A New Characterization of Tzitzeica Curves in Euclidean 4-Space

Emrah Tunç (${ }^{1+}$, Bengü Bayram (${ }^{1}{ }^{1}$
${ }^{1}$ Balıkesir University, Faculty of Arts and Sciences, Department of Mathematics Balıkesir, Türkiye benguk@balikesir.edu.tr

Received: 17 September 2022

Accepted: 10 July 2023

Abstract

In this study, we are interested in Tzitzeica curves (Tz-curves) in Euclidean 4 -space \mathbb{E}^{4}. Tz-curve condition for Euclidean 4 -space are determined as three types for three hyperplanes and some examples are given.

Keywords: Tzitzeica condition, Tzitzeica curve, hyperplane, Frenet frame.

1. Introduction

Gheorgha Tzitzeica, Romanian mathematician (1872-1939), introduced a class of surfaces [11], nowadays called Tzitzeica surfaces in 1907 and a class of curves [12], called Tzitzeica curves in 1911. A Tzitzeica curve in \mathbb{E}^{3} is a spatial curve $x=x(s)$ with the Frenet frame $\left\{T, N_{1}, N_{2}\right\}$ and curvatures $\left\{k_{1}, k_{2}\right\}$, for which the ratio of its torsion k_{2} and the square of the distance $d_{\text {osc }}$ from the origin to the osculating plane at an arbitrary point $x(s)$ of the curve is constant, i.e., a Tzitzeica curve in \mathbb{E}^{3} is a curve satisfying the condition (Tzitzeica condition)

$$
\begin{equation*}
\frac{k_{2}}{d_{o s c^{2}}{ }^{2}}=a \tag{1}
\end{equation*}
$$

where $d_{o s c}=\left\langle N_{2}, x\right\rangle$ and $a \neq 0$ is a real constant, N_{2} is the binormal vector field of x.
A Tzitzeica surface in \mathbb{E}^{3} is a spatial surface M given with the parametrization $X(u, v)$, for which the ratio of its Gaussian curvature K and the distance $d_{\text {tan }}$ from the origin to the tangent plane at any arbitrary point of the surface is constant, i.e., a Tzitzeica surface in \mathbb{E}^{3} is a surface satisfying the condition (Tzitzeica condition)

$$
\begin{equation*}
\frac{K}{d_{t a n}{ }^{4}}=a_{1} \tag{2}
\end{equation*}
$$

[^0]This Research Article is licensed under a Creative Commons Attribution 4.0 International License. Also, it has been published considering the Research and Publication Ethics.
for a constant $a_{1} \neq 0$. The orthogonal distance from the origin to the tangent plane is defined by

$$
\begin{equation*}
d_{t a n}=\langle X, N\rangle \tag{3}
\end{equation*}
$$

where X is the position vector of surface and N is unit normal vector field of the surface.
In [1] the authors gave the connections between Tzitzeica curve and Tzitzeica surface in Minkowski 3-space and the original ones from the Euclidean 3-space. Besides, the asymptotic lines of a Tzitzeica surface with the negative Gaussian curvature are Tzitzeica curves [3]. In [3], the authors determined the elliptic and hyperbolic cylindrical curves satisfying Tzitzeica condition in Euclidean space. In [? ?], hyperbolic and elliptic cylindrical curves verifying Tzitzeica condition were adapted to Minkowski 3-space, respectively.

Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in Euclidean 4 -space \mathbb{E}^{4}. Let us denote $T(s)=x^{\prime}(s)$ and call $T(s)$ a unit tangent vector of x at s. We denote the first Serret-Frenet curvature of x by $k_{1}(s)=\left\|x^{\prime \prime}(s)\right\|$. If $k_{1}(s) \neq 0$, then the unit principal normal vector $N_{1}(s)$ of the curve x at s is given by $T^{\prime}(s)=k_{1}(s) N_{1}(s)$. If $k_{2}(s) \neq 0$, then the unit second principal normal vector $N_{2}(s)$ of the curve x at s is given by $N_{1}{ }^{\prime}(s)+k_{1}(s) T(s)=k_{2}(s) N_{2}(s)$, where k_{2} is the second Serret-Frenet curvature of $x . N_{2}{ }^{\prime}(s)+k_{2}(s) N_{1}(s)=k_{3}(s) N_{3}(s)$, where k_{3} is the third Serret-Frenet curvature of x. Then, we have the Serret-Frenet formulae [5]:

$$
\begin{align*}
& T^{\prime}(s)=k_{1}(s) N_{1}(s) \\
& N_{1}^{\prime}(s)=-k_{1}(s) T(s)+k_{2}(s) N_{2}(s), \\
& N_{2}^{\prime}(s)=-k_{2}(s) N_{1}(s)+k_{3}(s) N_{3}(s), \tag{4}\\
& N_{3}^{\prime}(s)=-k_{3}(s) N_{2}(s)
\end{align*}
$$

