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ABSTRACT

In this paper, we study translation surfaces generated by spherical indicatrices of timelike curves
in Minkowski 3-space and find necessary and sufficient conditions for the translation surfaces to
be flat or minimal. Further, we obtain necessary and sufficient conditions for generating curves
of the translation surfaces to be geodesic, asymptotic line and line of curvature. Finally for such
translation surfaces we obtain the axis when they are constant angle surfaces.
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1. Introduction

A Darboux surface is a surface which is union of ‘equivalent’ curves, i.e., the curves are images of one
another by isometries of space, called its generating curves. Kinematically, a Darboux surface is defined
as the movement of a curve by rigid motions of the space. Hence, a parametrization of such surfaces can
be given as X(u, v) = A(v).α(u) + β(v), where α, β are two space curves and A is an orthogonal matrix. A
translation surface is special case of Darboux surfaces when the orthogonal matrixA is identity matrix and both
curves intersect each other. Thus, parametrization of generalized type of a translation surface in 3-dimensional
Euclidean space is given by

X(u, v) = α(u) + β(v).

Translation surface which is known as double curve in differential geometry are base for roofing structures.
The construction and design of free form glass roofing structures are generally created with the help of curved
(formed) glass panes or planar triangular glass facets.
Many authors studied translation surfaces in Euclidean space as well as semi-Euclidean space. In [15], Liu
obtained some characterizations about the translation surfaces with constant mean curvature or constant Gauss
curvature in 3-dimensional Euclidean spaceE3 and 3-dimensional Minkowski spaceE3

1 . In [17], Muntenau and
Nistor studied the second fundamental form of the translation surfaces in 3-dimensional Euclidean space E3,
and obtained some characterizations by using the second Gaussian curvatureKII of the translation surfaces. In
[8], Çetin and Tunçer studied surfaces parallel to translation surfaces in Euclidean 3-space. In [2], Ali et al. gave
some results on some special points of the translation surfaces in E3. Since the translation surfaces are surfaces
produced by two space curves, some basic calculations of the surface can be stated in terms of Frenet vectors
and curvatures of the space curves. In [7], Çetin et al. investigated translation surfaces according to Frenet
frames in Minkowski 3-space, and studied some properties of these surfaces. Furthermore, they calculated
first fundamental form, second fundamental form, Gaussian curvature and mean curvature of the translation
surface. Finally, they gave the conditions for the generator curves of the translation surface being a geodesic,
an asymptotic line and a principal line.
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Non-lightlike ruled surfaces of constant slope parallel to a tangent of a timelike general helix and normal
of timelike slant helix were studied by Ali [1]. It was shown that all non-lightlike ruled surfaces of constant
slope are developable but not minimal surfaces. In [3], Arfah discussed the causal characterization of spherical
indicatrices of timelike curves in Minkowski 3-space, and provided the concept of spherical indicatrix of
tangent, normal and binormal vectors of timelike curves with their casual properties. Acar and Aksoyak
studied translation surfaces generated by tangent, normal and binormal indicatrices of space curves in E3,
respectively, and obtain some characterizations based on the fact that such surfaces are flat or minimal [4].
Motivated by these studies, in this paper, we study translation surfaces generated by tangent, principal
normal and binormal indicatrices of timelike curves α and β in Minkowski 3-space E3

1 . We obtain some
characterizations of such surfaces based when they are flat or minimal. Moreover we give the condition for
the generator curves of the translation surface being geodesic, asymptotic and line of curvature. Finally for
such translation surfaces we obtain the axis when they are constant angle surfaces and also find the condition
for one of the curve α and β is a slant helix.

