Turk. J. Math. Comput. Sci. 15(1)(2023) 54–62 © MatDer

DOI: 10.47000/tjmcs.1176117

Notes about Anti-paraHermitian Metric Connections

Abderrahim Zagane

Department of Mathematics, Faculty of Science and Technology, Relizane University, 48000, Relizane, Algeria.

Received: 16-09-2022 • Accepted: 19-12-2022

ABSTRACT. In the present paper firstly, we introduce classes of anti-paraKähler-Codazzi manifolds and we discuss the problem of integrability for almost paracomplex structures on these manifolds. Secondly, we introduce new classes of anti-paraHermitian manifolds associated with these anti-paraHermitian metric connections with torsion, we look for the conditions in which they become anti-paraKähler manifolds or anti-paraKähler-Codazzi manifolds.

2010 AMS Classification: 53C20, 53C15, 53C55, 53B35

Keywords: Anti-paraHermitian, twin anti-paraHermitian metric, anti-paraKähler-Codazzi manifold, anti-paraHermitian metric connections.

1. Introduction

An almost product structure φ on a manifold M is a (1,1) tensor field on M such that $\varphi^2 = id_M$, $\varphi \neq \pm id_M$ (id_M is the identity tensor field of type (1,1) on M). The pair (M,φ) is called an almost product manifold.

A linear connection ∇ on (M, φ) such that $\nabla \varphi = 0$ is said an almost product connection. There exists an almost product connection on every almost product manifold [2].

An almost paracomplex manifold is an almost product manifold (M, φ) , such that the two eigenbundles TM^+ and TM^- associated to the two eigenvalues +1 and -1 of φ , respectively, have the same rank. Note that the dimension of an almost paracomplex manifold is necessarily even [1].

The integrability of an almost paracomplex structure is equivalent to the vanishing of the Nijenhuis tensor:

$$N_{\varphi}(X,Y) = [\varphi X, \varphi Y] - \varphi[\varphi X, Y] - \varphi[X, \varphi Y] + [X, Y],$$

for any vector fields X and Y on M.

A paracomplex structure is an integrable almost paracomplex structure. On the other hand, in order that an almost paracomplex structure be integrable, it is necessary and sufficient that we can introduce a torsion free linear connection such that $\nabla \varphi = 0$ [5,6]

Let (M^{2m}, φ) be an almost paracomplex manifold. A Riemannian metric g is said anti-paraHermitian metric with respect to the paracomplex structure φ if

$$g(\varphi X, \varphi Y) = g(X, Y),$$

or equivalently (purity condition), (B-metric) [6]

$$g(\varphi X, Y) = g(X, \varphi Y),$$

for any vector fields *X* and *Y* on *M*.

Email address: Zaganeabr2018@gmail.com (A. Zagane)
The author is supported by National Algerian P.R.F.U. project.

Also note that

$$G(X, Y) = g(\varphi X, Y),$$

is a bilinear, symmetric tensor field of type (0, 2) on (M, φ) and pure with respect to the paracomplex structure φ , which is called the twin anti-paraHermitian metric of g, and it plays a role similar to the Kähler form in Hermitian Geometry. Some properties of twin Norden Riemannian metric are investigated in [4, 6].

If (M^{2m}, φ) is an almost paracomplex manifold with an anti-paraHermitian metric g, then the triple (M^{2m}, φ, g) is said to be an almost anti-paraHermitian manifold (almost B-manifold) [6]. Moreover, (M^{2m}, φ, g) is said to be anti-paraKähler manifold (B-manifold) [6] if φ is parallel with respect to the Levi-Civita connection ∇ of g i.e. $\nabla \varphi = 0$.

A Tachibana operator ϕ_{φ} applied to the anti-paraHermitian metric (pure metric) g is given by

$$(\phi_{\varphi}g)(X,Y,Z) = \varphi X(g(Y,Z)) - X(g(\varphi Y,Z)) + g((L_Y\varphi)X,Z) + g((L_Z\varphi)X,Y),$$

for any vector fields X, Y and Z on M [11].

In an almost anti-paraHermitian manifold, an anti-paraHermitian metric g is called paraholomorphic if

$$(\phi_{\varphi}g)(X,Y,Z) = 0, (1.1)$$

for any vector fields X, Y and Z on M [6].

If (M, g, φ) is an anti-paraKähler manifold with paraholomorphic anti-paraHermitian, we say that (M, g, φ) is a paraholomorphic anti-paraKähler manifold.

As the anti-paraKähler condition ($\nabla \varphi = 0$) is equivalent to paraholomorphicity condition of the anti-paraHermitian metric g, ($\phi_{\varphi}g$) = 0 [5, 6].