If the Serret-Frenet curvatures $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$ of x are constant functions then x is called a screw line or a helix [4]. Since these curves are the traces of 1-parameter family of the groups of Euclidean transformations, Klein and Lie called them W-curves [8]. If the tangent vector T of the curve x makes a constant angle with a unit vector U of \mathbb{E}^{4} then this curve is called a general helix (or inclined curve) in \mathbb{E}^{4} [9].

Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in Euclidean 4 -space \mathbb{E}^{4}. Position vector of $x=x(s)$ satisfies parametric equation

$$
\begin{equation*}
x(s)=m_{0}(s) T(s)+m_{1}(s) N_{1}(s)+m_{2}(s) N_{2}(s)+m_{3}(s) N_{3}(s) \tag{5}
\end{equation*}
$$

where

$$
\begin{array}{ll}
m_{0}(s)=\langle x(s), T(s),\rangle & m_{1}(s)=\left\langle x(s), N_{1}(s),\right\rangle \\
m_{2}(s)=\left\langle x(s), N_{2}(s),\right\rangle & m_{3}(s)=\left\langle x(s), N_{3}(s) .\right\rangle \tag{6}
\end{array}
$$

By taking the derivative of (5) with respect to arclength parameter s and using Serret-Frenet equations (4), we obtain

$$
\begin{aligned}
T(s)=x^{\prime}(s) & =m_{0}{ }^{\prime}(s) T(s)+m_{0}(s) T^{\prime}(s)+m_{1}^{\prime}(s) N_{1}(s)+m_{1}(s) N_{1}^{\prime}(s)+m_{2}{ }^{\prime}(s) N_{2}(s) \\
& +m_{2}(s) N_{2}{ }^{\prime}(s)+m_{3}{ }^{\prime}(s) N_{3}(s)+m_{3}(s) N_{3}^{\prime}(s) \\
& =\left(m_{0}{ }^{\prime}(s)-m_{1}(s) k_{1}(s)\right) T(s)+\left(m_{0}(s) k_{1}(s)+m_{1}^{\prime}(s)-m_{2}(s) k_{2}(s)\right) N_{1}(s) \\
& +\left(m_{1}(s) k_{2}(s)+m_{2}{ }^{\prime}(s)-m_{3}(s) k_{3}(s)\right) N_{2}(s)+\left(m_{2}(s) k_{3}(s)+m_{3}^{\prime}(s)\right) N_{3}(s)
\end{aligned}
$$

It follows that

$$
\begin{array}{r}
m_{0}^{\prime}-k_{1} m_{1}=1, \\
m_{1}^{\prime}+k_{1} m_{0}-k_{2} m_{2}=0, \\
m_{2}^{\prime}+k_{2} m_{1}-k_{3} m_{3}=0, \tag{7}\\
m_{3}^{\prime}+k_{3} m_{2}=0
\end{array}
$$

We consider Tzitzeica curves in Euclidean 4 -space \mathbb{E}^{4} whose position vector $x=x(s)$ satisfies the parametric equation (5). We determine Tz-curve condition for Euclidean 4 -space \mathbb{E}^{4} as three types for three hyperplanes and give some examples. Besides, we express Tzitzeica curve conditions in terms of their curvature functions $k_{1}(s), k_{2}(s)$ and $k_{3}(s)$.

2. A Characterization of Tzitzeica Curves in Euclidean 4-Space

Definition 2.1 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in Euclidean 4 -space \mathbb{E}^{4}. A first type Tzitzeica curve $x=x(s)$, for which the ratio of its second Frenet curvature k_{2} and the square of the distance $d_{\left\{T, N_{1}, N_{3}\right\}}$ from the origin to the hyperplane spanned by $\left\{T, N_{1}, N_{3}\right\}$ at an arbitrary point $x(s)$ of the curve is constant, i.e.,

$$
\begin{equation*}
\frac{k_{2}}{d_{\left\{T, N_{1}, N_{3}\right\}}^{2}}=a_{1}, \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\left\{T, N_{1}, N_{3}\right\}}=\left\langle x, N_{2}\right\rangle \tag{9}
\end{equation*}
$$

and $a_{1} \neq 0$ is a real constant.