2. Preliminaries

The Minkowski 3-space denoted by E3
1 is a three dimensional real vector space R3 endowed with the metric

tensor ⟨., .⟩ = −dx2 + dy2 + dz2. The (Lorentzian) scalar and cross product are defined by{
⟨x, y⟩ = −x1y1 + x2y2 + x3y3,

x× y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2),
(2.1)

where x = (x1, x2, x3), y = (y1, y2, y3) belong to E3
1 . This space is also known as Lorentz-Minkowski space. A

vector x ∈ E3
1 is said to be spacelike when ⟨x, x⟩ > 0 or x = 0, timelike when ⟨x, x⟩ < 0 and lightlike (null)

when ⟨x, x⟩ = 0. A curve in E3
1 is called spacelike, timelike or lightlike when the velocity vector of the curve is

spacelike, timelike or lightlike, respectively.
Let γ = γ(s) : I → E3

1 be an arbitrary timelike curve. The curve γ is said to be a unit speed (or parameterized by
the arc-length parameter s) if ⟨γ′(s), γ′(s)⟩ = −1 for any s ∈ I . Let {t(s), n(s), b(s)} be the moving Frenet frame
of γ which satisfies the following conditions

⟨t, t⟩ = −⟨n, n⟩ = −⟨b, b⟩ = −1,

⟨t, n⟩ = ⟨t, b⟩ = ⟨b, n⟩ = 0,

t× n = b, n× b = −t, b× t = n,

det(t, n, b) = 1.

(2.2)

For the timelike curve γ the Frenet-Serret equations are given by t′n′
b′

 =

0 κ 0
κ 0 τ
0 −τ 0

 =

 tn
b

 , (2.3)

where the ′ denotes the derivative with respect to s. κ and τ are the curvature and torsion of the curve,
respectively.

Definition 2.1. [20] Let v and w be two spacelike vectors in E3
1 . Then, we have the followings:

(a) If v and w span a spacelike plane, then there exists a unique non-negative real number θ ≥ 0 such that
⟨v, w⟩ = ∥v∥∥w∥ cos θ.
(b) If v and w span a timelike plane such that both vectors lie in the same spacelike component of the plane,
then there exists a unique non-negative real number θ ≥ 0 such that ⟨v, w⟩ = ∥v∥∥w∥ cosh θ.

Definition 2.2. [20] Let v be a spacelike vector and w be a timelike vector in E3
1 . Then, there is a unique non-

negative real number θ ≥ 0 such that ⟨v, w⟩ = ∥v∥∥w∥ sinh θ.

Definition 2.3. [18] Let v be a timelike vector and w be a timelike vector in same time cone of E3
1 , i.e., ⟨v, w⟩ < 0.

Then, there is a unique non-negative real number θ ≥ 0, such that ⟨v, w⟩ = −∥v∥∥w∥ cosh θ.

Definition 2.4. [6] A unit speed curve γ = γ(s) : I → E3
1 is a general helix if there exists a fixed unit vector d,

called axis of the helix, such that ⟨t, d⟩ is constant along the curve, where t(s) = γ′(s) is the unit tangent vector
of γ.
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Theorem 2.1. [6] A unit speed curve γ = γ(s) : I → E3
1 is a general helix if and only if τ

κ (s) is a non zero constant.

Definition 2.5. [12] A unit speed curve γ = γ(s) : I → E3
1 is a slant helix if there exists a fixed unit vector d,

called axis of the slant helix, such that ⟨n, d⟩ is constant along the curve, where n(s) is the principal normal
vector of γ.

Definition 2.6. Let γ = γ(s) : I → E3
1 be a unit speed curve with Frenet frame {t(s), n(s), b(s)}. When we move

along the curve the locus of the tip of the unit vectors t, n and b determines new curves on the unit sphere
which are known as spherical indicatrices of the curve. In particular, the spherical indicarix of t, n and b are
known as tangent indicatrix t(s), principal normal indicatrix n(s) and binormal indicatrix b(s), respectively.

A surface in E3
1 is said to be a spacelike, timelike or lightlike if the metric on the surface is positive definite,

indefinite or degenerate, respectively. Type of the surface can also be expressed in terms of the causal character
of the normal on the surface by the following lemma [10].

Lemma 2.1. [14] A surface in Minkowski 3-space is spacelike, timelike or lightlike if and only if, at every point of the
surface there exists a normal that is timelike, spacelike or lightlike, respectively.