Salimov and his collaborators studied several aspects related to the topic of anti-hermetic metric communication, which is considered one of the new works in the topic, of which we mention the following: the Curvature properties of anti-Kähler-Codazzi manifolds, isotropic property of anti-Kähler-Codazzi manifolds, classes of anti-Hermitian manifolds and the purity condition of torsion tensor of anti-Hermitian metric connection see [7–10], as well as in this direction Ida and Manea have presented some properties of para-Norden metric connections [3].

2. Anti-paraKähler-Codazzi Manifolds

Let (M, g, φ) be an almost anti-paraHermitian manifold. If the twin anti-paraHermitian metric G satisfies the Codazzi equation

$$(\nabla_X G)(Y, Z) - (\nabla_Y G)(X, Z) = 0, (2.1)$$

for any vector fields X, Y and Z on M, then the triple (M, g, φ) is called an anti-paraKähler-Codazzi manifold. For complex version, is called an anti-Kähler-Codazzi manifold, see [7]. Since

$$(\nabla_X G)(Y, Z) = XG(Y, Z) - G(\nabla_X Y, Z) - G(Y, \nabla_X Z)$$

$$= Xg(\varphi Y, Z) - g(\varphi \nabla_X Y, Z) - g(\varphi Y, \nabla_X Z)$$

$$= g(\nabla_X (\varphi Y), Z) + g(\varphi Y, \nabla_X Z) - g(\varphi \nabla_X Y, Z) - g(\varphi Y, \nabla_X Z)$$

$$= g((\nabla_X \varphi)Y, Z), \qquad (2.2)$$

the equation (2.1) is equivalent to

$$(\nabla_X \varphi) Y - (\nabla_Y \varphi) X = 0, \tag{2.3}$$

for any vector fields *X* and *Y* on *M*.

Remark 2.1.

- (i) It is clear that any anti-paraKähler manifold ($\nabla \varphi = 0$) is anti-paraKähler-Codazzi (2.3).
- (ii) The converse statement is not true, i.e., the condion ($\nabla \varphi = 0$) is not true for anti-paraKähler-Codazzi manifolds in general.

Theorem 2.2. Let (M, g, φ) be an almost anti-paraHermitian manifold. If (M, g, φ) is an anti-paraKähler-Codazzi manifold, then the almost paracomplex structure φ is integrable.

Proof. Using
$$[X, Y] = \nabla_X Y - \nabla_Y X$$
, $(\nabla_X \varphi)Y = \nabla_X (\varphi Y) - \varphi(\nabla_X Y)$ and (2.3), we find

$$\begin{split} N_{\varphi}(X,Y) &= & \left[\varphi X, \varphi Y \right] - \varphi[\varphi X,Y] - \varphi[X,\varphi Y] + \left[X,Y \right] \\ &= & \nabla_{(\varphi X)}(\varphi Y) - \nabla_{(\varphi Y)}(\varphi X) - \varphi(\nabla_{(\varphi X)}Y - \nabla_{Y}(\varphi X)) - \varphi(\nabla_{X}(\varphi Y) - \nabla_{(\varphi Y)}X) + \nabla_{X}Y - \nabla_{Y}X \\ &= & \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) + \varphi(\nabla_{(\varphi X)}Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) - \varphi(\nabla_{(\varphi Y)}X) - \varphi(\nabla_{(\varphi X)}Y) + \varphi(\nabla_{Y}(\varphi X)) - \varphi(\nabla_{X}(\varphi Y)) \right. \\ &\quad \left. + \varphi(\nabla_{(\varphi Y)}X) + \nabla_{X}Y - \nabla_{Y}X \right. \\ &= & \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi(\nabla_{Y}(\varphi X)) - \nabla_{Y}X - \varphi(\nabla_{X}(\varphi Y)) + \nabla_{X}Y \right. \\ &= & \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi(\nabla_{Y}(\varphi X) - \varphi(\nabla_{Y}X)) - \varphi(\nabla_{X}(\varphi Y) - \varphi(\nabla_{X}Y)) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi Y) - (\nabla_{(\varphi Y)}\varphi)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{Y}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi X) + \varphi((\nabla_{X}\varphi)X - (\nabla_{X}\varphi)Y \right) \right. \\ \\ \\ &= & \left. \left(\nabla_{(\varphi X)}\varphi\right)(\varphi$$

3. Anti-paraHermitian Metric Connections with Torsion

Given an anti-paraHermitian manifold (M, g, φ) , the Levi-Civita connection of g is the only torsion-free connection parallelizing the metric g. But there are many other connections with torsion parallelizing the metric g. We call these connections anti-paraHermitian metric connections.

