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Öz: Bu çalışmada, koordinatlarda h-konveks fonksiyonların çarpımı için Hadamard tipli eşitsizlikler 

oluşturulmuştur. Elde edilen sonuçlar literatürde bazı iyi bilinen sonuçları genelleştirmiştir.  

 

Anahtar Kelimeler — Koordinatlar, Hadamard eşitsizliği, h-konveks fonksiyonlar. 

 

Abstract: In this paper, Hadamard-type inequalities for product of h-convex functions on the co-ordinates on 

the rectangle from the plane are established. Obtained results generalize the corresponding to some well-

known results given before now. 
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1.Introduction 

Let RR If :  be a convex function and Iba ,  with ba < . Then the following double 

inequality: 
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 is known as Hadamard’s inequality for convex mapping. For particular choice of the function f  in 

(1.1) yields some classical inequalities of means.  

Definition 1. (See [11]) A function RR If :  is said to Godunova-Levin function or f  is said 

to belong to the class )(IQ  if f  is non-negative and for all Iyx ,  and for  0,1  we have the 

inequality: 
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The class )(IQ  was firstly described in [11] by Godunova-Levin. Some further properties of it can 

be found in [10], [15] and [16]. Among others, it is noted that non-negative monotone and non-

negative convex functions belongs to this class of functions. In [6], Breckner introduced s convex 

functions as a generalization of convex functions. In [7], he proved the important fact that the set-

valued map is s convex only if associated support function is s convex. A number of properties 

and connections with s convexity in the first sense are discussed in paper [12]. It is clear that s

convexity is merely convexity for 1=s . 

Definition 2. (See [6]) Let (0,1]s  be fixed real number. A function 𝑓: [0, ∞) → [0, ∞) is said to be 

s convex in the second sense, or that f  belongs to the class 2

sK , if 

 )()(1)())(1( yfxfyxf ss    

for all 𝑥, 𝑦 ∈ [0, ∞) and 𝛼 ∈ [0,1].  

Definition 3. (See [10]) A function RR If :  is said to be P function or that f  is said to 

belong to the class )(IP  if f  is non-negative and for all Iyx ,  and 𝛼 ∈ [0,1], if 

 ).()())(1( yfxfyxf    

In [9], Dragomir and Fitzpatrick proved the following variant of Hadamard’s inequality which holds 

for s convex function in the second sense: 

Theorem 1. Suppose that 𝑓: [0, ∞) → [0, ∞) is an s convex function in the second sense, where 

(0,1)s  and let 𝑎, 𝑏 ∈ [0, ∞), ba < . If ]),([1 baLf   then the following inequalities hold: 
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 The constant 
1

1
=

s
k  is the best possible in the second inequality in (1.2).  

In [9], Dragomir and Fitzpatrick also proved the following Hadamard-type inequality which holds 

for s convex functions in the first sense: 

Theorem 2. Suppose that 𝑓: [0, ∞) → [0, ∞) is an s convex function in the first sense, where 

(0,1)s  and let 𝑎, 𝑏 ∈ [0, ∞). If ]),([1 baLf   then the following inequalities hold: 
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 The above inequalities are sharp.  

A modification for convex functions which is also known as co-ordinated convex(concave) functions 

was introduced by Dragomir in [8] as following: 

Let us now consider a bidimensional interval ∆= [𝑎, 𝑏] × [𝑐, 𝑑] in 2R  with ba <  and dc < . A 

mapping R:f  is said to be convex on   if the following inequality:  

 ),()(1),())(1,)(1( wzfyxfwyzxf    

holds, for all ),(),,( wzyx  and   [0,1] . If the inequality reversed then f  is said to be concave 

on  . A function R:f  is said to be convex on the co-ordinates on   if the partial mappings 

,],[: Rbaf y  ),(=)( yufuf y  and ,],[: Rdcf x  ),(=)( vxfvf x  are convex where defined for all 

],,bax  ].,dcy  

A formal definition for co-ordinated convex functions may be stated as follow [see [23]]: 

Definition 4. A function R:f  is said to be convex on the co-ordinates on   if the following 

inequality: 

))(1,)(1( wssuyttxf  ),())(1(1),()(1),()(1),( wyfstuyftswxfstuxtsf   

 holds for all 0,1], st  and ),(),,(),,(),,( wyuywxux .  

