
DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

Investigation of Slime Mould Algorithm and Hybrid Slime Mould Algorithms'

Performance in Global Optimization Problems

Osman ALTAY1, Elif VAROL ALTAY2*

1Manisa Celal Bayar University, Department of Software Engineering, Manisa, osman.altay@cbu.edu.tr, ORCID: 0000-0003-3989-2432
2Manisa Celal Bayar University, Department of Software Engineering, Manisa, elif.altay@cbu.edu.tr, ORCID: 0000-0001-8087-2754

Introduction

Metaheuristic algorithms have gained unexpectedly

widespread popularity in recent years. Their proficiency in

tackling several optimization challenges has resulted in this

development [1]. Among the popular metaheuristic

optimization algorithms in the literature are particle swarm

optimization, genetic algorithms, differential evolution

algorithms, and ant colony algorithms, as well as algorithms

such as Grey Wolf Optimizer [2], Equilibrium Optimizer

[3], Archimedes Optimization Algorithm [4], Spotted

Hyena Optimizer [5], Aquila Optimizer [6], and Slime

Mold Optimization Algorithm (SMA) [7], which were

proposed in recent years. While each metaheuristic

algorithm has distinct benefits, no method, according to the

no-free lunch theorem, can handle all optimization

problems. The performance of a metaheuristic algorithm is

largely determined by its capacity for exploration and

exploitation [8]. As a result, numerous scholars are

continually proposing new algorithms and improving upon

the original method. However, while having various

appealing properties, it has been noted that these algorithms

do not always perform as expected. The effectiveness of

most metaheuristic optimization algorithms is dependent on

the balance of two opposing aims, exploration and

exploitation [9]. It is also called exploration and

exploitation, diversification and intensification. Exploration

guarantees that all areas of the solution domain are

sufficiently investigated to provide an approximation of the

global optimal solution. Exploitation directs the search

effort toward the most effective solutions that have been

found up to this point by exploring the environment for

further options that are more effective. These two objectives

are addressed by search algorithms that use local search

techniques, global search approaches, or a combination of

both local and global searches: these algorithms are

frequently referred to as hybridization [10].

Hybridization may take place in a variety of ways, including

the following:

• Starting the algorithm with one method and then

applying the second technique to the final population

generated with the first technique,

• Merging the approach's distinctive operators into

the other technique,

• Using local search to enhance the answer

identified by global search, and so on.

The main motivation for the paper is to examine the

performance of SMA and different hybrid SMAs in global

Research Article

ARTICLE INFO

Article history:

Received 19 September 2022

Received in revised form 4 December 2022

Accepted 5 December 2022

Available online 31 December 2022

Keywords:

Slime mould algorithm, leader

SMA, equilibrium optimizer SMA,

CEC2020

ABSTRACT

The Slime mould algorithm (SMA) is a relatively new metaheuristic technique that was just presented.

While the performance of the newly proposed algorithms gives satisfactory results in optimization
problems, combining a recently proposed algorithm with the components of different algorithms improves

the performance of SMAs. In recent years, leader SMA (LSMA) and equilibrium optimizer SMA (ESMA)

methods, in which SMA is combined with different algorithms, have been proposed. The advantages of
the two proposed methods over SMA in different problems are shown. In this study, in order to eliminate

the disadvantages of SMA, such as slow convergence rate and local optimum, the performances of the

CEC2020 test functions were investigated together with the LSMA and ESMA methods proposed in recent

years. The results obtained are statistically analyzed and given in detail in the study.

Doi: 10.24012/dumf.1177288

* Corresponding author

mailto:osman.altay@cbu.edu.tr
mailto:elif.altay@cbu.edu.tr

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

662

optimization problems. For this purpose, the leader SMA

(LSMA) [11] and equilibrium SMA (ESMA) [12] methods

suggested by Naik et al. were chosen. The performance of

these three different methods has been examined in the

current and widely used CEC2020 test suite. The CEC2020

benchmark problems consist of 10 different optimization

problems. These are unimodal functions, multimodal

functions, hybrid functions, and composition functions.

Furthermore, the performance of these methods was

examined using different dimension values, and detailed

analyses were carried out. Thus, the different capabilities of

the methods obtained as a result of hybridization of a

current optimization algorithm were compared with each

other and with the original method in different types of

problems, and a detailed examination was provided.

The remainder of the paper is organized as follows: To

begin with, Section 2 provides an overview of SMA,

LSMA, and ESMA. Section 3 describes ten distinct

functions drawn from the CEC2020 test functions. Section

4 contains the experimental findings for the test functions.

Finally, in Section 5, conclusions are stated and

recommendations for further study are made.

Slime Mould Algorithm

In this section, SMA, and hybrid versions of SMA, LSMA,

and ESMA, are explained and their mathematical

expressions are given.

Original Slime Mould Algorithm

The mathematical notation of SMA consists of three steps.

These are approach food, wrap food, and grabble food. In

this section, the mathematical structure of SMA is briefly

explained [13].

Approach Food: To describe slime mould's approaching

behavior as a mathematical equation, the following

contraction rule is proposed:

𝑋(𝑡 + 1)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ = {
𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (�⃗⃗⃗� ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟 ≥ 𝑝
(1)

where 𝑣𝑏⃗⃗ ⃗⃗ ⃗ is a [−𝑎, 𝑎] parameter, 𝑣𝑐⃗⃗⃗⃗ decreases linearly from

1 to 0. 𝑡 indicates the current iteration, 𝑋𝑏⃗⃗ ⃗⃗ ⃗ denotes the

region with the highest concentration of odor, 𝑋 denotes

slime mould position, 𝑋𝐴⃗⃗ ⃗⃗ and 𝑋𝐵⃗⃗ ⃗⃗ represent two randomly

chosen swarm members, and �⃗⃗⃗� represents slime mould

weight.