3.1. Let $\overline{\nabla}$ be an arbitrary linear connection on M. We define a tensor field S of type (1,2) on M by

$$\overline{\nabla}_X Y = \nabla_X Y + S(X, Y), \tag{3.1}$$

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g, then the torsion tensor \overline{T} of connection $\overline{\nabla}$ is given by

$$\overline{T}(X,Y) = \overline{\nabla}_X Y - \overline{\nabla}_Y X - [X,Y]$$

$$= \nabla_X Y + S(X,Y) - \nabla_Y X - S(Y,X) - [X,Y]$$

$$= S(X,Y) - S(Y,X). \tag{3.2}$$

Remark 3.1. We will denote again by \overline{T} (resp. S) the (0,3)-tensor field obtained by contracting with the metric g, defined by $\overline{T}(X,Y,Z) = g(\overline{T}(X,Y),Z)$ (resp. S(X,Y,Z) = g(S(X,Y),Z)), for all vector fields X,Y and Z on M.

Lemma 3.2. Let (M, g, φ) be an almost anti-paraHermitian manifold. A connection $\overline{\nabla}$ is metric connection of g if and only if

$$S(X, Y, Z) + S(X, Z, Y) = 0,$$
 (3.3)

for all vector fields X, Y and Z on M.

Proof. We compute the covariant derivative,

$$(\overline{\nabla}_X g)(Y,Z) = Xg(Y,Z) - g(\overline{\nabla}_X Y,Z) - g(Y,\overline{\nabla}_X Z)$$

$$= Xg(Y,Z) - g(\overline{\nabla}_X Y + S(X,Y),Z) - g(Y,\overline{\nabla}_X Z + S(X,Z))$$

$$= (\overline{\nabla}_X g)(Y,Z) - g(S(X,Y),Z) - g(Y,S(X,Z))$$

$$= -S(X,Y,Z) - S(X,Z,Y),$$

then, we get

$$\overline{\nabla} g = 0 \quad \Leftrightarrow \quad S(X,Y,Z) + S(X,Z,Y) = 0.$$

Remark 3.3. Using (3.2), we have

$$\overline{T}(X, Y, Z) = S(X, Y, Z) - S(Y, X, Z),$$

$$\overline{T}(Z, X, Y) = S(Z, X, Y) - S(X, Z, Y),$$

$$\overline{T}(Z, Y, X) = S(Z, Y, X) - S(Y, Z, X).$$

П

From (3.3), we get

$$S(X,Y,Z) = \frac{1}{2}(\overline{T}(X,Y,Z) + \overline{T}(Z,X,Y) + \overline{T}(Z,Y,X)). \tag{3.4}$$

Lemma 3.4. Let (M, g, φ) be an almost anti-paraHermitian manifold. A connection $\overline{\nabla}$ is metric connection of G if and only if

$$S(X, Y, \varphi Z) + S(X, Z, \varphi Y) = g((\nabla_X \varphi)Y, Z), \tag{3.5}$$

for all vector fields X, Y and Z on M.

Proof. We compute the covariant derivative of G and by (2.2), we find

$$\begin{split} (\overline{\nabla}_X G)(Y,Z) &= XG(Y,Z) - G(\overline{\nabla}_X Y,Z) - G(Y,\overline{\nabla}_X Z) \\ &= XG(Y,Z) - G(\overline{\nabla}_X Y + S(X,Y),Z) - G(Y,\overline{\nabla}_X Z + S(X,Z)) \\ &= (\overline{\nabla}_X G)(Y,Z) - G(S(X,Y),Z) - G(Y,S(X,Z)) \\ &= g((\overline{\nabla}_X \varphi)Y,Z) - g(\varphi S(X,Y),Z) - g(\varphi Y,S(X,Z)) \\ &= g((\overline{\nabla}_X \varphi)Y,Z) - S(X,Y,\varphi Z) - S(X,Z,\varphi Y), \end{split}$$

then, we get

$$\overline{\nabla}G = 0 \Leftrightarrow S(X, Y, \varphi Z) + S(X, Z, \varphi Y) = g((\nabla_X \varphi)Y, Z).$$

We study two cases:

First case: We put

$$S(X, Y, \varphi Z) = S(X, Z, \varphi Y),$$

from (3.5), we have

$$2g(S(X,Y),\varphi Z) = g((\nabla_X \varphi)Y,Z),$$

then,

$$2g(S(X,Y),\varphi Z) = g(\varphi(\nabla_X \varphi)Y,\varphi Z).$$

Hence, we find

$$S(X,Y) = \frac{1}{2}\varphi((\nabla_X \varphi)Y). \tag{3.6}$$

Using (3.1) and (3.6) we get

$$\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y) \tag{3.7}$$

and

$$\overline{T}(X,Y) = \frac{1}{2}\varphi((\nabla_X\varphi)Y - (\nabla_Y\varphi)X). \tag{3.8}$$

