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Abstract. In the present paper firstly, we introduce classes of anti-paraKähler-Codazzi manifolds and we discuss
the problem of integrability for almost paracomplex structures on these manifolds. Secondly, we introduce new
classes of anti-paraHermitian manifolds associated with these anti-paraHermitian metric connections with torsion,
we look for the conditions in which they become anti-paraKähler manifolds or anti-paraKähler-Codazzi manifolds.
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1. Introduction

An almost product structure ϕ on a manifold M is a (1, 1) tensor field on M such that ϕ2 = idM , ϕ , ±idM (idM is
the identity tensor field of type (1, 1) on M). The pair (M, ϕ) is called an almost product manifold.

A linear connection ∇ on (M, ϕ) such that ∇ϕ = 0 is said an almost product connection. There exists an almost
product connection on every almost product manifold [2].

An almost paracomplex manifold is an almost product manifold (M, ϕ), such that the two eigenbundles T M+ and
T M− associated to the two eigenvalues +1 and −1 of ϕ, respectively, have the same rank. Note that the dimension of
an almost paracomplex manifold is necessarily even [1].

The integrability of an almost paracomplex structure is equivalent to the vanishing of the Nijenhuis tensor:

Nϕ(X,Y) = [ϕX, ϕY] − ϕ[ϕX,Y] − ϕ[X, ϕY] + [X,Y],

for any vector fields X and Y on M.
A paracomplex structure is an integrable almost paracomplex structure. On the other hand, in order that an almost

paracomplex structure be integrable, it is necessary and sufficient that we can introduce a torsion free linear connection
such that ∇ϕ = 0 [5, 6]

Let (M2m, ϕ) be an almost paracomplex manifold. A Riemannian metric g is said anti-paraHermitian metric with
respect to the paracomplex structure ϕ if

g(ϕX, ϕY) = g(X,Y),

or equivalently (purity condition), (B-metric) [6]

g(ϕX,Y) = g(X, ϕY),

for any vector fields X and Y on M.

Email address: Zaganeabr2018@gmail.com (A. Zagane)
The author is supported by National Algerian P.R.F.U. project.

https://orcid.org/0000-0001-9339-3787


A. Zagane, Turk. J. Math. Comput. Sci., 15(1)(2023), 54–62 55

Also note that

G(X,Y) = g(ϕX,Y),

is a bilinear, symmetric tensor field of type (0, 2) on (M, ϕ) and pure with respect to the paracomplex structure ϕ, which
is called the twin anti-paraHermitian metric of g, and it plays a role similar to the Kähler form in Hermitian Geometry.
Some properties of twin Norden Riemannian metric are investigated in [4, 6].

If (M2m, ϕ) is an almost paracomplex manifold with an anti-paraHermitian metric g, then the triple (M2m, ϕ, g) is
said to be an almost anti-paraHermitian manifold (almost B-manifold) [6]. Moreover, (M2m, ϕ, g) is said to be anti-
paraKähler manifold (B-manifold) [6] if ϕ is parallel with respect to the Levi-Civita connection ∇ of g i.e. ∇ϕ = 0.

A Tachibana operator φϕ applied to the anti-paraHermitian metric (pure metric) g is given by

(φϕg)(X,Y,Z) = ϕX(g(Y,Z)) − X(g(ϕY,Z)) + g((LYϕ)X,Z) + g((LZϕ)X,Y),

for any vector fields X,Y and Z on M [11].
In an almost anti-paraHermitian manifold, an anti-paraHermitian metric g is called paraholomorphic if

(φϕg)(X,Y,Z) = 0, (1.1)

for any vector fields X,Y and Z on M [6].
If (M, g, ϕ) is an anti-paraKähler manifold with paraholomorphic anti-paraHermitian, we say that (M, g, ϕ) is a

paraholomorphic anti-paraKähler manifold.
As the anti-paraKähler condition (∇ϕ = 0) is equivalent to paraholomorphicity condition of the anti-paraHermitian

metric g, (φϕg) = 0 [5, 6].
Salimov and his collaborators studied several aspects related to the topic of anti-hermetic metric communication,

which is considered one of the new works in the topic, of which we mention the following: the Curvature proper-
ties of anti-Kähler-Codazzi manifolds, isotropic property of anti-Kähler-Codazzi manifolds, classes of anti-Hermitian
manifolds and the purity condition of torsion tensor of anti-Hermitian metric connection see [7–10], as well as in this
direction Ida and Manea have presented some properties of para-Norden metric connections [3].