The following is the formula for the variable 𝑝:

𝑝 = tanh|𝑆(𝑖) − 𝐷𝐹| (2)

where 𝑖 ∈ 1,2, … , 𝑛, 𝑆(𝑖) is the 𝑋 ’s fitness, and 𝐷𝐹 is the

best fitness in all iterations.

𝑣𝑏⃗⃗⃗⃗ is given below:

𝑣𝑏⃗⃗⃗⃗ = [−𝑎, 𝑎] (3)

𝑎 = arctanh (−(
𝑡

max _𝑡
) + 1) (4)

�⃗⃗⃗� formula is given below:

𝑊(𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥(𝑖))⃗⃗ =

{
1 + 𝑟 ∙ 𝑙𝑜𝑔 (

𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛

1 − 𝑟 ∙ 𝑙𝑜𝑔 (
𝑏𝐹−𝑆(𝑖)

𝑏𝐹−𝑤𝐹
+ 1) , 𝑜𝑡ℎ𝑒𝑟𝑠

 (5)

𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 = 𝑠𝑜𝑟𝑡(𝑆) (6)

where 𝑆(𝑖) ranks in the top fifty percent of the population,

𝑟 represents a random value in [0,1], 𝑏𝐹 denotes the best

fitness in the current iteration phase, 𝑤𝐹 means the worst

fitness value, 𝑆𝑚𝑒𝑙𝑙𝐼𝑛𝑑𝑒𝑥 specifies the series of sorted

fitness values.

Wrap Food: The following equation may be used to update

the position of slime mold:

𝑋∗⃗⃗ ⃗⃗ = {

𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟𝑎𝑛𝑑 < 𝑧

𝑋𝑏(𝑡)⃗⃗⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗ + 𝑣𝑏⃗⃗⃗⃗ ∙ (𝑊 ∙ 𝑋𝐴(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ − 𝑋𝐵(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗) , 𝑟 < 𝑝

𝑣𝑐⃗⃗⃗⃗ ∙ 𝑋(𝑡)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ , 𝑟 ≥ 𝑝

(7)

where 𝑟𝑎𝑛𝑑 and 𝑟 stand for the random value in [0,1], and

𝐿𝐵 and 𝑈𝐵 stand for the lower and upper search range

limits.

Grabble Food: As the number of iterations rises, the value

of 𝑣𝑏⃗⃗⃗⃗ varies at random between [−𝑎, 𝑎] and eventually

approaches zero. The value of 𝑣𝑐⃗⃗⃗⃗ varies between [-1,1] and

finally goes to zero.

Leader Slime Mould Algorithm

SMA's primary reliance on the population's two slime

molds and best leader leads to poor exploitation when more

convergence iterations are performed. To eliminate this

situation, LSMA has been proposed [1].

According to [2], the updating rule of the SMA

concentration for the 𝑖-th slime mould 𝑋𝑖(=

{𝑥𝑖
1, 𝑥𝑖

2, … , 𝑥𝑖
𝑘}) for a 𝑘 dimensional issue from 𝑁 slime

mould is as follows:

𝑋∗⃗⃗ ⃗⃗ =

{

𝑟𝑎𝑛𝑑 ∙ (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑟1 < 𝑧

𝑋𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡(𝑡) + 𝑉𝑎 . (𝑊. 𝑋𝑅1 − 𝑋𝑅2), 𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 < 𝑝

 𝑉𝑏 ∙ 𝑋𝑖(𝑡), 𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 ≥ 𝑝

(8)

and

𝑋𝑖(1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 (9)

The 𝑟1 and 𝑟2 are random values in the range of 0 and 1; 𝑡

is the current iteration, 𝑈𝐵 and 𝐿𝐵 upper and lower

boundary of the search space, respectively, 𝑋𝐺𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡 is

the global best concentration current iteration 𝑡, 𝑉𝑎

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

663

represents the velocity that is spread evenly throughout the

interval, 𝑉𝑏 represents the velocity that goes from 1 to 0 in

a linear fashion, 𝑊 represents the weight of the slime

mould, 𝑋𝑅1 and 𝑋𝑅2 are the two types of slime mould that

were chosen at random from the population of 𝑁, 𝑝 is the

probability to determine the slime mould trajectory, 𝑧 is the

elimination-and-dispersal rate which is fixed at 0:03 and 𝑖 ∈

1, 2, … , 𝑁.

The performance of the 𝑖-th slime mould is determined by

its current fitness 𝑓(𝑋𝑖) and by the fitness of the world's

best concentration 𝑓(𝑋𝐿1), which is formulated as:

𝑝 = tanh|𝑓(𝑋𝑖) − 𝑓(𝑋𝐿1)| (10)

Both the velocity 𝑉𝑎 and the velocity 𝑉𝑏 are equally

distributed in the [−𝑎, 𝑎] and [−𝑏, 𝑏] ranges, respectively.

The values of 𝑎 and 𝑏 are as follows:

𝑎 = arctanh (− (
𝑡

𝑡𝑚𝑎𝑥
) + 1) (11)

and

𝑏 = 1 −
𝑡

𝑡𝑚𝑎𝑥
 (12)

The 𝑊 is calculated using the slime mould's local fitness

value. Let's rank the 𝑁 slime mould's fitness value for the

minimization issue in ascending order in iteration 𝑡.