LetM : X = X(u, v) ∈ E3
1 be a regular surface. Then, the unit normal vector field of the surfaceM is determined

by

N =
Xu ×Xv

∥Xu ×Xv∥
, (2.4)

where Xu and Xv are derivatives of X with respect to u and v, respectively. The coefficients of the first
fundamental form and second fundamental form are given by

E = ⟨Xu, Xu⟩, F = ⟨Xu, Xv⟩, G = ⟨Xv, Xv⟩

and
l = ⟨Xuu, N⟩, m = ⟨Xuv, N⟩, n = ⟨Xvv, N⟩.

Gaussian and mean curvatures of the surface M are expressed as follows [5]:

K = ⟨N,N⟩ ln−m2

EG− F 2
, (2.5)

and

H =
1

2

En+Gl − 2Fm

|EG− F 2|
, (2.6)

respectively.

Definition 2.7. A surface in E3
1 is called flat when the Gaussian curvature vanishes, and it is called minimal

when the mean curvature vanishes.

Definition 2.8. A constant angle surface or constant slope surface M in E3
1 is a surface whose unit normal N

makes a constant angle with a fixed vector U , i.e., ⟨N,U⟩ = constant.

3. Translation surface generated by spherical indicatrices of timelike curves in Minkowski
3-space

Let α : I → E3
1 and β : J → E3

1 be two timelike curves with arc-length parameters u and v, respectively in
E3

1 . Let {tα, nα, bα, κα, τα} and {tβ , nβ , bβ , κβ , τβ} be the Frenet apparatus of the curves α and β, respectively. In
this section, we examine the translation surfaces generated by the tangent indicatrices tα, tβ , principal normal
indicatrices nα, nβ and binormal indicatrices bα, bβ of the curves α and β and find out some characterizations
of the surfaces as well as of the generating curves of the surfaces. Throughout the paper, we will assume that
κα, κβ , τα and τβ are all non-zero so that the curves tα, tβ , nα, nβ and bα, bβ are regular curves.
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3.1. Translation Surfaces generated by tangent indicatrices of two timelike curves in E3
1

Let α, β be timelike curves in E3
1 . Translation surface generated by tangent indicatrices of the space curves α, β

in E3
1 is defined by

M1 : X(u, v) = tα(u) + tβ(v), (3.1)

where tα and tβ are both timelike vectors. Thus, nα, bα and nβ , bβ are all spacelike vectors. Differentiating the
above equation (3.1) with respect to u and v, we obtainXu = t′α and Xv = t′β . Now, using Frenet equations (2.3)
for the curves α and β, we get

Xu = καnα, Xv = κβnβ . (3.2)

The unit normal vector N of the surface M1 is given by

N(u, v) =
Xu ×Xv

∥Xu ×Xv∥
, (3.3)

where Xu ×Xv = κακβ(nα × nβ) and ∥Xu ×Xv∥ =
√

−ϵ(EG− F 2), where ϵ = ⟨N,N⟩.
Now, we have two cases according to causality of the plane spanned by nα and nβ .
Case (i): We assume that nα and nβ span timelike plane. Thus, by Definition 2.1(b), we have ⟨nα, nβ⟩ = cosh θ
and the coefficients of first fundamental form are obtained as follows

E = κ2α, F = κακβ cosh θ, G = κ2β , (3.4)

where θ is the smooth hyperbolic angle function between nα and nβ .
In this case, EG− F 2 = −κ2ακ2β sinh

2 θ < 0 shows that the surface M1 is timelike, and hence, the unit normal N
is spacelike, i.e., ⟨N,N⟩ = 1. Thus, we obtain the spacelike unit normal as

N(u, v) =
nα × nβ
sinh θ

, (3.5)

so that ⟨N,nα⟩ = ⟨N,nβ⟩ = 0.
Now, suppose the hyperbolic angle between tα and N is ϕ, and the hyperbolic angle between tβ and N is ψ,
then N can be expressed as follows [13]:

N(u, v) = − sinhϕ tα + coshϕ bα,

N(u, v) = − sinhψ tβ + coshψ bβ .