On the other hand, we have

$$\begin{split} S(X,Y,Z) + S(X,Z,Y) &= g(S(X,Y),Z) + g(S(X,Z),Y) \\ &= \frac{1}{2}g(\varphi((\nabla_X\varphi)Y),Z) + \frac{1}{2}g(\varphi((\nabla_X\varphi)Z),Y) \\ &= \frac{1}{2}g(\nabla_X(\varphi Y) - \varphi(\nabla_X Y),\varphi Z) + \frac{1}{2}g(\nabla_X(\varphi Z) - \varphi(\nabla_X Z),\varphi Y) \\ &= \frac{1}{2}g(\nabla_X(\varphi Y),\varphi Z) - \frac{1}{2}g(\nabla_X Y,Z) + \frac{1}{2}g(\nabla_X(\varphi Z),\varphi Y) - \frac{1}{2}g(\nabla_X Z,Y) \\ &= \frac{1}{2}Xg(\varphi Y,\varphi Z) - \frac{1}{2}Xg(Y,Z) = 0, \end{split}$$

and

$$\begin{split} S(X,Y,\varphi Z) + S(X,Z,\varphi Y) &= g(S(X,Y),\varphi Z) + g(S(X,Z),\varphi Y) \\ &= \frac{1}{2}g((\nabla_X\varphi)Y,Z) + \frac{1}{2}g((\nabla_X\varphi)Z,Y) \\ &= \frac{1}{2}g((\nabla_X\varphi)Y,Z) + \frac{1}{2}g((\nabla_X\varphi)Y,Z) \\ &= g((\nabla_X\varphi)Y,Z). \end{split}$$

In an almost anti-paraHermitian manifold, by (3.6) the tensor S satisfies the equation (3.3) (i.e. $\overline{\nabla}g = 0$) and the equation (3.5) (i.e. $\overline{\nabla}G = 0$). Using (3.7), the connection $\overline{\nabla}$ is anti-paraHermitian metric connection.

We compute the covariant derivative of φ

$$\begin{split} (\overline{\nabla}_X \varphi) Y &= \overline{\nabla}_X (\varphi Y) - \varphi(\overline{\nabla}_X Y) \\ &= \nabla_X (\varphi Y) + \frac{1}{2} \varphi(\nabla_X \varphi) (\varphi Y) - \varphi(\nabla_X Y + \frac{1}{2} \varphi(\nabla_X \varphi) Y) \\ &= \nabla_X (\varphi Y) - \varphi(\nabla_X Y) + \frac{1}{2} \varphi((\nabla_X \varphi) (\varphi Y)) - \frac{1}{2} (\nabla_X \varphi) Y \\ &= (\nabla_X \varphi) Y + \frac{1}{2} \varphi(\nabla_X Y - \varphi(\nabla_X (\varphi Y))) - \frac{1}{2} (\nabla_X \varphi) Y \\ &= (\nabla_X \varphi) Y - \frac{1}{2} (\nabla_X \varphi) Y - \frac{1}{2} (\nabla_X \varphi) Y \\ &= 0, \end{split}$$

then, we get $\overline{\nabla}\varphi = 0$. Hence, we have the following theorem

Theorem 3.5. Let (M, g, φ) be an almost anti-parHermitian manifold, there is a unique connection $\overline{\nabla}$ with torsion \overline{T} , that is parallelizing (compatible with) both the anti-paraHermitian metric g, the twin anti-paraHermitian metric G and the paracomplex structure φ i.e., $\overline{\nabla}g = 0$, $\overline{\nabla}G = 0$ and $\overline{\nabla}\varphi = 0$. Moreover, $\overline{\nabla}$ and \overline{T} are explicitly given by

$$\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y),$$

and

$$\overline{T}(X,Y) = \frac{1}{2}\varphi((\nabla_X\varphi)Y - (\nabla_Y\varphi)X),$$

where ∇ is the Levi-Civita connection of g.