[𝑠𝑜𝑟𝑡𝑒𝑑𝑓𝑖𝑡𝑛𝑒𝑠𝑠 , 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥] = 𝑠𝑜𝑟𝑡(𝑓) (13)

where 𝑓 = (𝑓𝑋1), 𝑓(𝑋2),… , 𝑓(𝑋𝑁))

The 𝑊 is then calculated as follows:

𝑊(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑙) =

{
1 + 𝑟3 ∙ 𝑙𝑜𝑔 (

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓(𝑙)

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡
+ 1) , 1 ≤ 𝑙 ≤

𝑁

2

1 − 𝑟3 ∙ 𝑙𝑜𝑔 (
𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓(𝑙)

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡−𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡
+ 1) ,

𝑁

2
≤ 𝑙 ≤ 𝑁

 (14)

𝑓𝐿𝑜𝑐𝑎𝑙𝐵𝑒𝑠𝑡=𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(1) (15)

𝑓𝐿𝑜𝑐𝑎𝑙𝑊𝑜𝑟𝑠𝑡=𝑠𝑜𝑟𝑡𝑒𝑑𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑁) (16)

The best concentration globally is designated as leader1

(L1), while Leader2 (L2) and Leader3 (L3) stand for the

second and third greatest concentrations, respectively. The

model for the new updating rule of 𝑖th slime mould at

iteration (𝑡 + 1) in LSMA is:

𝑋𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,𝑤ℎ𝑒𝑛 𝑟1 < 𝑧 (17.a)

𝑋𝑖(𝑡 + 1) = 𝑋𝐿1(𝑡) + 𝑉𝑎 . (𝑊.𝑋𝐿2 − 𝑋𝑅1) + (𝑊. 𝑋𝐿3 −

𝑋𝑅2), 𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 < 𝑝 (17.b)

 𝑋𝑖(𝑡 + 1) = 𝑉𝑏 ∙ 𝑋𝑖(𝑡), 𝑤ℎ𝑒𝑛 𝑟1 ≥ 𝑧 𝑎𝑛𝑑 𝑟2 ≥ 𝑝 (17.c)

Equilibrium Optimizer Slime Mould Algorithm

The search pattern of the SMA requires differential

information between two random slime molds and the best

slime mold, which may cause results to deviate from the

optimum value. The equilibrium pools of the top potential

solutions determine how EO searches.

In order to increase integrate the equilibrium pool and

augment the SMA's properties, Naik et al. suggested the

ESMA.

The air smell is how the slime mold finds the food. Assume

there are 𝑁 slime molds, each of whose location is given by

the vector 𝑋 = [𝑋 1, 𝑋 2, … , 𝑋 𝑁]
′. The 𝑖th slime mold's

starting location vector is generated at random as Eq. (18):

𝑋 𝑖(𝑡 = 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵, 𝑖 = 1,2, … , 𝑁. (18)

where 𝑡 denotes the current iteration number, 𝑈𝐵 upper

bound and 𝐿𝐵 lower bound. The new iteration in 𝑡 + 1 is

modeled as in Eq. (19).

𝑋𝑖⃗⃗ ⃗(𝑡 + 1) =

{

𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵 𝑟1 < 𝑧

𝑋 𝐺𝑏𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝𝑎⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗. (�⃗⃗⃗� . 𝑋 𝐴 − 𝑋 𝐵) 𝑟2 < 𝑝𝑖(𝑡) 𝑎𝑛𝑑 𝑟1 ≥ 𝑧

𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑏 . 𝑋 𝑖(𝑡) 𝑟2 ≥ 𝑝𝑖(𝑡) 𝑎𝑛𝑑 𝑟1 ≥ 𝑧

(19)

Here 𝑋 𝐺𝑏𝑒𝑠𝑡 is the global best value in the number of

iterations. 𝑋 𝐴 and 𝑋 𝐵 are two randomly selected individuals

in 𝑡 iterations. The 𝑟1 and 𝑟2 values are random variables

that take values between 0 and 1. The 𝑧 value is 0.03, which

is a constant. This number represents the likelihood that is

used in the process of eradicating and dispersing the slime

mold.

The weighting factor for the slime mold at iteration 𝑡 is

known as the �⃗⃗⃗� value, and it is determined using the local

fitness value. The order of the fitness values in ascending

order is done with [𝑠𝑜𝑟𝑡𝑓, 𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥] =

𝑠𝑜𝑟𝑡 (𝑓), 𝑤ℎ𝑒𝑟𝑒 𝑓 = {𝑓1, 𝑓2, … , 𝑓𝑁}. Thus, the value of 𝑤

is calculated as in Eq. (20).

�⃗⃗⃗� (𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(𝑗)) =

{
1 + 𝑟3. log (

𝑓𝐿𝑏𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡−𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1) 1 ≤ 𝑗 ≤

𝑁

2

1 − 𝑟3. log (
𝑓𝐿𝑏𝑒𝑠𝑡−𝑠𝑜𝑟𝑡𝑓 (𝑗)

𝑓𝐿𝑏𝑒𝑠𝑡−𝑓𝐿𝑤𝑜𝑟𝑠𝑡
+ 1)

𝑁

2
< 𝑗 ≤ 𝑁

 (20)

The 𝑟3 value is random variables that take values between 0

and 1. 𝑓𝐿𝑤𝑜𝑟𝑠𝑡 and 𝑓𝐿𝑏𝑒𝑠𝑡 are the local worst (𝑓𝐿𝑤𝑜𝑟𝑠𝑡 =

𝑠𝑜𝑟𝑡𝑓(𝑁)) and best fitness (𝑓𝐿𝑏𝑒𝑠𝑡 = 𝑠𝑜𝑟𝑡𝑓(1) values,

respectively, in the current iteration. The 𝑝𝑖 value is

calculated as in Eq. (21). 𝑝𝑖 value with the help of other

slime molds 𝑖. shows the decision probability of the

trajectory of the slime mold.