The coefficients of second fundamental form of the timelike surface M1 are given by
l = κ2α(sinhϕ+ τα

κα
coshϕ),

m = 0,

n = κ2β(sinhψ +
τβ
κβ

coshψ).

(3.6)

Now using the equations (2.5), (2.6), and above calculations, we obtain the following results.

Theorem 3.1. The Gaussian curvature K and the mean curvature H of the timelike translation surface M1 are given as
follows, respectively,

K = −
(sinhϕ+ τα

κα
coshϕ)(sinhψ +

τβ
κβ

coshψ)

sinh2 θ
,

H =
(sinhϕ+ τα

κα
coshϕ) + (sinhψ +

τβ
κβ

coshψ)

2 sinh2 θ
.

Corollary 3.1. The timelike translation surface M1 is flat if and only if either tanhϕ = − τα
κα

or tanhψ = − τβ
κβ

.

Proof. By putting K = 0 in the Theorem 3.1, we get the desired result.

Corollary 3.2. The timelike translation surfaceM1 be minimal if and only if sinhϕ+ τα
κα

coshϕ = − sinhψ − τβ
κβ

coshψ.

Proof. By putting H = 0 in the Theorem 3.1, we get the required result.
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Case (ii): We suppose that nα and nβ span spacelike plane. Thus, by Definition 2.1(a), we have ⟨nα, nβ⟩ = cos θ
and the coefficients of first fundamental form are obtained as follows

E = κ2α, F = κακβ cos θ, G = κ2β , (3.7)

where θ is the smooth angle function between nα and nβ .
In this case, EG− F 2 = κ2ακ

2
β sin

2 θ > 0 shows that the surface M1 is spacelike, hence, the unit normal N is
timelike, i.e., ⟨N,N⟩ = −1. Thus, we obtain the timelike unit normal as

N(u, v) =
nα × nβ
sin θ

, (3.8)

so that ⟨N,nα⟩ = ⟨N,nβ⟩ = 0.
Now, suppose the hyperbolic angle between tα andN is ϕ and the hyperbolic angle between tβ andN is ψ then
N can be expressed as follows [13]:

N(u, v) = coshϕ tα + sinhϕ bα,

N(u, v) = coshψ tβ + sinhψ bβ .

The coefficients of second fundamental form of the spacelike surface M1 are given by
l = κ2α(

τα
κα

sinhϕ− coshϕ),

m = 0,

n = κ2β(
τβ
κβ

sinhψ − coshψ).

(3.9)

Now, using the equations (2.5), (2.6), and above calculations, we obtain the following results.

Theorem 3.2. The Gaussian curvature K and the mean curvature H of the spacelike translation surface M1 are given
as follows, respectively,

K = −
( τακα

sinhϕ− coshϕ)(
τβ
κβ

sinhψ − coshψ)

sin2 θ
,

H =
( τακα

sinhϕ− coshϕ) + (
τβ
κβ

sinhψ − coshψ)

2 sin2 θ
.

Corollary 3.3. The spacelike translation surface M1 is flat if and only if either cothϕ = τα
κα
, or cothψ =

τβ
κβ

.

Proof. By putting K = 0 in the Theorem 3.2, we get the desired result.

Corollary 3.4. The spacelike translation surfaceM1 is minimal if and only if τα
κα

sinhϕ− coshϕ = − τβ
κβ

sinhψ + coshψ.

Proof. By putting H = 0 in the Theorem 3.2, we get the required result.

Theorem 3.3. If the timelike (spacelike) translation surfaceM1 is flat then either the angle betweenN and tα is a function
of u only or the angle between N and tβ is a function that depends only on v.

Proof. Let the spacelike translation surface M1 be flat then by Corollary 3.3, if we assume cothϕ = τα
κα
, then

since right hand side is a function of u only, the angle ϕ between N and tα is a function that depends only on
u. Further, if we assume cothψ =

τβ
κβ
, then since right hand side is a function of v only, the angle ψ between N

and tβ is a function that depends only on v. In case of timelike surface, same arguments work.