Remark 3.6. Using (3.4) and (3.6), we get

$$g((\nabla_X \varphi)Y, \varphi Z) = \overline{T}(X, Y, Z) + \overline{T}(Z, X, Y) + \overline{T}(Z, Y, X).$$

Now let $\overline{\nabla}$ be a unique connection with torsion \overline{T} which parallelizing (compatible with) both the anti-paraHermitian metric g, the paracomplex structure φ (see Theorem 3.5). From (1.1) we have

$$\begin{split} \phi_{\varphi}g(X,Y,Z) &= & (\varphi X)g(Y,Z) - Xg(\varphi Y,Z) + g((L_Y\varphi)X,Z) + g(Y,(L_Z\varphi)X) \\ &= & (\varphi X)g(Y,Z) - Xg(\varphi Y,Z) + g(L_Y(\varphi X),Z) - g(\varphi(L_YX),Z) + g(Y,L_Z(\varphi X)) - g(Y,\varphi(L_ZX)). \end{split}$$

Using $L_YX = [Y, X] = \overline{\nabla}_Y X - \overline{\nabla}_X Y - \overline{T}(Y, X)$, we have

$$\begin{split} \phi_{\varphi}g(X,Y,Z) &= & (\varphi X)g(Y,Z) - Xg(\varphi Y,Z) + g(\overline{\nabla}_{Y}(\varphi X),Z) - g(\overline{\nabla}_{\varphi X}Y,Z) - g(\overline{T}(Y,\varphi X),Z) - g(\overline{\nabla}_{Y}X,\varphi Z) \\ &+ g(\overline{\nabla}_{X}Y,\varphi Z) + g(\overline{T}(Y,X),\varphi Z) + g(Y,\overline{\nabla}_{Z}(\varphi X)) - g(Y,\overline{\nabla}_{\varphi X}Z) - g(Y,\overline{T}(Z,\varphi X)) \\ &- g(\varphi Y,\overline{\nabla}_{Z}X) + g(\varphi Y,\overline{\nabla}_{X}Z) + g(\varphi Y,\overline{T}(Z,X)). \end{split}$$

Since $\overline{\nabla}g = 0$ and $\overline{\nabla}\varphi = 0$, we get

$$\begin{split} \phi_{\varphi}g(X,Y,Z) &= & (\overline{\nabla}_{\varphi X}g)(Y,Z) + (\overline{\nabla}_{X}g)(\varphi Y,Z) + g((\overline{\nabla}_{Y}\varphi)X,Z) + g(Y,(\overline{\nabla}_{Z}\varphi)X) + \overline{T}(Y,X,\varphi Z) - \overline{T}(Y,\varphi X,Z) \\ &+ \overline{T}(Z,X,\varphi Y) - \overline{T}(Z,\varphi X,Y) \\ &= & \overline{T}(Y,X,\varphi Z) - \overline{T}(Y,\varphi X,Z) + \overline{T}(Z,X,\varphi Y) - \overline{T}(Z,\varphi X,Y). \end{split}$$

From here we see that, if a torsion tensor \overline{T} of \overline{V} is pure with respect to the last arguments, i.e. $\overline{T}(X, \varphi Y, Z) = \overline{T}(X, Y, \varphi Z)$, then the given anti-paraHermitian metric g is paraholomorphic, i.e. $\phi_{\varphi}g = 0$. On the other hand, the anti-paraKähler (B-manifold) condition ($\nabla \varphi = 0$) is equivalent to paraholomorphicity condition of the anti-paraHermitian metric g, ($\phi_{\varphi}g$) = 0 [6], hence the triple (M, g, φ) is anti-paraKähler manifold. Thus, we have the following theorem.

Theorem 3.7. Let (M, g, φ) be an anti-paraHermitian manifold and let $\overline{\nabla}$ be an anti-paraHermitian connection with torsion \overline{T} which parallelizing (compatible with) both the anti-paraHermitian metric g. If the torsion tensor \overline{T} is pure with respect to the last arguments $\overline{T}(X, \varphi Y, Z) = \overline{T}(X, Y, \varphi Z)$, then the given anti-paraHermitian manifold is an anti-paraKähler.

If (M, g, φ) is an anti-paraKähler-Codazzi manifold. Then, from (2.3) and (3.8) we get that $\overline{T} = 0$ and from (3.4) we find S = 0, then $\overline{\nabla} = \nabla$. Hence, we have the following theorem

Theorem 3.8. Let (M, g, φ) be an anti-paraKähler-Codazzi manifold, then the anti-paraHermitian metric connection $\overline{\nabla}$ coincides with the Levi-Civita connection ∇ of g.

Second case: we put

$$S(X, Y, \varphi Z) = S(Z, Y, \varphi X), \tag{3.9}$$

from (3.5), we have

$$S(X, Y, \varphi Z) + S(X, Z, \varphi Y) = g((\nabla_X \varphi)Y, Z),$$

$$S(Y, Z, \varphi X) + S(Y, X, \varphi Z) = g((\nabla_Y \varphi)Z, X),$$

$$S(Z, X, \varphi Y) + S(Z, Y, \varphi X) = g((\nabla_Z \varphi)X, Y),$$

using (3.9), we get

$$2g(S(X,Y),\varphi Z) = g((\nabla_X \varphi)Y,Z) - g((\nabla_Y \varphi)Z,X) + g((\nabla_Z \varphi)X,Y). \tag{3.10}$$