𝑝𝑖 = 𝑡𝑎𝑛ℎ|𝑓(𝑋𝑖) − 𝑓𝐺𝑏𝑒𝑠𝑡| (21)

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

664

Here, the 𝑖 value ranges from 1 to 𝑁, and 𝑋𝑖 shows the

position of the slime molds in the 𝑖'th iteration. 𝑓𝐺𝑏𝑒𝑠𝑡, on

the other hand, holds the best global best fitness value up to

the current iteration.

The 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑎 and 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑏 represent a step size relative to the

uniform distribution in the [−𝑎, 𝑎] and [−𝑏, 𝑏] ranges,

respectively. 𝑎 and 𝑏 are calculated according to Eq. (22

and 23). And the 𝑇 value indicates the maximum iteration.

𝑎 = arctanh (− (
𝑡

𝑇
) + 1) (22)

𝑏 = 1 −
𝑡

𝑇
 (23)

𝑋 𝐴 and 𝑋 𝐵 consist of two randomly selected individuals in

the 𝑁 slime mold. This can create the problem of falling to

the local minimum. Here, the ESMA method, which

replaces 𝑋 𝐴 with a position vector from the balance pool

consisting of the best four position vectors and takes into

account the average position, has been developed. The

individual elements of the equilibrium pool are defined as

in Eq. (24).

𝑋 𝑒𝑞(1) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(1))

𝑋 𝑒𝑞(2) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(2))

𝑋 𝑒𝑞(3) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(3)) (24)

𝑋 𝑒𝑞(4) = 𝑋(𝑠𝑜𝑟𝑡𝐼𝑛𝑑𝑒𝑥(4))

𝑋 𝑎𝑣𝑒 =
�⃗� 𝑒𝑞(1)+�⃗� 𝑒𝑞(2)+�⃗� 𝑒𝑞(3)+�⃗� 𝑒𝑞(4)

4

Equilibrium pool 𝑋 𝑒𝑞,𝑝𝑜𝑜𝑙 =

{𝑋 𝑒𝑞(1), 𝑋 𝑒𝑞(2), 𝑋 𝑒𝑞(3), 𝑋 𝑒𝑞(4), 𝑋 𝑒𝑞(𝑎𝑣𝑒)} is created using 5

different vectors in Eq. (24). In ESMA, the position vector

of the next 𝑋𝑖(𝑗 = 1,2,3, … , 𝑁 is modelled as in Eq. (25).

𝑋 𝑖(𝑡 + 1) = 𝑟1. (𝑈𝐵 − 𝐿𝐵) + 𝐿𝐵,𝑤ℎ𝑒𝑛 𝑟1 < 𝑧 (25)

𝑋 𝑖(𝑡 + 1) = 𝑋 𝐺𝑏𝑒𝑠𝑡 + 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑎(�⃗⃗⃗� . 𝑋 𝑒𝑞 + 𝑋 𝐵), 𝑤ℎ𝑒𝑛 𝑟2 <

𝑝𝑖(t) and 𝑟1 ≥ z

𝑋 𝑖(𝑡 + 1) = 𝑠𝑡𝑒𝑝⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ 𝑏 . 𝑋 𝑖(𝑡), 𝑤ℎ𝑒𝑛 𝑟2 ≥ 𝑝𝑖(t) and 𝑟1 ≥ z

Results and Discussion

In the study, IEEE Congress on Evolutionary Computation

(CEC) 2020 test functions were selected to analyze the

performance of SMA, LSMA, and ESMA methods [14].

The CEC2020 test functions consist of 10 different test

functions. The first is the unimodal Shifted and Rotated

Bent Cigar function. The second, third, and fourth functions

are the multimodal functions Shifted and Rotated

Schwefel's, Shifted and Rotated Lunacek bi-Rastrigin, and

Expanded Rosenbrock's plus Griewangk's function,

respectively [15]. In addition, there are 3 different hybrids

and 3 different composition functions with 𝑁 values of 3, 4,

and 5, respectively. The names and equations of these

functions are listed in Table 1. Unimodal functions play a

decisive role in the convergence performance of algorithms.

Multimodal functions are used to see if there are problems

with early convergence and local optimization in an

algorithm.

On the other hand, hybrid and composition functions, are

used to determine the performance of algorithms' ability to

avoid local optima and their balance between discovery and

exploitation, as they have many local optima. Experiments

in the study were carried out on a computer with the

Windows 10 operating system, 32 GB RAM, and a CPU of

Intel (R) core i9-10900k (3.7 GHz). In the study, the special

parameters of the SMA, LSMA, and ESMA algorithms

were taken exactly the same as in the original articles. In

order to make a fair evaluation under equal conditions, the

number of iterations was 1000 and all experiments were run

20 times. In addition, the performances of the algorithms in

3 different dimension values were compared by taking the

dimension as 5, 10 and 20.