Theorem 3.4. Let the timelike (spacelike) translation surface M1 be flat. If the curves α and β are helices then either the
angle ϕ between N and tα is a non-zero constant or the angle ψ between N and tβ is a non-zero constant.

Proof. Let the timelike surface M1 be flat. If the curve α and β are helices, then τα
κα

and τβ
κβ

are non-zero constant
functions. Then, by Corollary 3.1, tanhϕ = − τα

κα
implies that ϕ is a non-zero constant. Further, tanhψ = − τβ

κβ

implies that ψ is a non-zero constant. In case of spacelike surfaces, same arguments work.

Theorem 3.5. Let the timelike (spacelike) translation surfaceM1 be flat. If the curves α and β are helices, then the surface
M1 is a constant angle surface.
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Proof. We suppose that the surface M1 is flat and the curves α and β are helices. Then, by Theorem 3.4, either
ϕ or ψ is a constant function. Let ϕ = ϕ◦ be constant. Since α is a helix, there exists a unit fixed direction Uα

which makes a constant angle with unit tangent vector tα of the curve α. Suppose Uα is spacelike vector, then
⟨tα, Uα⟩ = sinh δ◦ = constant, which on differentiating with respect to u gives ⟨nα, Uα⟩ = 0, when κα ̸= 0. Thus
we can express Uα as Uα = − sinh δ◦tα + cosh δ◦bα. Then, ⟨N,Uα⟩ = ⟨− sinhϕ◦ tα + coshϕ◦ bα,− sinh δ◦ tα +
cosh δ◦ bα⟩ = − sinhϕ◦ sinh δ◦ + coshϕ◦ cosh δ◦, which is a constant. Thus, the surface is a constant angle surface.
In case Uα is a timelike vector, similar arguments show that ⟨N,Uα⟩ = const.

Theorem 3.6. Let the translation surface M1 be minimal. If the curves α and β are planar curves, then the angle between
N and tα, and the angle between N and tβ are same (upto sign).

Proof. Let the surface M1 be minimal. Let α and β be planar curves, then τα = τβ = 0. Then, by Corollary 3.2,
we get sinhϕ = − sinhψ, which implies ϕ = −ψ.

Theorem 3.7. The generating curve tα is an asymptotic curve on
(i) the timelike translation surface M1 if and only if tanhϕ = − τα

κα
,

(ii) the spacelike translation surface M1 if and only if cothϕ = τα
κα

.

Proof. Let M1 be a timelike translation surface. Then, the normal curvature of the tangent indicatrix tα is given
by [21],
κn = 1

κ2
α
⟨t′′α, N⟩ = 1

κ2
α
⟨κ2αtα + κ′αnα + καταbα,− sinhϕ tα + coshϕ bα⟩ = sinhϕ+ τα

κα
coshϕ.

Now, we know that tα is asymptotic if and only if the normal curvature of tα is zero. Thus, tα is asymptotic if
and only if ⟨t′′α, N⟩ = 0, which implies tanhϕ = − τα

κα
. Similarly, we can prove for the spacelike surface.

Corollary 3.5. The Gaussian and the mean curvatures of the translation surface M1 are given as

K = −κn1
κn2

sinh2 θ
, H =

κn1
+ κn2

2 sinh2 θ
,

respectively, where κn1
and κn2

are normal curvatures of the generating curves tα and tβ . Moreover, M1 is flat if and
only if either the generating curve tα or tβ is an asymptotic curve on M1.

Proof. By using Theorems 3.1 and 3.7, we obtain the Gaussian curvature as K = −κn1κn2

sinh2 θ
and the mean

curvature as H =
κn1

+κn2

2 sinh2 θ
. Thus, K = 0 if and only if either κn1

= 0 or κn2
= 0.