2. Anti-paraKähler-CodazziManifolds

Let (M, g, ϕ) be an almost anti-paraHermitian manifold. If the twin anti-paraHermitian metric G satisfies the Codazzi
equation

(∇XG)(Y,Z) − (∇YG)(X,Z) = 0, (2.1)

for any vector fields X,Y and Z on M, then the triple (M, g, ϕ) is called an anti-paraKähler-Codazzi manifold. For
complex version, is called an anti-Kähler-Codazzi manifold, see [7]. Since

(∇XG)(Y,Z) = XG(Y,Z) −G(∇XY,Z) −G(Y,∇XZ)
= Xg(ϕY,Z) − g(ϕ∇XY,Z) − g(ϕY,∇XZ)
= g(∇X(ϕY),Z) + g(ϕY,∇XZ) − g(ϕ∇XY,Z) − g(ϕY,∇XZ)
= g((∇Xϕ)Y,Z), (2.2)

the equation (2.1) is equivalent to

(∇Xϕ)Y − (∇Yϕ)X = 0, (2.3)

for any vector fields X and Y on M.

Remark 2.1.
(i) It is clear that any anti-paraKähler manifold (∇ϕ = 0) is anti-paraKähler-Codazzi (2.3).
(ii) The converse statement is not true, i.e., the condion (∇ϕ = 0) is not true for anti-paraKähler-Codazzi manifolds in
general.

Theorem 2.2. Let (M, g, ϕ) be an almost anti-paraHermitian manifold. If (M, g, ϕ) is an anti-paraKähler-Codazzi
manifold, then the almost paracomplex structure ϕ is integrable.
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Proof. Using [X,Y] = ∇XY − ∇Y X, (∇Xϕ)Y = ∇X(ϕY) − ϕ(∇XY) and (2.3), we find

Nϕ(X,Y) = [ϕX, ϕY] − ϕ[ϕX,Y] − ϕ[X, ϕY] + [X,Y]
= ∇(ϕX)(ϕY) − ∇(ϕY)(ϕX) − ϕ

(
∇(ϕX)Y − ∇Y (ϕX)

)
− ϕ

(
∇X(ϕY) − ∇(ϕY)X

)
+ ∇XY − ∇Y X

= (∇(ϕX)ϕ)(ϕY) + ϕ(∇(ϕX)Y) − (∇(ϕY)ϕ)(ϕX) − ϕ(∇(ϕY)X) − ϕ(∇(ϕX)Y) + ϕ(∇Y (ϕX)) − ϕ(∇X(ϕY))
+ϕ(∇(ϕY)X) + ∇XY − ∇Y X

= (∇(ϕX)ϕ)(ϕY) − (∇(ϕY)ϕ)(ϕX) + ϕ(∇Y (ϕX)) − ∇Y X − ϕ(∇X(ϕY)) + ∇XY

= (∇(ϕX)ϕ)(ϕY) − (∇(ϕY)ϕ)(ϕX) + ϕ
(
∇Y (ϕX) − ϕ(∇Y X)

)
− ϕ

(
∇X(ϕY) − ϕ(∇XY)

)
= (∇(ϕX)ϕ)(ϕY) − (∇(ϕY)ϕ)(ϕX) + ϕ

(
(∇Yϕ)X − (∇Xϕ)Y

)
= 0.