Clearly, every convex mapping R:f  is convex on the co-ordinates. Furthermore, there exists 

co-ordinated convex function which is not convex. In [8], Dragomir established the following 

inequalities of Hadamard’s type for convex functions on the co-ordinates on a rectangle from the 

plane 2R . 

Theorem 3. Suppose R:f  is convex function on the co-ordinates on  . Then one has the 

inequalities: 
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In [1], Alomari and Darus proved the following inequalities of Hadamard-type as above for s

convex functions in the second sense on the co-ordinates on a rectangle from the plane 2R . 
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Theorem 4. Suppose R:f  is s convex function (in the second sense) on the co-ordinates on 

 . Then one has the inequalities: 
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Also in [4] (see also [5]), Alomari and Darus established the following inequalities of Hadamard-

type similar to (1.5) for s convex functions in the first sense on the co-ordinates on a rectangle 

from the plane 2R . 

Theorem 5. Suppose R:f  is s convex function on the co-ordinates on   in the first sense. 

Then one has the inequalities: 
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 The above inequalities are sharp.  

For refinements, counterparts, generalizations and new Hadamard-type inequalities see the papers [1, 

2, 3, 4, 5, 8, 9, 10, 12, 21, 22, 23, 24]. 

In [17], Pachpatte established two Hadamard-type inequalities for product of convex functions. An 

analogous results for s convex functions is due to Kırmacı et al. [13]. 

Theorem 6. Let 𝑓, 𝑔: [𝑎, 𝑏] ⊂ 𝑅 → [0, ∞) be convex functions on ],[ ba , ba < . Then 
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 where )()()()(=),( bgbfagafbaM   and )()()()(=),( agbfbgafbaN  .  
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Theorem 7. Let RR ],[:, bagf  𝑎, 𝑏 ∈ [𝑎, 𝑏], ba < , be functions such that g  and fg  are in 

]),([1 baL . If f  is convex and non-negative on ],[ ba  and if g  is s -convex on ],[ ba  for some 

(0,1)s . Then 
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   (1.10) 

 where )()()()(=),( bgbfagafbaM   and )()()()(=),( agbfbgafbaN  .  

The class of h convex functions was introduced by S. Varosanec in [19] (see [19] for further 

properties of h convex functions). 

Definition 5. Let RRJh : , where J(0,1) , be a positive function. A function RR If :  

is said to be h convex or that f  is said to belong to the class ),( IhSX , if f  is non-negative and 

for all Iyx ,  and (0,1) , we have 

 )()(1)()())(1( yfhxfhyxf    

if the inequality is reversed then f  is said to be h concave and we say that f  belongs to the class 

),( IhSV .  

Remark 1. Obviously, if  =)(h , then all the non-negative convex functions belong to the class 

),( IhSX  and all non-negative concave functions belong to the class ),( IhSV . Also note that if 




1
=)(h , then )(=),( IQIhSX ; if 1=)(h , then )(),( IPIhSX  ; and if sh  =)( , where 

(0,1)s , then 
2),( sKIhSX  .  

In [18], Sarıkaya et al. established the following inequalities of Hadamard’s type for product of h

convex functions. 

Theorem 8. Let ),,( 1 IhSXf   ),,( 2 IhSXg  ,, Iba   ba < , be functions such that ]),([1 baLfg  

and ([0,1])121 Lhh  , then 
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where )()()()(=),( bgbfagafbaM   and )()()()(=),( agbfbgafbaN  .  