Hybrid Functions

𝐹(𝑥) = 𝑔1(𝑀1𝑧1) + 𝑔2(𝑀2𝑧2) + ⋯ 𝑔𝑁(𝑀𝑁𝑧𝑁) + 𝐹
∗(𝑥)

𝐹(𝑥):Hybrid function

𝑔𝑖(𝑥): 𝑖
𝑡ℎ basic function used to construct the hybrid

function

𝑁: Number of basic functions

𝑧 = [𝑧1, 𝑧2, … , 𝑧𝑁]

𝑧1 = [

𝑦 = 𝑥 − 𝑜𝑖 , 𝑆 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(1: 𝐷)

𝑝𝑖 =Used to control the percentage of 𝑔𝑖(𝑥)

𝑛𝑖 = 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑏𝑎𝑠𝑖𝑐 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 ∑𝑛𝑖 = 𝐷

𝑁

𝑖=1

𝑛1 = ⌈𝑝1𝐷⌉, 𝑛2 = ⌈𝑝2𝐷⌉, … , 𝑛𝑁−1 = ⌈𝑝𝑁−1𝐷⌉,

𝑛𝑁 = 𝐷 −∑𝑛𝑖

𝑁−1

𝑖=1

Composition Functions

𝐹(𝑥) =∑{𝑤𝑖
∗[𝜆𝑖𝑔𝑖(𝑥) + 𝑏𝑖𝑎𝑠𝑖]} + 𝐹

∗

𝑁

𝑖=1

𝐹(𝑥): Composition function

𝑔𝑖(𝑥): 𝑖
𝑡ℎ basic function used to construct the composition

function

𝑁: Number of basic functions

𝑜𝑖 : New shifted optimum position for each 𝑔𝑖(𝑥), define

the global and local optima' s position

𝑏𝑖𝑎𝑠𝑖 : defines which optimum is global optimum 𝜎𝑖: used

to control each 𝑔𝑖(𝑥)
′ s coverage range, a small 𝜎𝑖 gives a

narrow range for that 𝑔𝑖(𝑥)

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

665

𝜆𝑖: used to control each 𝑔𝑖(𝑥)' s height

𝑤𝑖 : weight value for 𝑔𝑖(𝑥), calculated as below:

𝑤𝑖 =
1

√∑ (𝑥𝑗 − 𝑜𝑗)
2𝐷

𝑗=1

𝑒𝑥𝑝 (−
∑ (𝑥𝑗 − 𝑜𝑗)

2𝐷
𝑗=1

2𝐷𝜎İ
2)

Then normalize the weight 𝜔𝑖 = 𝑤𝑖/∑ 𝑤𝑖
𝑛
𝑖=1

So when 𝑥 = 𝑜𝑖, 𝜔𝑗 = {
1, 𝑗 = 𝑖
0, 𝑗 ≠ 𝑖

 for 𝑗 =

1, 2, … , 𝑁, 𝑓(𝑥) = 𝑏𝑖𝑎𝑠𝑖 + 𝑓
∗

Table 1. CEC’2020 test functions and equations

No Function Name Equation Fi*

F1
Shifted and Rotated Bent

Cigar Function

𝐹1 = 𝑥1
2 + 106∑𝑥𝑖

2

𝐷

𝑖=2

𝐹1(𝑀(𝑥 − 𝑜1)) + 𝐹1
∗

100

F2
Shifted and Rotated

Schwefel’s Function

𝑓(𝑥) = 418.9829 × 𝐷 −∑𝑔(𝑧𝑖)

𝐷

𝑖=1

𝑧𝑖 = 𝑥𝑖 + 4.209687462275036𝑒 + 002

𝑔(𝑧𝑖)

=

{

 𝑧𝑖𝑠𝑖𝑛 (|𝑧𝑖|

1
2) , 𝑖𝑓 |𝑧𝑖| ≤ 500

500 −𝑚𝑜𝑑(𝑧𝑖 , 500))sin (√|500 − 𝑚𝑜𝑑(𝑧𝑖 , 500)| −
(𝑧𝑖 − 500)

2

10000𝑑
 𝑖𝑓 𝑧𝑖 > 500

(𝑚𝑜𝑑(|𝑧𝑖|, 500) − 500)sin (√|𝑚𝑜𝑑|𝑧𝑖|, 500) − 500| −
(𝑧𝑖 + 500)

2

10000𝑑
 𝑖𝑓 𝑧𝑖 < −500

𝐹2(𝑥) = 𝑓 (𝑀(
1000(𝑥 − 𝑜2

100
)) + 𝐹2∗

1100

F3
Shifted and Rotated Lunacek

bi-Rastrigin Function

𝑓(𝑥) = 𝑚𝑖𝑛 (∑(�̂�𝑖 − 𝜇0)
2, 𝑑

𝐷

𝑖=1

𝐷 + 𝑠∑(�̂�𝑖 − 𝜇0)
2

𝐷

𝑖=1

) + 10(𝐷 −∑cos (2𝜋𝑧𝑖)̂

𝐷

𝑖=1

)

𝜇0 = 2.5, 𝜇1 = √
𝜇0
2 − 𝑑

𝑠
, 𝑠 = 1 −

1

2√𝐷 + 20 − 8.2
, 𝑑 = 1

𝑦 =
10(𝑥 − 𝑜)

100
,
𝑥𝑖
𝑥𝑖
= 2𝑠𝑖𝑔𝑛(𝑥𝑖

∗)𝑦𝑖 + 𝜇0, 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐷

𝑧 =⋀ (𝑥 − 𝜇0
100

)

𝐹3(𝑥) = 𝑓 (𝑀(
600(𝑥 − 𝑜3

100
)) + 𝐹3∗

700

F4
Expanded Rosenbrock’s plus

Griewangk’s Function

𝑓1(𝑥) = ∑(100(𝑥𝑖
2 − 𝑥𝑖+1)

2 + (𝑥𝑖 − 1)
2)

𝐷−1

𝑖=1

𝑓2(𝑥) =∑
𝑥𝑖
2

4000
−∏𝑐𝑜𝑠 (

𝑥𝑖

√𝑖
)

𝐷

𝑖=1

𝐷

𝑖=1

+ 1

𝑓4 = 𝑓2(𝑓1(𝑥1, 𝑥2)) + 𝑓2(𝑓1(𝑥2, 𝑥3)) + ⋯+ 𝑓2(𝑓1(𝑥𝐷−1, 𝑥𝐷)) + 𝑓2(𝑓1(𝑥𝐷, 𝑥1)) + 𝑓4
∗