�

3. Anti-paraHermitianMetric Connections with Torsion

Given an anti-paraHermitian manifold (M, g, ϕ), the Levi-Civita connection of g is the only torsion-free connection
parallelizing the metric g. But there are many other connections with torsion parallelizing the metric g. We call these
connections anti-paraHermitian metric connections.

3.1. Let ∇ be an arbitrary linear connection on M. We define a tensor field S of type (1, 2) on M by

∇XY = ∇XY + S (X,Y), (3.1)

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g, then the torsion tensor T of connection
∇ is given by

T (X,Y) = ∇XY − ∇Y X − [X,Y]
= ∇XY + S (X,Y) − ∇Y X − S (Y, X) − [X,Y]
= S (X,Y) − S (Y, X). (3.2)

Remark 3.1. We will denote again by T (resp. S ) the (0, 3)-tensor field obtained by contracting with the metric g,
defined by T (X,Y,Z) = g(T (X,Y),Z) (resp. S (X,Y,Z) = g(S (X,Y),Z)),
for all vector fields X,Y and Z on M.

Lemma 3.2. Let (M, g, ϕ) be an almost anti-paraHermitian manifold. A connection ∇ is metric connection of g if and
only if

S (X,Y,Z) + S (X,Z,Y) = 0, (3.3)

for all vector fields X,Y and Z on M.

Proof. We compute the covariant derivative,

(∇Xg)(Y,Z) = Xg(Y,Z) − g(∇XY,Z) − g(Y,∇XZ)
= Xg(Y,Z) − g(∇XY + S (X,Y),Z) − g(Y,∇XZ + S (X,Z))
= (∇Xg)(Y,Z) − g(S (X,Y),Z) − g(Y, S (X,Z))
= −S (X,Y,Z) − S (X,Z,Y),

then, we get

∇g = 0 ⇔ S (X,Y,Z) + S (X,Z,Y) = 0.

�

Remark 3.3. Using (3.2), we have

T (X,Y,Z) = S (X,Y,Z) − S (Y, X,Z),

T (Z, X,Y) = S (Z, X,Y) − S (X,Z,Y),

T (Z,Y, X) = S (Z,Y, X) − S (Y,Z, X).
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From (3.3), we get

S (X,Y,Z) =
1
2
(
T (X,Y,Z) + T (Z, X,Y) + T (Z,Y, X)

)
. (3.4)

Lemma 3.4. Let (M, g, ϕ) be an almost anti-paraHermitian manifold. A connection ∇ is metric connection of G if and
only if

S (X,Y, ϕZ) + S (X,Z, ϕY) = g((∇Xϕ)Y,Z), (3.5)

for all vector fields X,Y and Z on M.

Proof. We compute the covariant derivative of G and by (2.2), we find

(∇XG)(Y,Z) = XG(Y,Z) −G(∇XY,Z) −G(Y,∇XZ)
= XG(Y,Z) −G(∇XY + S (X,Y),Z) −G(Y,∇XZ + S (X,Z))
= (∇XG)(Y,Z) −G(S (X,Y),Z) −G(Y, S (X,Z))
= g((∇Xϕ)Y,Z) − g(ϕS (X,Y),Z) − g(ϕY, S (X,Z))
= g((∇Xϕ)Y,Z) − S (X,Y, ϕZ) − S (X,Z, ϕY),

then, we get

∇G = 0 ⇔ S (X,Y, ϕZ) + S (X,Z, ϕY) = g((∇Xϕ)Y,Z).

�

We study two cases:
First case: We put

S (X,Y, ϕZ) = S (X,Z, ϕY),

from (3.5), we have

2g(S (X,Y), ϕZ) = g((∇Xϕ)Y,Z),

then,

2g(S (X,Y), ϕZ) = g(ϕ(∇Xϕ)Y, ϕZ).