Definition 2.2 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in Euclidean 4-space \mathbb{E}^{4}. A second type Tzitzeica curve $x=x(s)$, for which the ratio of its first Frenet curvature k_{1} and the square of the distance $d_{\left\{T, N_{2}, N_{3}\right\}}$ from the origin to the hyperplane spanned by $\left\{T, N_{2}, N_{3}\right\}$ at an arbitrary point $x(s)$ of the curve is constant, i.e.,

$$
\begin{equation*}
\frac{k_{1}}{d_{\left\{T, N_{2}, N_{3}\right\}}^{2}}=a_{2}, \tag{10}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\left\{T, N_{2}, N_{3}\right\}}=\left\langle x, N_{1}\right\rangle \tag{11}
\end{equation*}
$$

and $a_{2} \neq 0$ is a real constant.

Definition 2.3 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in Euclidean 4-space \mathbb{E}^{4}. A third type Tzitzeica curve $x=x(s)$, for which the ratio of its second Frenet curvature k_{3} and the square of the distance $d_{\left\{T, N_{1}, N_{2}\right\}}$ from the origin to the hyperplane spanned by $\left\{T, N_{1}, N_{2}\right\}$ at an arbitrary point $x(s)$ of the curve is constant, i.e.,

$$
\begin{equation*}
\frac{k_{3}}{d_{\left\{T, N_{1}, N_{2}\right\}}^{2}}=a_{3} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
d_{\left\{T, N_{1}, N_{2}\right\}}=\left\langle x, N_{3}\right\rangle \tag{13}
\end{equation*}
$$

and $a_{3} \neq 0$ is a real constant.

Theorem 2.4 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in \mathbb{E}^{4} given with the parametrization (5). x is first type Tzitzeica curve if and only if the equation

$$
\begin{equation*}
k_{2}^{\prime} m_{2}+2 k_{2}^{2} m_{1}-2 k_{2} k_{3} m_{3}=0 \tag{14}
\end{equation*}
$$

holds.

Proof Let x be the first type Tzitzeica curve. By taking the derivative of (8) with respect to arc length parameter s and using (4) and (6), we get (14). The opposite of the proof is clear.

Proposition 2.5 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed spherical curve in \mathbb{E}^{4} given with the
parametrization (5). Then

$$
\begin{align*}
& m_{0}=0 \\
& m_{1}=\frac{-1}{k_{1}} \\
& m_{2}=\frac{k_{1}^{\prime}}{k_{2} k_{1}^{2}}, \tag{15}\\
& m_{3}=\frac{k_{1}^{\prime \prime}}{k_{1}^{2} k_{2} k_{3}}-\frac{2{k_{1}^{\prime}}^{2}}{k_{1}^{3} k_{2} k_{3}}-\frac{k_{1}^{\prime} k_{2}^{\prime}}{k_{1}^{2} k_{2}^{2} k_{3}}-\frac{k_{2}}{k_{1} k_{3}}
\end{align*}
$$

hold.

Proof Let x be a unit speed spherical curve. Then, $\langle x, x\rangle=r^{2}$. By taking the derivative of this expression, we get

$$
\begin{equation*}
\langle x, T\rangle=0=m_{0} . \tag{16}
\end{equation*}
$$

By taking the derivative of (16) and using (4) and (6), we get

$$
\begin{equation*}
\left\langle x, N_{1}\right\rangle=\frac{-1}{k_{1}}=m_{1} \tag{17}
\end{equation*}
$$

Again, by taking the derivative of (17) and using (4), (16) and (6), we get

$$
\begin{equation*}
\left\langle x, N_{2}\right\rangle=\frac{k_{1}^{\prime}}{k_{2} k_{1}^{2}}=m_{2} \tag{18}
\end{equation*}
$$

