{2}\right) g\left(b, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y \\
& \quad+q[f(a, c) g(b, c)+f(a, d) g(b, d)]+p[f(a, c) g(b, d)+f(a, d) g(b, c)]
\end{aligned}
$$

$$
\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(b, \frac{c+d}{2}\right) g\left(a, \frac{c+d}{2}\right) \leq \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y
$$

$$
+q[f(b, c) g(a, c)+f(b, d) g(a, d)]+p[f(b, c) g(a, d)+f(b, d) g(a, c)]
$$

$$
\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, c\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x
$$

$$
+q[f(a, c) g(a, c)+f(b, c) g(b, c)]+p[f(a, c) g(b, c)+f(b, c) g(a, c)]
$$

$$
\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, d\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x
$$

$$
+q[f(a, d) g(a, d)+f(b, d) g(b, d)]+p[f(a, d) g(b, d)+f(b, d) g(a, d)]
$$

$$
\begin{aligned}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, c\right) g\left(\frac{a+b}{2}, d\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x \\
& \quad+q[f(a, c) g(a, d)+f(b, c) g(b, d)]+p[f(a, c) g(b, d)+f(b, c) g(a, d)] \\
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, d\right) g\left(\frac{a+b}{2}, c\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x \\
& \quad+q[f(a, d) g(a, c)+f(b, d) g(b, c)]+p[f(a, d) g(b, c)+f(b, d) g(a, c)]
\end{aligned}
$$

Substituting these inequalities in (2.6) and simplifying we have;

$$
\begin{aligned}
& \frac{1}{2\left[h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \quad \leq \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \\
& \quad+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& \quad+q \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y+q \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y \\
& \quad+p \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y+p \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y \\
& \quad+q \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+q \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \\
& \quad+p \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+p \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x \\
& \quad+2 q^{2} L(a, b, c, d)+2 p q M(a, b, c, d)+p^{2} N(a, b, c, d)
\end{aligned}
$$

Now by applying (1.12) to $\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right)$, integrating over $[c, d]$ and
dividing both sides by $d-c$, we get

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \tag{2.8}\\
& \quad \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d x d y \\
& \quad+q \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y+q \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y \\
& \quad+p \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y+p \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y
\end{align*}
$$

Now again by applying (1.12) to $\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right)$, integrating over $[a, b]$ and dividing both sides by $b-a$, we get

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{b-a} \int_{a}^{b} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \tag{2.9}\\
& \quad \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad+q \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+q \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \\
& \quad+p \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+p \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x .
\end{align*}
$$

Adding (2.8) and (2.9), we have

$$
\begin{align*}
& \frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{b-a} \int_{c}^{d} f\left(x, \frac{c+d}{2}\right) g\left(x, \frac{c+d}{2}\right) d x \tag{2.10}\\
& \quad+\frac{1}{2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)} \frac{1}{d-c} \int_{c}^{d} f\left(\frac{a+b}{2}, y\right) g\left(\frac{a+b}{2}, y\right) d y \\
& \quad \leq \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad+q \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y+q \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y
\end{align*}
$$

$$
\begin{aligned}
& +p \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y+p \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y \\
& +q \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+q \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \\
& +p \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+p \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x
\end{aligned}
$$

Therefore from (2.7) and (2.10), we get

$$
\begin{aligned}
& \frac{1}{2\left[h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \quad \leq \frac{2}{(b-a)(d-c)} \int_{a}^{b} f(x, y) g(x, y) d x d y \\
& \quad+2 q \frac{1}{d-c} \int_{c}^{d} f(a, y) g(a, y) d y+2 q \frac{1}{d-c} \int_{c}^{d} f(b, y) g(b, y) d y \\
& \quad+2 p \frac{1}{d-c} \int_{c}^{d} f(a, y) g(b, y) d y+2 p \frac{1}{d-c} \int_{c}^{d} f(b, y) g(a, y) d y \\
& \quad+2 q \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, c) d x+2 q \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, d) d x \\
& \quad+2 p \frac{1}{b-a} \int_{a}^{b} f(x, c) g(x, d) d x+2 p \frac{1}{b-a} \int_{a}^{b} f(x, d) g(x, c) d x \\
& \quad+2 q^{2} L(a, b, c, d)+2 p q M(a, b, c, d)+2 p^{2} N(a, b, c, d)
\end{aligned}
$$