1900

F5
Hybrid Function 1

 (N = 3)

𝑁 = 3, 𝑝 = [0.3, 0.3, 0.4]

𝑔1:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔3:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑓3

1700

F6
Hybrid Function 2

(N = 4)

𝑁 = 4, 𝑝 = [0.2, 0.2, 0.3, 0.3]

𝑔1:𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝐺𝐵𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔3: 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

1600

F7
Hybrid Function 3

(N = 5)

𝑁 = 5, 𝑝 = [0.1, 0.2, 0.2, 0.2, 0.3]

𝑔1:𝐸𝑥𝑝𝑎𝑛𝑑𝑒𝑑 𝑆𝑐ℎ𝑎𝑓𝑓𝑒𝑟 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝐺𝐵𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔3:𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔5:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

2100

F8
Composition Function 1

 (N = 3)

𝑁 = 3, 𝜎 = [10, 20, 30], 𝜆 = [1, 10, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200]

𝑔1: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 , 𝑔2: 𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔3:𝑀𝑜𝑑𝑖𝑓𝑖𝑒𝑑 𝑆𝑐ℎ𝑤𝑒𝑓𝑒𝑙′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
2200

F9
Composition Function 2

 (N = 4)

𝑁 = 4, 𝜎 = [10, 20, 30, 40], 𝜆 = [10, 1𝑒 − 6, 10, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200, 300]

𝑔1: 𝐴𝑐𝑘𝑙𝑒𝑦′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2:𝐻𝑖𝑔ℎ 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑒𝑑 𝐸𝑙𝑙𝑖𝑝𝑡𝑖𝑐 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔3:𝐺𝑟𝑖𝑒𝑤𝑎𝑛𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔4: 𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

2400

F10
Composition Function 3

(N = 5)

𝑁 = 5, 𝜎 = [10, 20, 30, 40, 50], 𝜆 = [10, 1, 10, 1𝑒 − 6, 1], 𝑏𝑖𝑎𝑠 = [0, 100, 200, 300, 400]

𝑔1:𝑅𝑎𝑠𝑡𝑟𝑖𝑔𝑖𝑛′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔2: 𝐻𝑎𝑝𝑝𝑦𝑐𝑎𝑡 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔3: 𝐴𝑐𝑘𝑙𝑒𝑦′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑔4: 𝐷𝑖𝑠𝑐𝑢𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑔5: 𝑅𝑜𝑠𝑒𝑛𝑏𝑟𝑜𝑐𝑘′𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛

2500

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

666

Table 2, Table 3 and Table 4 show the results according to

dimensions 5, 10, and 20, respectively. Average (Avg.),

standard deviation (Std.) and minimum (Min.) values are

given in the tables. In addition, for ease of reading, the best

values found in each test function are made in bold.

Table 2. dim 5

Functions

Alg.
Metrics

Avg. Std. Min.

F1

SMA 4.51E+03 5.33E+03 1.23E+02

LSMA 6.01E+03 5.59E+03 1.54E+02

ESMA 5.20E+03 5.80E+03 1.04E+02

F2

SMA 1.22E+03 1.02E+02 1.13E+03

LSMA 1.21E+03 8.38E+01 1.11E+03

ESMA 1.24E+03 1.01E+02 1.13E+03

F3

SMA 7.08E+02 1.79E+00 7.05E+02

LSMA 7.09E+02 2.16E+00 7.03E+02

ESMA 7.07E+02 2.42E+00 7.02E+02

F4

SMA 1.90E+03 1.31E-01 1.90E+03

LSMA 1.90E+03 1.38E-01 1.90E+03

ESMA 1.90E+03 1.31E-01 1.90E+03

F5

SMA 1.72E+03 1.25E+01 1.70E+03

LSMA 1.83E+03 6.83E+01 1.71E+03

ESMA 1.71E+03 9.52E+00 1.70E+03

F6

SMA 1.60E+03 2.53E-01 1.60E+03

LSMA 1.60E+03 3.14E-01 1.60E+03

ESMA 1.60E+03 2.27E-01 1.60E+03

F7

SMA 6.55E+04 0.00E+00 6.55E+04

LSMA 6.55E+04 0.00E+00 6.55E+04

ESMA 6.55E+04 0.00E+00 6.55E+04

F8

SMA 2.21E+03 6.28E+00 2.20E+03

LSMA 2.20E+03 5.66E+00 2.20E+03

ESMA 2.23E+03 3.87E+01 2.20E+03

F9

SMA 2.58E+03 4.51E+01 2.50E+03

LSMA 2.56E+03 5.14E+01 2.50E+03

ESMA 2.58E+03 4.17E+01 2.50E+03

F10

SMA 2.85E+03 1.32E-02 2.85E+03

LSMA 2.85E+03 1.06E+01 2.80E+03

ESMA 2.85E+03 1.13E-02 2.85E+03

Table 3. dim 10

Functions

Alg.
Metrics

Avg. Std. Min.

F1

SMA 7.18E+03 4.57E+03 9.55E+02

LSMA 7.03E+03 4.93E+03 1.02E+02

ESMA 6.37E+03 4.72E+03 3.01E+02

F2

SMA 1.66E+03 2.38E+02 1.23E+03

LSMA 1.69E+03 2.12E+02 1.24E+03

ESMA 1.64E+03 1.59E+02 1.33E+03

F3

SMA 7.29E+02 8.05E+00 7.15E+02

LSMA 7.30E+02 1.04E+01 7.16E+02

ESMA 7.28E+02 8.23E+00 7.17E+02

F4

SMA 1.90E+03 4.50E-01 1.90E+03

LSMA 1.90E+03 7.25E-01 1.90E+03

ESMA 1.90E+03 5.14E-01 1.90E+03

F5

SMA 7.98E+03 6.41E+03 1.86E+03

LSMA 1.01E+04 6.63E+03 2.50E+03

ESMA 1.73E+04 1.82E+04 1.90E+03

F6 SMA 1.60E+03 2.70E-01 1.60E+03

Functions

Alg.
Metrics

Avg. Std. Min.