Theorem 3.8. The generating curve tα is a geodesic curve on
(i) the timelike translation surface M1 if and only if tanhϕ = −κα

τα
,

(ii) the spacelike translation surface M1 if and only if cothϕ = κα

τα
.

Proof. LetM1 be a timelike translation surface. Then, the geodesic curvature of the tangent indicatrix tα is given
by [21],
κg = 1

κ2
α
⟨t′′α, N × t′α

|t′α| ⟩ =
1
κ2
α
⟨t′′α, N × nα⟩ = 1

κ2
α
⟨κ2αtα + κ′αnα + καταbα,− sinhϕ bα + coshϕ tα⟩ = 1

κ2
α
(−κ2α coshϕ−

κατα sinhϕ) = − coshϕ− τα
κα

sinhϕ.
Now, we know that tα is geodesics if and only if the geodesic curvature of tα is zero. Thus, tα is a geodesic curve
on M1 iff ⟨t′′α, N × nα⟩ = 0, which implies tanhϕ = −κα

τα
. Similarly, we can prove for the spacelike translation

surface.

Theorem 3.9. The generating curve tα is a line of curvature on M1 if and only if the angle between N and tα is constant
along tα.

Proof. The geodesic torsion of the curve tα is given by [21], τg = − 1
κα

⟨Nu, N × nα⟩
= − 1

κα
⟨−ϕu coshϕ tα − κα sinhϕ nα + ϕu sinhϕ bα − τα coshϕ nα,− sinhϕ bα + coshϕ tα⟩

= − 1
κα

(cosh2 ϕ− sinh2 ϕ)ϕu = −ϕu

κα
.

We know that the curve tα is a line of curvature on M1 iff τg = 0, so the curve tα is a line of curvature on M1 iff
ϕu = 0, i.e., the angle between N and tα is constant along tα.

Proposition 3.1. [16] A constant angle surface in Minkowski space is a flat surface.
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Theorem 3.10. Let M1 be a constant angle timelike translation surface generated by tangent indicatrices tα and tβ of
the space curves α and β, and N be the unit normal of M1 such that the angle between N and tα is not constant. If
⟨N,Uα⟩ = a (const.), where Uα is a fixed unit vector called the axis of the surface, then the axis Uα is given by

Uα = −a sinhϕ tα + a coshϕ bα − aτg coshϕ nα,

which is a spacelike vector.

Proof. Let M1 be a constant angle timelike surface. The unit normal to the surface M1 is given by N(u, v) =
− sinhϕ tα + coshϕ bα. Then, ⟨N,Uα⟩ = a, which implies

− sinhϕ ⟨tα, Uα⟩+ coshϕ ⟨bα, Uα⟩ = a. (3.10)

Now, by Proposition 3.1, M1 is a flat surface, so without loss of generality, we can assume by Corollary 3.1 that
tanhϕ = − τα

κα
, which implies

a coshϕ

κα
= −a sinhϕ

τα
. (3.11)

Differentiating the equation ⟨N,Uα⟩ = a with respect to u, we get ⟨Nu, Uα⟩ = 0 and differentiatingN with respect
to u, we obtain

Nu = −ϕu coshϕ tα − (κα sinhϕ+ τα coshϕ) nα + ϕu sinhϕ bα.

By using (3.11) in above the equation, we get Nu = −ϕu coshϕ tα + ϕu sinhϕ bα. Thus, ⟨Nu, Uα⟩ = 0 implies
ϕu(− coshϕ ⟨tα, Uα⟩+ sinhϕ ⟨bα, Uα⟩) = 0, and since ϕu ̸= 0, we get

− coshϕ ⟨tα, Uα⟩+ sinhϕ ⟨bα, Uα⟩ = 0. (3.12)

By using (3.10) and (3.12), we obtain ⟨tα, Uα⟩ = a sinhϕ and ⟨bα, Uα⟩ = a coshϕ.
Thus, Uα can be written as Uα = −a sinhϕ tα + a coshϕ bα + ⟨nα, Uα⟩ nα and differentiating Uα with respect to
u, we get

U ′
α = (−aϕu coshϕ+ κα ⟨nα, Uα⟩) tα + (aϕu sinhϕ+ τα ⟨nα, Uα⟩) bα.