Theorem 9. Let ),,( 1 IhSXf   ),,( 2 IhSXg  ,, Iba   ba < , be functions such that ]),([1 baLfg  

and ([0,1])121 Lhh  , then 
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 where )()()()(=),( bgbfagafbaM   and )()()()(=),( agbfbgafbaN  .  

In [20], Sarıkaya et al. established the following inequality of Hadamard’s type which involving h

convex functions: 

Theorem 10. Let ),,( IhSXf   Iba ,  with ,< ba  ]),([1 baLf   and R],[: bag  is non-

negative, integrable and symmetric about .
2

ba 
 Then  
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In [14], authors proved the following results for product of two convex functions on the co-ordinates 

on rectagle from the plane 2R . 

Theorem 11. Let RR ],[:, bagf  be convex functions on the co-ordinates on   with 

dcba <,< . Then 
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   (1.14) 

 where 

 ),(),(),(),(),(),(),(),(=),,,( dbgdbfdagdafcbgcbfcagcafdcbaL   

 ),(),(),(),(),(),(),(),(=),,,( cbgdbfdbgcbfcagdafdagcafdcbaM   

 ),(),(),(),(),(),(),(),( dbgdafcbgcafdagdbfcagcbf   

 ),(),(),(),(),(),(),(),(=),,,( cbgdafdbgcafcagdbfdagcbfdcbaN   
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Theorem 12. Let RR ],[:, bagf  be convex functions on the co-ordinates on   with 

dcba <,< . Then 
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 where ),,,,(),,,,( dcbaMdcbaL  and ),,,( dcbaN  as in Theorem 10.  

Similar to definition of co-ordinated convex functions Latif and Alomari gave the notion of h

convexity of a function f  on a rectangle from the plane 2R  and h convexity on the co-ordinates 

on a rectangle from the plane 2R  in [23], as follows: 

Definition 6. (See [23]) Let us consider a bidimensional interval ∆= [𝑎, 𝑏] × [𝑐, 𝑑] in 2R  with 

ba <  and dc < . Let RRJh : , where J(0,1) , be a positive function. A mapping 𝑓: ∆→ 𝑅 is 

said to be h convex on  , if f  is non-negative and if the following inequality:  

 ),()(1),()())(1,)(1( wzfhyxfhwyzxf    

holds, for all ),(),,( wzyx  and   (0,1)  . Let us denote this class of functions by ),( hSX . 

The function f  is said to be h concave if the inequality reversed. We denote this class of functions 

by ),( hSV .  

A function R:f  is said to be h convex on the co-ordinates on   if the partial mappings 

,],[: Rbaf y  ),(=)( yufuf y  and ,],[: Rdcf x  ),(=)( vxfvf x  are h convex where defined 

for all ],,bax  ].,dcy  A formal definition of h convex functions may also be stated as follows: 

Definition 7. (See [23]) A function R:f  is said to be h convex on the co-ordinates on ,  if 

the following inequality: 

),()(1)(),()()())(1,)(1( wxfshthuxfshthwssuyttxf   

 ),()(1)(1),()(1)( wyfshthuyfthsh   

 holds for all 𝑡, 𝑠 ∈ [0,1] and ),(),,(),,(),,( wyuywxux .  
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Lemma 1. (See [23]) Every h convex mapping R:f  is h convex on the co-ordinates, but 

the converse is not generally true.  

The main purpose of the present paper is to establish new Hadamard-type inequalities like those 

given above in the Theorem 11-12, but now for product of two h convex functions on the co-

ordinates on rectangle from the plane 2R . 

2.  Main Results 

In this section we establish some Hadamard’s type inequalities for product of two h convex 

functions on the co-ordinates on rectangle from the plane. In the sequel of the paper 
1h  and 

2h  are 

positive functions defined on J , where R J(0,1)  and f  and g  are non-negative functions 

defined on ∆= [𝑎, 𝑏] × [𝑐, 𝑑]. 