Similarly, by taking the derivative of (18) and using (4), (17) and (6), we get

$$
\left\langle x, N_{3}\right\rangle=\frac{k_{1}^{\prime \prime}}{k_{1}^{2} k_{2} k_{3}}-\frac{2 k_{1}^{\prime 2}}{k_{1}^{3} k_{2} k_{3}}-\frac{k_{1}^{\prime} k_{2}^{\prime}}{k_{1}^{2} k_{2}^{2} k_{3}}-\frac{k_{2}}{k_{1} k_{3}}=m_{3}
$$

Theorem 2.6 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed spherical curve in \mathbb{E}^{4} given with the parametrization (5). x is first type Tzitzeica curve if and only if the equations

$$
\begin{equation*}
3 k_{1} k_{1}^{\prime} k_{2}^{\prime}-2 k_{1} k_{1}^{\prime \prime} k_{2}+4{k_{1}^{\prime}}^{2} k_{2}=0 \tag{19}
\end{equation*}
$$

and $k_{2}=c .\left[\left(\frac{-1}{k_{1}}\right)^{\prime}\right]^{\frac{2}{3}}$ hold, where c is integral constant.
Proof Let x be a first type Tzitzeica curve. Then, substituing (15) into (14) and arranging the expression, we get (19). From the solution of (19), we get $k_{2}=c .\left[\left(\frac{-1}{k_{1}}\right)^{\prime}\right]^{\frac{2}{3}}$. The opposite of the proof is clear.

Corollary 2.7 Let x be a first type spherical Tzitzeica curve. If k_{2} is constant, then we get $k_{1}=\frac{c_{2}}{c_{1}+s}$.

Proof If k_{2} is constant, equation $k_{1} k_{1}^{\prime \prime}-2{k_{1}^{\prime}}^{2}=0$ is obtained from (19). If this equation is solved, then we get $k_{1}=\frac{c_{2}}{c_{1}+s}$.

Theorem 2.8 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in \mathbb{E}^{4} given with the parametrization (5). x is second type Tzitzeica curve if and only if the equation

$$
\begin{equation*}
k_{1}^{\prime} m_{1}+2 k_{1}^{2} m_{0}-2 k_{1} k_{2} m_{2}=0 \tag{20}
\end{equation*}
$$

holds.

Proof Let x be the second type Tzitzeica curve. By taking the derivative of (10) with respect to arc length parameter s and using (4) and (6), we get (20). The opposite of the proof is clear.

Proposition 2.9 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed spherical curve in \mathbb{E}^{4} given with the parametrization (5). x is second type Tzitzeica curve if and only if $k_{1}=c$, where c is a constant.

Proof Let x be the second type spherical Tzitzeica curve. Substituing (15) into (20), we get $3 \frac{k_{1}^{\prime}}{k_{1}}=0$. Which means that, $k_{1}=c($ constant $)$.

Theorem 2.10 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed curve in \mathbb{E}^{4} given with the parametrization (5). x is third type Tzitzeica curve if and only if the equation

$$
\begin{equation*}
k_{3}^{\prime} m_{3}+2 k_{3}^{2} m_{2}=0 \tag{21}
\end{equation*}
$$

holds.

Proof Let x be the third type Tzitzeica curve. By taking the derivative of (12) with respect to arc length parameter s and using (4) and (6), we get (21). The opposite of the proof is clear.

Proposition 2.11 Let $x: I \subset \mathbb{R} \rightarrow \mathbb{E}^{4}$ be a unit speed spherical curve in \mathbb{E}^{4} given with the parametrization (5). x is third type Tzitzeica curve if and only if the equation

$$
\begin{equation*}
k_{3}^{\prime}\left(k_{1}^{\prime \prime}-2 \frac{k_{1}^{2}}{k_{1}}-\frac{k_{1} k_{2}^{\prime}}{k_{2}}-k_{1} k_{2}^{2}\right)+2 k_{1}^{\prime} k_{3}^{3}=0 \tag{22}
\end{equation*}
$$

holds.

Proof Let x be third type spherical Tzitzeica curve. Then, substituing (15) into (21) and arranging the expression, we get (22). The opposite of the proof is clear.

Corollary 2.12 Let x be third type spherical Tzitzeica curve. If k_{1} and k_{2} are non-zero constants, then x is a W-curve.

Example 2.13 Let $x=x(s)$ be regular W-curve in \mathbb{E}^{4} given with the parametrization

$$
\begin{equation*}
x(s)=(a \cos (c s), a \sin (c s), b \cos (d s), b \sin (d s)) \tag{23}
\end{equation*}
$$

is a second type and third type Tzitzeica curve, where $0 \leq s \leq 2 \pi, a, b, c, d$ real constants and $c>0$, $d>0$.