Hence, we find

S (X,Y) =
1
2
ϕ((∇Xϕ)Y). (3.6)

Using (3.1) and (3.6) we get

∇XY = ∇XY +
1
2
ϕ((∇Xϕ)Y) (3.7)

and

T (X,Y) =
1
2
ϕ
(
(∇Xϕ)Y − (∇Yϕ)X

)
. (3.8)

On the other hand, we have

S (X,Y,Z) + S (X,Z,Y) = g(S (X,Y),Z) + g(S (X,Z),Y)

=
1
2

g(ϕ((∇Xϕ)Y),Z) +
1
2

g(ϕ((∇Xϕ)Z),Y)

=
1
2

g(∇X(ϕY) − ϕ(∇XY), ϕZ) +
1
2

g(∇X(ϕZ) − ϕ(∇XZ), ϕY)

=
1
2

g(∇X(ϕY), ϕZ) −
1
2

g(∇XY,Z) +
1
2

g(∇X(ϕZ), ϕY) −
1
2

g(∇XZ,Y)

=
1
2

Xg(ϕY, ϕZ) −
1
2

Xg(Y,Z) = 0,
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and

S (X,Y, ϕZ) + S (X,Z, ϕY) = g(S (X,Y), ϕZ) + g(S (X,Z), ϕY)

=
1
2

g((∇Xϕ)Y,Z) +
1
2

g((∇Xϕ)Z,Y)

=
1
2

g((∇Xϕ)Y,Z) +
1
2

g((∇Xϕ)Y,Z)

= g((∇Xϕ)Y,Z).

In an almost anti-paraHermitian manifold, by (3.6) the tensor S satisfies the equation (3.3) (i.e. ∇g = 0) and the
equation (3.5) (i.e. ∇G = 0). Using (3.7), the connection ∇ is anti-paraHermitian metric connection.

We compute the covariant derivative of ϕ

(∇Xϕ)Y = ∇X(ϕY) − ϕ(∇XY)

= ∇X(ϕY) +
1
2
ϕ(∇Xϕ)(ϕY) − ϕ(∇XY +

1
2
ϕ(∇Xϕ)Y)

= ∇X(ϕY) − ϕ(∇XY) +
1
2
ϕ((∇Xϕ)(ϕY)) −

1
2

(∇Xϕ)Y

= (∇Xϕ)Y +
1
2
ϕ(∇XY − ϕ(∇X(ϕY))) −

1
2

(∇Xϕ)Y

= (∇Xϕ)Y −
1
2

(∇Xϕ)Y −
1
2

(∇Xϕ)Y

= 0,

then, we get ∇ϕ = 0. Hence, we have the following theorem

Theorem 3.5. Let (M, g, ϕ) be an almost anti-parHermitian manifold, there is a unique connection ∇ with torsion T ,
that is parallelizing (compatible with) both the anti-paraHermitian metric g, the twin anti-paraHermitian metric G and
the paracomplex structure ϕ i.e., ∇g = 0, ∇G = 0 and ∇ϕ = 0. Moreover, ∇ and T are explicitly given by

∇XY = ∇XY +
1
2
ϕ((∇Xϕ)Y),

and

T (X,Y) =
1
2
ϕ
(
(∇Xϕ)Y − (∇Yϕ)X

)
,

where ∇ is the Levi-Civita connection of g.

Remark 3.6. Using (3.4) and (3.6), we get

g((∇Xϕ)Y, ϕZ) = T (X,Y,Z) + T (Z, X,Y) + T (Z,Y, X).

Now let ∇ be a unique connection with torsion T which parallelizing (compatible with) both the anti-paraHermitian
metric g, the paracomplex structure ϕ (see Theorem 3.5). From (1.1) we have

φϕg(X,Y,Z) = (ϕX)g(Y,Z) − Xg(ϕY,Z) + g((LYϕ)X,Z) + g(Y, (LZϕ)X)
= (ϕX)g(Y,Z) − Xg(ϕY,Z) + g(LY (ϕX),Z) − g(ϕ(LY X),Z) + g(Y, LZ(ϕX)) − g(Y, ϕ(LZ X)).