Theorem 13. Let 𝑓, 𝑔: ∆= [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅 where ba <  and dc < , be functions such that fg  

)(2 L , [0,1])121 Lhh  . If f  is 1h convex on the co-ordinates on   and if g  is 2h convex on the 

co-ordinates on  , then 

dydxyxgyxf
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 where ),,,,( dcbaL  ),,,,( dcbaM  ),,,( dcbaN  as in Theorem 10 and dtththp )()(= 21

1

0  and 

dtththq )(1)(= 21

1

0
 .  

Proof. Since 𝑓, 𝑔: ∆= [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅 be functions such that )(2 Lfg  and f  is 1h convex on 

the co-ordinates on   and g  is 2h convex on the co-ordinates on  , therefore the partial mappings 

 ),(=)(,],[: yxfxfbaf yy R  

 ),(=)(,],[: yxgxgbag yy R  

 and 

 ),(=)(,],[: yxfyfdcf xx R  

 ),(=)(,],[: yxgygdcg xx R  
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 are 1h , 2h convex on ],[ ba  and ],,[ dc  respectively, for all 𝑥 ∈ ],[ ba and 𝑦 ∈ ],,[ dc . Now by 

applying (1.11) to )()( ygyf xx  on ],[ dc  we get 
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 Now by applying (1.11) to each integral on R.H.S of (2.2) again, we get 
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On substitution of these inequalities in (2.2) yields 
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    ),(),(),(),(),(),(),(),(2 dagdbfdbgdafpqdbgdbfdagdafp   
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    ),(),(),(),(),(),(),(),( 2 dagcbfdbgcafqdbgcbfdagcafpq   

    ),(),(),(),(),(),(),(),( 2 cagdbfcbgdafqcbgdbfcagdafpq   

 ).,,,(),,,(),,,(= 22 dcbaNqdcbapqMdcbaLp   

 This completes the proof.  

Remark 2. If we take tthth =)(=)( 21
, then inequality (2.1) reduces to the inequality (1.14).  

Theorem 14. Let 𝑓, 𝑔: ∆= [𝑎, 𝑏] × [𝑐, 𝑑] → 𝑅 where ba <  and dc < , be functions such that fg  

)(2 L , [0,1])121 Lhh  . If f  is 1h convex on the co-ordinates on   and if g  is 2h convex on the 

co-ordinates on  , then 
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 Adding (2.4) and (2.5) and multiplying both sides by 

)
2

1
()

2

1
(2

1

21 hh

, we get 








 







 








 2
,

22
,

2
)

2

1
()

2

1
(2

1
2

21

dcba
g

dcba
f

hh

 (2.6) 

 dx
dc

xg
dc

xf
ab

hh

b

a







 







 


  2

,
2

,
1

)
2

1
()

2

1
(2

1

21

 

 dyy
ba

gy
ba

f
cd

hh

d

c







 







 


  ,

2
,

2

1

)
2

1
()

2

1
(2

1

21

 

 
























 







 








 







 


2
,

2
,

)
2

1
()

2

1
(2

1

2
,

2
,

)
2

1
()

2

1
(2

1

2121

dc
bg

dc
bf

hh

dc
ag

dc
af

hh

q  

 
























 







 








 







 


2
,

2
,

)
2

1
()

2

1
(2

1

2
,

2
,

)
2

1
()

2

1
(2

1

2121

dc
ag

dc
bf

hh

dc
bg

dc
af

hh

p  

 
























 







 








 







 
 d

ba
gd

ba
f

hh

c
ba

gc
ba

f

hh

q ,
2

,
2

)
2

1
()

2

1
(2

1
,

2
,

2
)

2

1
()

2

1
(2

1

2121

 

http://dergipark.gov.tr/tjos


52              Özdemir et al.                                     Vol. I, Issue I, 2016 

 

TJOS © 2016 
http://dergipark.gov.tr/tjos 

 .,
2

,
2

)
2

1
()

2

1
(2

1
,

2
,

2
)

2

1
()

2

1
(2

1

2121























 







 