LSMA 1.60E+03 2.99E-01 1.60E+03

ESMA 1.60E+03 2.43E-01 1.60E+03

F7

SMA 1.01E+04 8.46E+03 2.28E+03

LSMA 5.93E+03 4.41E+03 2.65E+03

ESMA 5.35E+03 4.81E+03 2.17E+03

F8

SMA 2.39E+03 3.13E+02 2.20E+03

LSMA 2.38E+03 2.46E+02 2.24E+03

ESMA 2.38E+03 2.48E+02 2.30E+03

F9

SMA 2.76E+03 9.43E+00 2.74E+03

LSMA 2.75E+03 8.60E+00 2.74E+03

ESMA 2.75E+03 5.82E+01 2.50E+03

F10

SMA 2.94E+03 3.16E+01 2.90E+03

LSMA 2.93E+03 2.62E+01 2.90E+03

ESMA 2.93E+03 2.67E+01 2.90E+03

Table 4. dim 20

Functions

Alg.
Metrics

Avg. Std. Min.

F1

SMA 6.31E+03 4.10E+03 1.46E+02

LSMA 5.07E+03 4.12E+03 1.49E+02

ESMA 7.85E+03 3.81E+03 2.91E+02

F2

SMA 1.94E+03 2.74E+02 1.54E+03

LSMA 2.95E+03 6.14E+02 2.02E+03

ESMA 1.93E+03 3.06E+02 1.50E+03

F3

SMA 7.52E+02 1.00E+01 7.38E+02

LSMA 7.88E+02 1.96E+01 7.53E+02

ESMA 7.46E+02 9.71E+00 7.31E+02

F4

SMA 1.90E+03 1.06E+00 1.90E+03

LSMA 1.90E+03 1.42E+00 1.90E+03

ESMA 1.90E+03 1.01E+00 1.90E+03

F5

SMA 4.22E+05 3.18E+05 1.81E+04

LSMA 4.34E+05 2.64E+05 8.05E+04

ESMA 3.38E+05 2.32E+05 4.29E+04

F6

SMA 2.05E+03 0.00E+00 2.05E+03

LSMA 2.05E+03 0.00E+00 2.05E+03

ESMA 2.05E+03 0.00E+00 2.05E+03

F7

SMA 4.20E+05 3.66E+05 5.40E+03

LSMA 2.00E+05 2.35E+05 1.08E+04

ESMA 1.91E+05 2.06E+05 5.41E+03

F8

SMA 3.24E+03 1.12E+03 2.30E+03

LSMA 3.30E+03 1.28E+03 2.30E+03

ESMA 2.94E+03 1.16E+03 2.30E+03

F9

SMA 2.86E+03 1.62E+01 2.84E+03

LSMA 2.86E+03 1.93E+01 2.84E+03

ESMA 2.85E+03 1.62E+01 2.82E+03

F10

SMA 2.93E+03 2.81E+01 2.91E+03

LSMA 2.93E+03 3.06E+01 2.91E+03

ESMA 2.91E+03 1.10E+00 2.91E+03

When Table 2 is examined, it is seen that the methods give

the same average in 4 of the 10 test functions. While LSMA

gave the best average in 3 functions, ESMA gave the best

average in 2 functions. SMA, on the other hand, gave the

best average in only one function. The convergence curve

and boxplot graphics according to Dimension 5 are given in

Figure 1 and Figure 2, respectively.

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

667

When Table 3 is examined, it is seen that the methods give

the same average in 2 of the 10 test functions. It was seen

that LSMA and ESMA gave the best average in 3 functions.

While ESMA gave the best average in 4 functions, SMA

gave the best average in 1 of them. The convergence curve

and boxplot graphics according to Dimension 10 are given

in Figure 3 and Figure 4, respectively.

When Table 4 is examined, it is seen that the methods give

the same average in 2 of the 10 test functions. While ESMA

gave the best average in 7 functions, LSMA gave the best

result in only 1 of them. The convergence curve and boxplot

graphics according to Dimension 20 are given in Figure 5

and Figure 6, respectively.

In Table 5, the algorithm or algorithms that give the best

value for each test function in different dimensions

according to the average value are given. When Table 5 is

examined, it is seen that the performance of the methods

varies according to the dimension in unimodal functions. In

multimodal functions, it was seen that ESMA achieved a

better mean value. It has been observed that ESMA gives

relatively better results than other methods in hybrid

functions. Considering the composite functions, LSMA

gave the best average value when the dimension was taken

as 5. When the dimension is taken as 10, it is seen that the

performances of LSMA and ESMA are the same. Finally, it

is seen that ESMA gives better performance when the

dimension is taken as 20. In the light of these experimental

results, it has been seen that the ESMA method outperforms

the other methods, SMA and LSMA, in CEC2020

functions.