Using LY X = [Y, X] = ∇Y X − ∇XY − T (Y, X), we have

φϕg(X,Y,Z) = (ϕX)g(Y,Z) − Xg(ϕY,Z) + g(∇Y (ϕX),Z) − g(∇ϕXY,Z) − g(T (Y, ϕX),Z) − g(∇Y X, ϕZ)

+g(∇XY, ϕZ) + g(T (Y, X), ϕZ) + g(Y,∇Z(ϕX)) − g(Y,∇ϕXZ) − g(Y,T (Z, ϕX))

−g(ϕY,∇Z X) + g(ϕY,∇XZ) + g(ϕY,T (Z, X)).

Since ∇g = 0 and ∇ϕ = 0, we get

φϕg(X,Y,Z) = (∇ϕXg)(Y,Z) + (∇Xg)(ϕY,Z) + g((∇Yϕ)X,Z) + g(Y, (∇Zϕ)X) + T (Y, X, ϕZ) − T (Y, ϕX,Z)

+T (Z, X, ϕY) − T (Z, ϕX,Y)

= T (Y, X, ϕZ) − T (Y, ϕX,Z) + T (Z, X, ϕY) − T (Z, ϕX,Y).
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From here we see that, if a torsion tensor T of∇ is pure with respect to the last arguments, i.e. T (X, ϕY,Z) = T (X,Y, ϕZ),
then the given anti-paraHermitian metric g is paraholomorphic, i.e. φϕg = 0. On the other hand, the anti-paraKähler
(B-manifold) condition (∇ϕ = 0) is equivalent to paraholomorphicity condition of the anti-paraHermitian metric g,
(φϕg) = 0 [6], hence the triple (M, g, ϕ) is anti-paraKähler manifold. Thus, we have the following theorem.

Theorem 3.7. Let (M, g, ϕ) be an anti-paraHermitian manifold and let ∇ be an anti-paraHermitian connection with
torsion T which parallelizing (compatible with) both the anti-paraHermitian metric g. If the torsion tensor T is pure
with respect to the last arguments T (X, ϕY,Z) = T (X,Y, ϕZ), then the given anti-paraHermitian manifold is an anti-
paraKähler.

If (M, g, ϕ) is an anti-paraKähler-Codazzi manifold. Then, from (2.3) and (3.8) we get that T = 0 and from (3.4) we
find S = 0, then ∇ = ∇. Hence, we have the following theorem

Theorem 3.8. Let (M, g, ϕ) be an anti-paraKähler-Codazzi manifold, then the anti-paraHermitian metric connection
∇ coincides with the Levi-Civita connection ∇ of g.

Second case: we put

S (X,Y, ϕZ) = S (Z,Y, ϕX), (3.9)

from (3.5), we have

S (X,Y, ϕZ) + S (X,Z, ϕY) = g((∇Xϕ)Y,Z),
S (Y,Z, ϕX) + S (Y, X, ϕZ) = g((∇Yϕ)Z, X),
S (Z, X, ϕY) + S (Z,Y, ϕX) = g((∇Zϕ)X,Y),

using (3.9), we get

2g(S (X,Y), ϕZ) = g((∇Xϕ)Y,Z) − g((∇Yϕ)Z, X) + g((∇Zϕ)X,Y). (3.10)

We distinguish several cases:
i) Since in an almost anti-paraHermitian manifold (almost B-manifold) [6] the operator φϕg reduces to form

(φϕg)(Y,Z, X) = −g((∇Yϕ)Z, X) + g((∇Zϕ)X,Y) + g((∇Xϕ)Y,Z),

and the anti-paraKähler condition (∇ϕ = 0) is equivalent to paraholomorphicity condition of the anti-paraHermitian
metric g, (φϕg) = 0, from (3.10) we get S = 0, ∇ = ∇ and the tensor S (S = 0) satisfies the equation (3.3). Hence, we
have the following theorem

Theorem 3.9. Let (M, g, ϕ) be an anti-paraKähler manifold, then the anti-paraHermitian metric connection ∇ coin-
cides with the Levi-Civita connection ∇ of g.

ii) If (M, g, ϕ) is an anti-paraKähler-Codazzi manifold, then from (2.3) and (3.10), since g((∇Zϕ)X,Y) = g((∇Zϕ)Y, X)
[6], we get

2g(S (X,Y), ϕZ) = g((∇Xϕ)Y,Z),

then,

2g(S (X,Y), ϕZ) = g(ϕ(∇Xϕ)Y, ϕZ).