 







 
 c

ba
gd

ba
f

hh

d
ba

gc
ba

f

hh

p  

 Applying (1.12) to each term within the brackets, we have 

   dyyagyaf
cd

dc
ag

dc
af

hh

d

c
,,

1

2
,

2
,

)
2

1
()

2

1
(2

1

21










 







 
 

         dagdafcagcafq ,,,,          cagdafdagcafp ,,,,   

   dyybgybf
cd

dc
bg

dc
bf

hh

d

c
,,

1

2
,

2
,

)
2

1
()

2

1
(2

1

21










 







 
 

         dbgdbfcbgcbfq ,,,,          cbgdbfdbgcbfp ,,,,   

   dyybgyaf
cd

dc
bg

dc
af

hh

d

c
,,

1

2
,

2
,

)
2

1
()

2

1
(2

1

21










 







 
 

         dbgdafcbgcafq ,,,,          cbgdafdbgcafp ,,,,   

 

   dyyagybf
cd

dc
ag

dc
bf

hh

d

c
,,

1

2
,

2
,

)
2

1
()

2

1
(2

1

21










 







 
 

         dagdbfcagcbfq ,,,,          cagdbfdagcbfp ,,,,   

dxcxgcxf
ab

c
ba

gc
ba

f

hh

b

a
),(),(

1
,

2
,

2
)

2

1
()

2

1
(2

1

21










 







 
 

         cbgcbfcagcafq ,,,,          cagcbfcbgcafp ,,,,   

dxdxgdxf
ab

d
ba

gd
ba

f

hh

b

a
),(),(

1
,

2
,

2
)

2

1
()

2

1
(2

1

21










 







 
 

         dbgdbfdagdafq ,,,,          dagdbfdbgdafp ,,,,   

http://dergipark.gov.tr/tjos


Vol. I, Issue I, 2016                             53 
 

TJOS © 2016 
http://dergipark.gov.tr/tjos 

On Some Hadamard-Type Inequalities for Product of Two ℎ −Convex 
Functions On the Co-ordinates 

 

dxdxgcxf
ab

d
ba

gc
ba

f

hh

b

a
),(),(

1
,

2
,

2
)

2

1
()

2

1
(2

1

21










 







 
 

         dbgcbfdagcafq ,,,,          dagcbfdbgcafp ,,,,   

dxcxgdxf
ab

c
ba

gd
ba

f

hh

b

a
),(),(

1
,

2
,

2
)

2

1
()

2

1
(2

1

21










 







 
 

         cbgdbfcagdafq ,,,,          .,,,, cagdbfcbgdafp   

 Substituting these inequalities in (2.6) and simplifying we have; 
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, integrating over ],[ dc  and 

dividing both sides by ,cd   we get 
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 By using (1.11) to each of the above integral and simplifying, we get 
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 Dividing both sides by 2; 
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 This completes the proof of the theorem.  

Remark 3. If we take tthth =)(=)( 21
, then inequality (2.3) reduces to the inequality (1.15).  

Theorem 15. Suppose that all the assumptions of Theorem 12 are satisfied, if xg  and yg  are 

symmetric about 
2

ba 
 and ,

2

dc 
 respectively, with ,== 21 hhh  then one has the inequality; 

   dydxyxgyxf
cdab

d

c

b

a
,,

))((

1


 

 
 

  dydxyxg
cd

cy
h

cd

yd
hdxfcxf

ab

d

c

b

a
),(),(),(

4

1




































   

 
 

  dxdyyxg
ab

ax
h

ab

xb
hybfyaf

cd

b

a

d

c
),(),(),(

4

1




































   

Proof. Since the partial mappings xf  and xg  are h convex, by applying to the inequality (1.13), we 

can write 
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 Integrating the result with respect to x  on  ba,  and dividing both sides of inequality, we get; 
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 By a similar argument yf  and yg  are h convex, by applying to the inequality (1.13), we get; 
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 Summing (2.11) and (2.12), we obtain the required result.  
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