We distinguish several cases:

i) Since in an almost anti-paraHermitian manifold (almost B-manifold) [6] the operator $\phi_{\varphi}g$ reduces to form

$$(\phi_{\omega}g)(Y,Z,X) = -g((\nabla_Y\varphi)Z,X) + g((\nabla_Z\varphi)X,Y) + g((\nabla_X\varphi)Y,Z),$$

and the anti-paraKähler condition ($\nabla \varphi = 0$) is equivalent to paraholomorphicity condition of the anti-paraHermitian metric g, ($\phi_{\varphi}g$) = 0, from (3.10) we get S = 0, $\overline{\nabla} = \nabla$ and the tensor S (S = 0) satisfies the equation (3.3). Hence, we have the following theorem

Theorem 3.9. Let (M, g, φ) be an anti-paraKähler manifold, then the anti-paraHermitian metric connection ∇ coincides with the Levi-Civita connection ∇ of g.

ii) If (M, g, φ) is an anti-paraKähler-Codazzi manifold, then from (2.3) and (3.10), since $g((\nabla_Z \varphi)X, Y) = g((\nabla_Z \varphi)Y, X)$ [6], we get

$$2g(S(X,Y),\varphi Z) = g((\nabla_X \varphi)Y,Z),$$

then,

$$2g(S(X,Y),\varphi Z) = g(\varphi(\nabla_X \varphi)Y,\varphi Z).$$

Hence, we find

$$S(X,Y) = \frac{1}{2}\varphi((\nabla_X\varphi)Y). \tag{3.11}$$

Using (3.1) and (3.11) we get

$$\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y), \tag{3.12}$$

and

$$\overline{T}(X,Y) = \frac{1}{2}\varphi((\nabla_X\varphi)Y - (\nabla_Y\varphi)X).$$

On the other hand, we have

$$S(X,Y,Z) + S(X,Z,Y) = 0$$
 and $S(X,Y,\varphi Z) + S(X,Z,\varphi Y) = g((\nabla_X \varphi)Y,Z)$.

Then, in an anti-paraKähler-Codazzi manifold, by (3.11) the tensor S satisfies the equation (3.3) (i.e. $\overline{\nabla}g = 0$) and the equation (3.5) (i.e. $\overline{\nabla}G = 0$). Using (3.12), the connection $\overline{\nabla}$ is anti-paraHermitian metric connection. Hence, we have the following theorem.

Theorem 3.10. Let (M, g, φ) be an anti-paraKähler-Codazzi manifold, then the anti-paraHermitian metric connection $\overline{\nabla}$ is explicitly given by

$$\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y),$$

where ∇ is the Levi-Civita connection of g.

iii) Let (M, g, φ) be an almost anti-paraHermitian manifold, if

$$S(X, Y) = -\varphi((\nabla_X \varphi)Y),$$

then

$$\overline{\nabla}_X Y = \nabla_X Y - \varphi((\nabla_X \varphi) Y),$$

and

$$\begin{split} S(X,Y,Z) + S(X,Z,Y) &= g(S(X,Y),Z) + g(S(X,Z),Y) \\ &= -g(\varphi((\nabla_X\varphi)Y),Z) - g(\varphi((\nabla_X\varphi)Z),Y) \\ &= -g(\nabla_X(\varphi Y) - \varphi(\nabla_X Y),\varphi Z) - g(\nabla_X(\varphi Z) - \varphi(\nabla_X Z),\varphi Y) \\ &= -g(\nabla_X(\varphi Y),\varphi Z) + g(\nabla_X Y,Z) - g(\nabla_X(\varphi Z),\varphi Y) + g(\nabla_X Z,Y) \\ &= -Xg(\varphi Y,\varphi Z) + Xg(Y,Z) = 0. \end{split}$$

Hence, we have the following theorem

Theorem 3.11. Let (M, g, φ) be an almost anti-parHermitian manifold, there is a unique connection $\overline{\nabla}$ with torsion \overline{T} , that is parallelizing (compatible with) the anti-paraHermitian metric g i.e., $\overline{\nabla}g = 0$. Moreover, $\overline{\nabla}$ and \overline{T} are explicitly given by

$$\overline{\nabla}_X Y = \nabla_X Y - \varphi((\nabla_X \varphi) Y),$$

and

$$\overline{T}(X,Y) = -\varphi((\nabla_X \varphi)Y - (\nabla_Y \varphi)X),$$

where ∇ is the Levi-Civita connection of g.