By using (1.11) to each of the above integral and simplifying, we get

$$
\begin{aligned}
& \frac{1}{2\left[h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \quad \leq \frac{2}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad+\left(2 q^{2}+4 p q\right) L(a, b, c, d)+\left(2 p^{2}+2 p q+2 q^{2}\right) M(a, b, c, d)+\left(2 p^{2}+4 p q\right) N(a, b, c, d)
\end{aligned}
$$

Dividing both sides by 2 ;

$$
\begin{aligned}
& \frac{1}{\left[2 h_{1}\left(\frac{1}{2}\right) h_{2}\left(\frac{1}{2}\right)\right]^{2}} f\left(\frac{a+b}{2}, \frac{c+d}{2}\right) g\left(\frac{a+b}{2}, \frac{c+d}{2}\right) \\
& \quad \leq \frac{1}{(b-a)(d-c)} \int_{a}^{b} f(x, y) g(x, y) d x d y \\
& \quad+\left(q^{2}+2 p q\right) L(a, b, c, d)+\left(p^{2}+p q+q^{2}\right) M(a, b, c, d)+\left(p^{2}+2 p q\right) N(a, b, c, d)
\end{aligned}
$$

This completes the proof of the theorem.
Remark 3. If we take $h_{1}(t)=h_{2}(t)=t$, then inequality (2.3) reduces to the inequality (1.15).
Theorem 15. Suppose that all the assumptions of Theorem 12 are satisfied, if g_{x} and g_{y} are symmetric about $\frac{a+b}{2}$ and $\frac{c+d}{2}$, respectively, with $h_{1}=h_{2}=h$, then one has the inequality;

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad \leq \frac{1}{4(b-a)} \int_{a}^{b} \int_{c}^{d}[f(x, c)+f(x, d)]\left(h\left(\frac{d-y}{d-c}\right)+h\left(\frac{y-c}{d-c}\right)\right) g(x, y) d y d x \\
& \quad+\frac{1}{4(d-c)} \int_{c}^{d} \int_{a}^{b}[f(a, y)+f(b, y)]\left(h\left(\frac{b-x}{b-a}\right)+h\left(\frac{x-a}{b-a}\right)\right) g(x, y) d x d y
\end{aligned}
$$

Proof. Since the partial mappings f_{x} and g_{x} are h-convex, by applying to the inequality (1.13), we can write

$$
\frac{1}{d-c} \int_{c}^{d} f_{x}(y) g_{x}(y) d y \leq \frac{f_{x}(c)+f_{x}(d)}{2} \int_{c}^{d}\left(h\left(\frac{d-y}{d-c}\right)+h\left(\frac{y-c}{d-c}\right)\right) g_{x}(y) d y .
$$

That is;

$$
\frac{1}{d-c} \int_{c}^{d} f(x, y) g(x, y) d y \leq \frac{f(x, c)+f(x, d)}{2} \int_{c}^{d}\left(h\left(\frac{d-y}{d-c}\right)+h\left(\frac{y-c}{d-c}\right)\right) g(x, y) d y .
$$

Integrating the result with respect to x on $[a, b]$ and dividing both sides of inequality, we get;

$$
\begin{equation*}
\frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \tag{2.11}
\end{equation*}
$$

$$
\leq \frac{1}{2(b-a)} \int_{a}^{b} \int_{c}^{d}[f(x, c)+f(x, d)\}\left(h\left(\frac{d-y}{d-c}\right)+h\left(\frac{y-c}{d-c}\right)\right) g(x, y) d y d x
$$

By a similar argument f_{y} and g_{y} are h - convex, by applying to the inequality (1.13), we get;

$$
\begin{aligned}
& \frac{1}{(b-a)(d-c)} \int_{a}^{b} \int_{c}^{d} f(x, y) g(x, y) d y d x \\
& \quad \leq \frac{1}{2(d-c)} \int_{c}^{d} \int_{a}^{b}[f(a, y)+f(b, y)]\left(h\left(\frac{b-x}{b-a}\right)+h\left(\frac{x-a}{b-a}\right)\right) g(x, y) d x d y
\end{aligned}
$$

Summing (2.11) and (2.12), we obtain the required result.