Hence, we find

S (X,Y) =
1
2
ϕ((∇Xϕ)Y). (3.11)

Using (3.1) and (3.11) we get

∇XY = ∇XY +
1
2
ϕ((∇Xϕ)Y), (3.12)

and

T (X,Y) =
1
2
ϕ
(
(∇Xϕ)Y − (∇Yϕ)X

)
.
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On the other hand, we have

S (X,Y,Z) + S (X,Z,Y) = 0 and S (X,Y, ϕZ) + S (X,Z, ϕY) = g((∇Xϕ)Y,Z).

Then, in an anti-paraKähler-Codazzi manifold, by (3.11) the tensor S satisfies the equation (3.3) (i.e. ∇g = 0) and
the equation (3.5) (i.e. ∇G = 0). Using (3.12), the connection ∇ is anti-paraHermitian metric connection. Hence, we
have the following theorem.

Theorem 3.10. Let (M, g, ϕ) be an anti-paraKähler-Codazzi manifold, then the anti-paraHermitian metric connection
∇ is explicitly given by

∇XY = ∇XY +
1
2
ϕ((∇Xϕ)Y),

where ∇ is the Levi-Civita connection of g.

iii) Let (M, g, ϕ) be an almost anti-paraHermitian manifold, if

S (X,Y) = −ϕ((∇Xϕ)Y),

then

∇XY = ∇XY − ϕ((∇Xϕ)Y),

and

S (X,Y,Z) + S (X,Z,Y) = g(S (X,Y),Z) + g(S (X,Z),Y)
= −g(ϕ((∇Xϕ)Y),Z) − g(ϕ((∇Xϕ)Z),Y)
= −g(∇X(ϕY) − ϕ(∇XY), ϕZ) − g(∇X(ϕZ) − ϕ(∇XZ), ϕY)
= −g(∇X(ϕY), ϕZ) + g(∇XY,Z) − g(∇X(ϕZ), ϕY) + g(∇XZ,Y)
= −Xg(ϕY, ϕZ) + Xg(Y,Z) = 0.

Hence, we have the following theorem

Theorem 3.11. Let (M, g, ϕ) be an almost anti-parHermitian manifold, there is a unique connection ∇ with torsion T ,
that is parallelizing (compatible with) the anti-paraHermitian metric g i.e., ∇g = 0. Moreover, ∇ and T are explicitly
given by

∇XY = ∇XY − ϕ((∇Xϕ)Y),

and

T (X,Y) = −ϕ
(
(∇Xϕ)Y − (∇Yϕ)X

)
,

where ∇ is the Levi-Civita connection of g.

3.2. Let ∇̂ be an arbitrary linear connection on M. We define a tensor field P of type (1, 2) on M by

∇̂XY = ∇Y X + P(X,Y), (3.13)

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g. By virtue of [X,Y] = ∇XY − ∇Y X the
equation (3.13) becomes

∇̂XY = ∇XY − [X,Y] + P(X,Y).

If we put S (X,Y) = −[X,Y] + P(X,Y), the connection ∇̂ coincides with the connection ∇ defined by (3.1). Then in this
case, the study of properties of the connection ∇̂ coincides to properties of ∇.

3.3. Let ∇̃ be an arbitrary linear connection on M. We define a tensor field Q of type (1, 2) on M by

∇̃XY = ϕ∇XY + Q(X,Y), (3.14)

for any vector fields X and Y on M, where ∇ is the Levi-Civita connection of g. We can write (3.14) as follows

∇̃XY = ∇XY + (ϕ − I)ϕ∇XY + Q(X,Y).