3.2. Let $\widehat{\nabla}$ be an arbitrary linear connection on M. We define a tensor field P of type (1,2) on M by

$$\widehat{\nabla}_X Y = \nabla_Y X + P(X, Y), \tag{3.13}$$

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g. By virtue of $[X, Y] = \nabla_X Y - \nabla_Y X$ the equation (3.13) becomes

$$\widehat{\nabla}_X Y = \nabla_X Y - [X,Y] + P(X,Y).$$

If we put S(X, Y) = -[X, Y] + P(X, Y), the connection $\widehat{\nabla}$ coincides with the connection $\overline{\nabla}$ defined by (3.1). Then in this case, the study of properties of the connection $\widehat{\nabla}$ coincides to properties of $\overline{\nabla}$.

3.3. Let $\widetilde{\nabla}$ be an arbitrary linear connection on M. We define a tensor field Q of type (1,2) on M by

$$\widetilde{\nabla}_X Y = \varphi \nabla_X Y + Q(X, Y), \tag{3.14}$$

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g. We can write (3.14) as follows

$$\widetilde{\nabla}_X Y = \nabla_X Y + (\varphi - I)\varphi \nabla_X Y + Q(X, Y).$$

If we put $S(X, Y) = (\varphi - I)\varphi \nabla_X Y + Q(X, Y)$, the connection $\widetilde{\nabla}$ coincides with the connection $\overline{\nabla}$ defined by (3.1). Then, in this case, the study of properties of the connection $\widetilde{\nabla}$ coincides to properties of $\overline{\nabla}$.

4. Example of Anti-paraHermitian Metrics

Example 4.1. Let \mathbb{R}^2 be endowed with the Riemannian metric g and the structure paracomplex φ in polar coordinate defined by

$$g = \left(\begin{array}{cc} 1 & 0 \\ 0 & r^2 \end{array}\right),$$

and

$$\varphi = \begin{pmatrix} \sin 2\theta & r\cos 2\theta \\ \frac{1}{r}\cos 2\theta & -\sin 2\theta \end{pmatrix}.$$

We easily verify that

$$\varphi^2 = I$$
,

and

$$g(\varphi X, \varphi Y) = X^r Y^r + r^2 X^{\theta} Y^{\theta} = g(X, Y),$$

for any vector fields $X = X^r \partial_r + X^\theta \partial_\theta$, $Y = Y^r \partial_r + Y^\theta \partial_\theta$, i.e. $(\mathbb{R}^2, g, \varphi)$ is an almost anti-paraHermitian manifold. The Levi-Civita connection ∇ of g is given by

$$\nabla_{\partial_r}\partial_r = 0, \ \nabla_{\partial_r}\partial_\theta = \nabla_{\partial_\theta}\partial_r = \frac{1}{r}\partial_\theta, \ \nabla_{\partial_\theta}\partial_\theta = -r\partial_r.$$

We also check that,

$$(\nabla_{\partial_r}\varphi)\partial_r = (\nabla_{\partial_r}\varphi)\partial_\theta = (\nabla_{\partial_\theta}\varphi)\partial_r = (\nabla_{\partial_\theta}\varphi)\partial_\theta = 0,$$

i.e. φ is parallel with respect to the Levi-Civita connection ∇ of g, hence $(\mathbb{R}^2, g, \varphi)$ is anti-paraKähler manifold. Then, from the Theorem 3.5 and Theorem 3.9, the anti-paraHermitian metric connection $\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y)$ coincides with the Levi-Civita connection ∇ of g.

Example 4.2. We consider the hyperbolic space H^4 endowed with the anti-paraHermitian structure (φ, h) defined by

$$H^4 = \{(x, y, z, t) \in \mathbb{R}^2 : t > 0\},\$$

$$g = \begin{pmatrix} t & 0 & 0 & 0 \\ 0 & \frac{1}{t} & 0 & 0 \\ 0 & 0 & \frac{1}{t} & 0 \\ 0 & 0 & 0 & \frac{1}{t} \end{pmatrix} and \varphi = \begin{pmatrix} 0 & \frac{1}{t} & 0 & 0 \\ t & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

We easily verify that

$$\varphi^2 = I$$

and

$$g(\varphi X, \varphi Y) = g(X, Y),$$

for any vector fields X and Y.