Table 5. Best algorithm or algorithms according to the

average value

Functions
Dimension

(5)

Dimension

(10)

Dimension

(20)

f1 SMA ESMA LSMA

f2 LSMA ESMA ESMA

f3 ESMA ESMA ESMA

f4 ALL ALL ALL

f5 ESMA SMA ESMA

f6 ALL ALL ALL

f7 ALL ESMA ESMA

f8 LSMA
LSMA and

ESMA
ESMA

f9 LSMA
LSMA and

ESMA
ESMA

f10 ALL
LSMA and

ESMA
ESMA

Figure 1. Convergence curve of the compared methods when dimension 5

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

668

Figure 2. Boxplot of the compared methods when dimension 5

Figure 3. Convergence curve of the compared methods when dimension 10

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

669

Figure 4. Boxplot of the compared methods when dimension 10

Figure 5. Convergence curve of the compared methods when dimension 10

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

670

Figure 6. Boxplot of the compared methods when dimension 2

Conclusions

Metaheuristic methods have been used successfully in the

literature for solving different problems. As the literature

studies show, there is no method that gives the best

performance for each problem. This increases the interest of

the researchers in this subject. For this reason, it is aimed to

find the best method by suggesting different hybrid versions

of the newly introduced methods to the literature. In this

study, performance analyses were made by running

different hybrid versions of the SMA method, which has

been proposed in recent years, in the CEC 2020 test

functions under equal conditions. The experimental results

showed that ESMA performed better than the standard

SMA and LSMA. This study is significant both for making

it easier for researchers to access one of the most recent

metaheuristic optimization algorithms, SMA, and its

variants, as well as for assisting them in selecting the best

algorithm by providing a preliminary idea about the

performance of metaheuristic algorithms that they can use

in their studies.

References

[1] Sayed, G.I., Khoriba, G., Haggag, M.H.: A novel

chaotic salp swarm algorithm for global optimization

and feature selection. Appl. Intell. 48, 3462–3481

(2018). https://doi.org/10.1007/s10489-018-1158-6.

[2] Mirjalili, S., Mirjalili, S.M., Lewis, A.: Grey Wolf

Optimizer. Adv. Eng. Softw. 69, 46–61 (2014).

https://doi.org/10.1016/j.advengsoft.2013.12.007.

[3] Faramarzi, A., Heidarinejad, M., Stephens, B.,Mirjalili,

S.: Equilibrium optimizer: A novel optimization

algorithm. Knowledge-Based Syst. 191, 105190

(2020). https://doi.org/10.1016/j.knosys.2019.105190.

[4] Hashim, F.A., Hussain, K., Houssein, E.H., Mabrouk,

M.S., Al-Atabany, W.: Archimedes optimization

algorithm: a new metaheuristic algorithm for solving

optimization problems. Appl. Intell. 51, 1531–1551

(2021). https://doi.org/10.1007/s10489-020-01893-z.

[5] Dhiman, G., Kaur, A.: Spotted Hyena Optimizer for

Solving Engineering Design Problems. Proc. - 2017 Int.

Conf. Mach. Learn. Data Sci. MLDS 2017. 2018-

Janua, 114–119 (2018).

https://doi.org/10.1109/MLDS.2017.5.

[6] Abualigah, L., Yousri, D., Abd Elaziz, M., Ewees,

A.A., Al-qaness, M.A.A., Gandomi, A.H.: Aquila

Optimizer: A novel meta-heuristic optimization

algorithm. Comput. Ind. Eng. 157, 107250 (2021).

https://doi.org/10.1016/j.cie.2021.107250.

[7] Li, S., Chen, H., Wang, M., Heidari, A.A., Mirjalili, S.:

Slime mould algorithm: A new method for stochastic

optimization. Futur. Gener. Comput. Syst. 111, 300–

323 (2020).

https://doi.org/10.1016/j.future.2020.03.055.

[8] Altay, E.V.: Gerçek dünya mühendislik tasarım

problemlerinin çözümünde kullanılan metasezgisel

optimizasyon algoritmalarının performanslarının

incelenmesi. International Journal of Innovative

Engineering Applications. 6, 65-74 (2022).

[9] Fagan, F., Vuuren, J.H. Van: A unification of the

prevalent views on exploitation, exploration,

intensification and diversification. Int. J.

Metaheuristics. 2, 294 (2013).

DUJE (Dicle University Journal of Engineering) 13:4 (2022) Page 661-671

671

https://doi.org/10.1504/ijmheur.2013.056407.

[10] Thangaraj, R., Pant, M., Abraham, A., Bouvry, P.:

Particle swarm optimization: Hybridization

perspectives and experimental illustrations. Appl.

Math. Comput. 217, 5208–5226 (2011).

https://doi.org/10.1016/j.amc.2010.12.053.

[11] Naik, M.K., Panda, R., Abraham, A.: Normalized

square difference based multilevel thresholding

technique for multispectral images using leader slime

mould algorithm. J. King Saud Univ. - Comput. Inf.

Sci. (2020).

https://doi.org/10.1016/j.jksuci.2020.10.030.

[12]. Naik, M.K., Panda, R., Abraham, A.: An entropy

minimization based multilevel colour thresholding

technique for analysis of breast thermograms using

equilibrium slime mould algorithm. Appl. Soft

Comput. 113, 107955 (2021).

https://doi.org/10.1016/j.asoc.2021.107955.

[13] Altay, O.: Chaotic slime mould optimization

algorithm for global optimization. Springer

Netherlands (2022). https://doi.org/10.1007/s10462-

021-10100-5.

[14] Mohamed, A.W., Hadi, A.A., Mohamed, A.K., Awad,

N.H.: Evaluating the Performance of Adaptive

GainingSharing Knowledge Based Algorithm on CEC

2020 Benchmark Problems. 2020 IEEE Congr. Evol.

Comput. CEC 2020 - Conf. Proc. (2020).

https://doi.org/10.1109/CEC48606.2020.9185901.

[15] Varol Altay, E., Altay, O.: Güncel metasezgisel

optimizasyon algoritmalarının CEC2020 test

fonksiyonları ile karşılaştırılması. DÜMF Mühendislik

Derg. 5, 729–741