If we put S (X,Y) = (ϕ − I)ϕ∇XY + Q(X,Y), the connection ∇̃ coincides with the connection ∇ defined by (3.1). Then,
in this case, the study of properties of the connection ∇̃ coincides to properties of ∇.
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4. Example of Anti-paraHermitianMetrics

Example 4.1. Let R2 be endowed with the Riemannian metric g and the structure paracomplex ϕ in polar coordinate
defined by

g =

(
1 0
0 r2

)
,

and

ϕ =

 sin 2θ r cos 2θ
1
r

cos 2θ − sin 2θ

 .
We easily verify that

ϕ2 = I,
and

g(ϕX, ϕY) = XrYr + r2XθYθ = g(X,Y),
for any vector fields X = Xr∂r + Xθ∂θ, Y = Yr∂r + Yθ∂θ, i.e. (R2, g, ϕ) is an almost anti-paraHermitian manifold.
The Levi-Civita connection ∇ of g is given by

∇∂r∂r = 0, ∇∂r∂θ = ∇∂θ∂r =
1
r
∂θ, ∇∂θ∂θ = −r∂r.

We also check that,
(∇∂rϕ)∂r = (∇∂rϕ)∂θ = (∇∂θϕ)∂r = (∇∂θϕ)∂θ = 0,

i.e. ϕ is parallel with respect to the Levi-Civita connection ∇ of g, hence (R2, g, ϕ) is anti-paraKähler manifold. Then,

from the Theorem 3.5 and Theorem 3.9, the anti-paraHermitian metric connection ∇XY = ∇XY+
1
2
ϕ((∇Xϕ)Y) coincides

with the Levi-Civita connection ∇ of g.

Example 4.2. We consider the hyperbolic space H4 endowed with the anti-paraHermitian structure (ϕ, h) defined by

H4 = {(x, y, z, t) ∈ R2 : t > 0},

g =



t 0 0 0

0
1
t

0 0

0 0
1
t

0

0 0 0
1
t


and ϕ =


0

1
t

0 0

t 0 0 0
0 0 0 1
0 0 1 0

 .
We easily verify that

ϕ2 = I
and

g(ϕX, ϕY) = g(X,Y),
for any vector fields X and Y .
The Levi-Civita connection ∇ of h is given by

∇∂x∂t = ∇∂t∂x =
1
2t
∂x, ∇∂y∂t = ∇∂t∂y =

−1
2t
∂y, ∇∂z∂t = ∇∂t∂z =

−1
2t
∂z, ∇∂x∂x =

−t
2
∂t,

∇∂y∂y = ∇∂z∂z = −∇∂t∂t =
1
2t
∂t, ∇∂x∂y = ∇∂y∂x = ∇∂x∂z = ∇∂z∂x = ∇∂y∂z = ∇∂z∂y = 0.

Note that
(∇∂xϕ)∂Y =

−1
2
∂t , 0,

i.e ϕ is not parallel with respect to the Levi-Civita connection ∇ of g, hence (H4, ϕ, h) is not anti-paraKähler manifold.

Then, from the Theorem 3.5, the anti-paraHermitian metric connection ∇XY = ∇XY +
1
2
ϕ((∇Xϕ)Y) is given by

∇∂x∂x =
−t
4
∂t, ∇∂x∂y =

−1
4
∂z, ∇∂x∂z =

1
4
∂y, ∇∂x∂t =

1
4t
∂x, ∇∂y∂y =

1
4t
∂t, ∇∂y∂z =

−1
4t2 ∂x, ∇∂y∂t =

−1
4t
∂y,
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∇∂t∂z =
−1
2t
∂z, ∇∂t∂t =

−1
2t
∂t, ∇∂y∂x = ∇∂z∂x = ∇∂z∂y = ∇∂z∂z = ∇∂z∂t = ∇∂t∂x = ∇∂t∂y = 0.
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