The Levi-Civita connection ∇ of h is given by

$$\nabla_{\partial_x}\partial_t = \nabla_{\partial_t}\partial_x = \frac{1}{2t}\partial_x, \ \nabla_{\partial_y}\partial_t = \nabla_{\partial_t}\partial_y = \frac{-1}{2t}\partial_y, \ \nabla_{\partial_z}\partial_t = \nabla_{\partial_t}\partial_z = \frac{-1}{2t}\partial_z, \ \nabla_{\partial_x}\partial_x = \frac{-t}{2}\partial_t,$$

$$\nabla_{\partial_y}\partial_y = \nabla_{\partial_z}\partial_z = -\nabla_{\partial_t}\partial_t = \frac{1}{2t}\partial_t, \ \nabla_{\partial_x}\partial_y = \nabla_{\partial_y}\partial_x = \nabla_{\partial_x}\partial_z = \nabla_{\partial_z}\partial_x = \nabla_{\partial_y}\partial_z = \nabla_{\partial_z}\partial_y = 0.$$

Note that

$$(\nabla_{\partial_x}\varphi)\partial_Y = \frac{-1}{2}\partial_t \neq 0,$$

i.e φ is not parallel with respect to the Levi-Civita connection ∇ of g, hence (H^4, φ, h) is not anti-paraKähler manifold. Then, from the Theorem 3.5, the anti-paraHermitian metric connection $\overline{\nabla}_X Y = \nabla_X Y + \frac{1}{2} \varphi((\nabla_X \varphi) Y)$ is given by

$$\overline{\nabla}_{\partial_x}\partial_x = \frac{-t}{4}\partial_t, \ \overline{\nabla}_{\partial_x}\partial_y = \frac{-1}{4}\partial_z, \ \overline{\nabla}_{\partial_x}\partial_z = \frac{1}{4}\partial_y, \ \overline{\nabla}_{\partial_x}\partial_t = \frac{1}{4t}\partial_x, \ \overline{\nabla}_{\partial_y}\partial_y = \frac{1}{4t}\partial_t, \ \overline{\nabla}_{\partial_y}\partial_z = \frac{-1}{4t^2}\partial_x, \ \overline{\nabla}_{\partial_y}\partial_t = \frac{-1}{4t}\partial_y, \ \overline{\nabla}_{\partial_y}\partial_z = \frac{-1}{4t^2}\partial_x, \ \overline{\nabla}_{\partial_y}\partial_z = \frac{-1}{$$

$$\overline{\nabla}_{\partial_t}\partial_z = \frac{-1}{2t}\partial_z, \ \overline{\nabla}_{\partial_t}\partial_t = \frac{-1}{2t}\partial_t, \ \overline{\nabla}_{\partial_y}\partial_x = \overline{\nabla}_{\partial_z}\partial_x = \overline{\nabla}_{\partial_z}\partial_y = \overline{\nabla}_{\partial_z}\partial_z = \overline{\nabla}_{\partial_z}\partial_t = \overline{\nabla}_{\partial_t}\partial_x = \overline{\nabla}_{\partial_t}\partial_x = 0.$$

ACKNOWLEDGEMENT

The author would like to thank the reviewers for their insightful comments and suggestions that helped us improve the paper.

AUTHORS CONTRIBUTION STATEMENT

Author have read and agreed to the published version of the manuscript.

CONFLICTS OF INTEREST

The author declares that there are no conflicts of interest regarding the publication of this article.

REFERENCES

- [1] Cruceanu, V., Fortuny, P., Gadea, P.M., A survey on paracomplex geometry, Rocky Mountain J. Math., 26(1)(1996), 83–115.
- [2] De León, M., Rodrigues, P.R., Methods of Differential Geometry in Analytical Mechanics, North-Holland Mathematics Studies, 1989.
- [3] Ida, C., Manea, A., On para-Norden metric connections, Balkan J. Geom. Appl., 21(2)(2016), 45-54.
- [4] Iscan, M., Salimov, A.A., On Kähler-Norden manifolds, Proc. Indian Acad. Sci. (Math. Sci.) 119(1) (2009), 71-80.
- [5] Salimov, A.A., Gezer, A., Iscan, M., On para-Kähler-Norden structures on the tangent bundles, Ann. Polon. Math., 103(3)(2012), 247–261.
- [6] Salimov, A., Iscan, M., Etayo, F., Paraholomorphic B-manifold and its properties, Topology Appl., 154(4)(2007), 925–933.
- [7] Salimov, A., Turanli, S., Curvature properties of anti-Kähler-Codazzi manifolds, C. R. Acad. Sci. Paris, Ser. I, 351(2013), 225–227.
- [8] Salimov, A., Akbulut, K., Turanli, S., On an isotropic property of anti-Kähler-Codazzi manifolds, C. R. Math. Acad. Sci. Paris, 351(21-22)(2013), 837–839.
- [9] Salimov, A., On anti-Hermitian metric connections, C. R. Math. Acad. Sci. Paris, 352(9)(2014), 731-735.
- [10] Salimov, A., Azizova S., Some Remarks Concerning Anti-Hermitian Metrics, Mediterr. J. Math., 16:84(2019), 1-10.
- [11] Yano, K., Ako, M., On certain operators associated with tensor field, Kodai Math. Sem. Rep., 20(1968), 414–436.