Then, x without loss of generality, let x be unit speed curve, i.e., $a^{2} c^{2}+b^{2} d^{2}=1$. If $c=d$, then x is a circle, otherwise $(c \neq d) x$ is a curve in \mathbb{E}^{4}.

The Frenet curvatures k_{1}, k_{3} and the Frenet vector fields N_{1}, N_{3} of the curve x can be given by

$$
\begin{gather*}
k_{1}=\sqrt{a^{2} c^{4}+b^{2} d^{4}}, \tag{24}\\
k_{3}=\frac{c d}{\sqrt{a^{2} c^{4}+b^{2} d^{4}}}, \tag{25}\\
N_{1}=\frac{1}{k_{1}}\left[-a c^{2} \cos (c s),-a c^{2} \sin (c s),-b d^{2} \cos (d s),-b d^{2} \sin (d s)\right], \tag{26}\\
N_{3}=\frac{1}{k_{1}}\left[b d^{2} \cos (c s), b d^{2} \sin (c s),-a c^{2} \cos (d s),-a c^{2} \sin (d s)\right] \tag{27}
\end{gather*}
$$

[2]. By the use of (23) and (26) at (11), we get

$$
\begin{equation*}
d_{\left\{T, N_{2}, N_{3}\right\}}=\frac{-1}{\sqrt{a^{2} c^{4}+b^{2} d^{4}}} . \tag{28}
\end{equation*}
$$

Substituting (24) and (28) into (10), we get $a_{2}=\left(a^{2} c^{4}+b^{2} d^{4}\right)^{\frac{3}{2}}$, which means that a_{2} is constant and x is a second type Tzitzeica curve.

Further by the use of (23) and (27) at (13), we obtain

$$
\begin{equation*}
d_{\left\{T, N_{1}, N_{2}\right\}}=\frac{a b\left(d^{2}-c^{2}\right)}{\sqrt{a^{2} c^{4}+b^{2} d^{4}}} . \tag{29}
\end{equation*}
$$

Substituing (25) and (29) into (12), we get $a_{3}=\frac{c d \sqrt{a^{2} c^{4}+b^{2} d^{4}}}{a^{2} b^{2}\left(d^{2}-c^{2}\right)^{2}}$, which means that a_{3} is constant and x is a third type Tzitzeica curve.

Then, the projection of W-curve with the parametrization (23) on $x_{4}=0$ coordinate hyperplane in \mathbb{E}^{4} is $x(s)=(\cos (s \sqrt{10}), \sin (s \sqrt{10}), \cos (3 s \sqrt{10}))$ if we take $a=1, b=1, c=1 \sqrt{10}, d=3 \sqrt{10}$. We can plot this W-curve with maple command with (plots):

Figure 1: Second type and third type Tzitzeica curves, $\mathrm{m}=0$, $\mathrm{n}=5^{*} \mathrm{pi}$

Figure 2: Second type and third type Tzitzeica curves, $m=0, n=50^{*}$ pi spacecurve([cos(t/sqrt(10)), $\left.\sin (t / \operatorname{sqrt}(10)), \cos \left(3^{*} t / \operatorname{sqrt}(10)\right)\right], t=m . n$, grid $=[30,30]$

Example 2.14 Let $x=x(s)$ be a helix on the unit 3 -sphere $S^{3}(1)$ embedded in \mathbb{E}^{4} given with the parametrization

$$
\begin{equation*}
x(s)=(\cos \theta \cos (a s), \cos \theta \sin (a s), \sin \theta \cos (b s), \sin \theta \sin (b s)), \tag{30}
\end{equation*}
$$

where $a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta=1$ and $x_{1}{ }^{2}+x_{2}{ }^{2}=\cos ^{2} \theta, x_{3}{ }^{2}+x_{4}{ }^{2}=\sin ^{2} \theta$. Then, x is a second type and third type Tzitzeica curve.