References

[1] M. Alomari and M. Darus, The Hadamard's inequality for s - convex function of 2 - variables on the co-ordinates, Int. Journal of Math. Analysis, 2 (13) (2008), 629-638.
[2] M. Alomari and M. Darus, The Hadamard's inequality for s - convex function, Int. Journal of Math. Analysis, 2 (13) (2008), 639-646.
[3] M. Alomari and M. Darus, On co-ordinated s - convex functions, International Mathematical Forum, 3, 2008, no. 40, 1977-1989.
[4] M. Alomari and M. Darus, Co-ordinates s - convex function in the first sense with some Hadamard-type inequalities, Int. J. Contemp. Math. Sci., 32, 2008, 1557-1567.
[5] M. Alomari and M. Darus, Hadamard-Type Inequalities for s - convex functions, International Mathematical Forum, 3, 2008, no. 40, 1965-1975.
[6] W.W. Breckner, Stetigkeitsaussagen für eine Klasse verallgemeinerter konvexer funktionen in topologischen linearen Raumen, Pupl. Inst. Math., 23 (1978), 13-20.
[7] W.W. Breckner, Continuity of generalized convex and generalized concave set-valued functions, Rev Anal. Numér. Thkor. Approx., 22 (1993), 39-51.
[8] S.S. Dragomir, On Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese Journal of Mathematics, 5 (2001), 775-788.
[9] SS. Dragomir and S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (4) (1999), 687-696.
[10] S.S. Dragomir, J. Pecaric and L.E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-241.
[11] E.K. Godunova and V.I. Levin, Neravenstva dlja funkcii sirokogo klassa, soderzascego vypuklye, monotonnye i nekotorye drugie vidy funkii, Vycislitel. Mat. i. Fiz. Mezvuzov. Sb. Nauc. Trudov, MGPI, Moskva, 1985, pp. 138-142.
[12] H. Hudzik and L. Maligranda, Some remarks on s - convex functions, Aequationes Math., 48 (1994), 100-111.
[13] U.S. Kırmacı, M.K. Bakula, M.E. Özdemir and J. Pecaric, Hadamard-type inequalities for s - convex functions, Appl. Math. and Compt., 193 (2007), 26-35.
[14] M.A. Latif and M. Alomari, On Hadamard-type inequalities of product of two convex functions on the co-ordinates, International Mathematical Forum, 4 (2009), no. 47, 2327-2338.
[15] D.S. Mitrinovic and J. Pecaric, Note on a class of functions of Godunova and Levin, C. R. Math. Rep. Acad. Sci. Can., 12 (1990), 33-36.
[16] D.S. Mitrinovic, J. Pecaric and A.M. Fink, Classical and new inequalities in analysis, Kluwer Academic, Dordrecht, 1993.
[17] B.G. Pachpatte, On some inequalities for convex functions, RGMIA Res. Rep. Coll., 6 (E), 2003.
[18] M.Z Sarıkaya, A. Sağlam and H. Yıldırım, On some Hadamard-type inequalities for h - convex functions, Journal of Math. Ineq., Vol. 2, Number 3 (2008), 335-341.
[19] S. Varosanec, On h - convexity, J. Math. Anal. Appl., 326 (2007), 303-311.
[20] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On some new inequalities of Hadamard type involving h-convex functions, Acta Math. Univ. Comenianae, LXXIX., 2 (2010), 265-272.
[21] M.E. Özdemir, E. Set, M.Z. Sarıkaya, Some new Hadamard's type inequalities for co-ordinated m - convex and
($\alpha, m)$ - convex functions, Hacettepe J. of. Math. and Ist., 40, 219-229, (2011).
[22] M.Z. Sar kaya, E. Set, M.E. Özdemir and S.S. Dragomir, New some Hadamard’s type inequalities for co-ordinated convex functions, Accepted.
[23] M.A. Latif and M. Alomari, On Hadamard-type inequalities for h-convex functions on the co-ordinates, Int. Journal of Math. Analysis, 33, 2009, 1645-1656.
[24] M. K. Bakula, M. E. Özdemir and J. Pecaric, Hadamard-type inequalities for m-convex and $(\alpha, m)-$ convex functions, J. Inequal. Pure and Appl. Math., 9, (4), (2007), Article 96.