The Frenet curvatures k_{1}, k_{3} and the Frenet vector fields N_{1}, N_{3} of the curve x can be given by

$$
\begin{align*}
& k_{1}=\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}, \tag{31}\\
& k_{3}=\frac{a b}{\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}}, \tag{32}
\end{align*}
$$

$$
\begin{align*}
& N_{1}=\frac{\left(-a^{2} \cos \theta \cos (a s),-a^{2} \cos \theta \sin (a s),-b^{2} \sin \theta \cos (b s),-b^{2} \sin \theta \sin (b s)\right)}{\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}} \tag{33}\\
& N_{3}=\frac{\left(b^{2} \sin \theta \cos (a s), b^{2} \sin \theta \sin (a s),-a^{2} \cos \theta \cos (b s),-a^{2} \cos \theta \sin (b s)\right)}{\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}}, \tag{34}
\end{align*}
$$

[10]. By the use of (30) and (33) at (11), we get

$$
\begin{equation*}
d_{\left\{T, N_{2}, N_{3}\right\}}=\frac{-1}{\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}} . \tag{35}
\end{equation*}
$$

Substituting (31) and (35) into (10), we get $a_{2}=\left(\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}\right)^{3}$, which means that a_{2} is constant and x is a second type Tzitzeica curve.

Further, by the use of (30) and (34) at (13), we obtain

$$
\begin{equation*}
d_{\left\{T, N_{1}, N_{2}\right\}}=\frac{\cos \theta \sin \theta\left(b^{2}-a^{2}\right)}{\sqrt{a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta}} . \tag{36}
\end{equation*}
$$

Substituting (35) and (36) into (12), we get $a_{3}=\frac{a b\left(a^{4} \cos ^{2} \theta+b^{4} \sin ^{2} \theta\right)^{\frac{1}{2}}}{\cos ^{2} \theta \sin ^{2} \theta\left(b^{2}-a^{2}\right)^{2}}$, which means that a_{3} is constant and x is a third type Tzitzeica curve.

Declaration of Ethical Standards

The authors declare that the materials and methods used in their study do not require ethical committee and/or legal special permission.

Authors Contributions

Author [Emrah Tunç]: Collected the data, contributed to research method or evaluation of data, wrote the manuscript ($\% 50$).

Author [Bengü Bayram]: Thought and designed the research/problem, contributed to completing the research and solving the problem (\%50).

Conflicts of Interest

The authors declare no conflict of interest.

References

[1] Bobe A., Boskoff W.G., Ciuca M.G., Tzitzeica type centro-affine invariants in Minkowski space, Analele Stiintifice ale Universitatii Ovidius Constanta, 20(2), 27-34, 2012.
[2] Bulca B., A Characterization of Surfaces in \mathbb{E}^{4}, Ph.D., Uludağ University, Bursa, Türkiye, 2012.
[3] Crasmareanu M., Cylindrical Tzitzeica curves implies forced harmonic oscillators, Balkan Journal of Geometry and Its Applications, 7(1), 37-42, 2002.
[4] Gray A., Modern Differential Geometry of Curves and Surfaces, CRC Press, 1993.
[5] Gluck H., Higher curvatures of curves in Euclidean space, The American Mathematical Monthly, 73(7), 243-245, 1966.
[6] Karacan M.K., Bükcü B., On the hyperbolic cylindrical Tzitzeica curves in Minkowski 3-space, Journal of Balıkesir University Institute of Science and Technology, 10(1), 46-51, 2009.
[7] Karacan M.K., Bükcü B., On the elliptic cylindrical Tzitzeica curves in Minkowski 3-space, Scientia Magna, 5(3), 44-48, 2009.
[8] Klein F., Lie S., Uber diejenigen ebenenen kurven welche durch ein geschlossenes system von einfach unendlich vielen vartauschbaren linearen transformationen in sich übergehen, The American Mathematical Monthly, 4, 50-84, 1871.
[9] Öztürk G., Arslan K., Hacısalihoğlu H., A characterization of ccr-curves in \mathbb{R}^{n}, Proceedings of the Estonian Academy of Sciences, 57, 217-224, 2008.
[10] Tunç E., A Characterization of Tzitzeica Curves and Surfaces, Ph.D., Balıkesir University, Balıkesir, Türkiye, 2021.
[11] Tzitzeica G., Sur une nouvelle classe de surfaces, Comptes Rendus des Seances de l'Academie des Sciences Paris, 144(1), 1257-1259, 1907.
[12] Tzitzeica G., Sur certaines courbes gauches, Annales scientifiques de l'École normale supérieure, 28(3), 9-32, 1911.

[^0]: *Correspondence: emrahtunc172@gmail.com 2020 AMS Mathematics Subject Classification: 53A04