Now, since Uα is a constant unit vector U ′
α = 0. So, we get −aϕu coshϕ+ κα ⟨nα, Uα⟩ = 0 and aϕu sinhϕ+

τα ⟨nα, Uα⟩ = 0, which together imply ⟨nα, Uα⟩ = aϕu coshϕ
κα

= −aϕu sinhϕ
τα

.
Hence, we obtain the axis Uα as follows

Uα = −a sinhϕ tα + a coshϕ bα +
aϕu coshϕ

κα
nα = −a sinhϕ tα + a coshϕ bα − aϕu sinhϕ

τα
nα,

Now, from Theorem 3.9, we have τg = −ϕu

κα
=⇒ ϕu = −τgκα. Thus,

Uα = −a sinhϕ tα + a coshϕ bα − aτg coshϕ nα. (3.13)

Now, ⟨Uα, Uα⟩ = a2 + a2τ2g cosh2 ϕ > 0 implies that the axis of timelike constant angle translation surface M1 is
a spacelike vector. Similarly, we can obtain the result for the spacelike translation surface.

Corollary 3.6. Let M1 be a constant angle timelike translation surface generated by tangent indicatrices of the space
curves α and β with the spacelike unit vector Uα as the axis of the surface, and N be the unit normal of the surface such
that the angle between N and tα is not constant. Then, either the curve α or the curve β is a slant helix with the same
axis.

Proof. Let M1 be the constant angle timelike translation surface generated by tangent indicatrices of the space
curves α and β. Then, since the surface is flat by Proposition 3.1, and by using Corollary 3.1 and Theorem

3.10, we get a2 + a2τ2g cosh2 ϕ = 1. Thus, τg coshϕ = ±
√

1−a2

a2 = constant, which implies ⟨nα, Uα⟩ = −aτg coshϕ =
constant. Hence, the curve α is a slant helix. Similarly, when we assume that tanhψ = − τβ

κβ
, then we find that β

is a slant helix.
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Example 3.1. Let α and β be two timelike space curves in Minkowski 3-space E3
1 given by

α(s) = 1
6 (s

3 + 6s, 3s2, s3) and β(t) = (
√
2 sinh t, 1− cosh t, sinh t), where α and β are curves given by the arc-

length parameters s and t, respectively. The tangent indicatrices of the curve α and β are given by tα(s) =

( s
2

2 + 1, s, s
2

2 ) and tβ(t) = (
√
2 cosh t,− sinh t, cosh t).

The translation surface generated by the tangent indicatrices is given by
M1 : X(s, t) = tα(s) + tβ(t) = ( s

2

2 +
√
2 cosh t+ 1, s− sinh t, s

2

2 + cosh t).

Figure 1. Translation surface generated by tangent indicatrices of timelike curves.

3.2. Translation Surfaces generated by principal normal indicatrices of two timelike space curves in E3
1

Let α, β be timelike curves in E3
1 . Translation surface generated by principal normal indicatrices of the space

curves α, β in E3
1 is defined by

M2 : X(u, v) = nα(u) + nβ(v), (3.14)

where nα and nβ are both spacelike vectors.
Differentiating the above equation (3.14) with respect to u and v, we obtain Xu = n′α, Xv = n′β . By using Frenet
equations (2.3) for the curves α and β, we get

Xu = καtα + ταbα, Xv = κβtβ + τβbβ , (3.15)

where κα, τα and κβ , τβ are curvatures and torsions of the curves α and β, respectively.
Now, the coefficients of first fundamental form are obtained as follows

E = τ2α − κ2α, F = κακβ(λ1 +
τβ
κα
λ3) + τακβ(λ7 +

τβ
κβ

λ9), G = τ2β − κ2β , (3.16)

where 
λ1 = ⟨tα, tβ⟩, λ2 = ⟨tα, nβ⟩, λ3 = ⟨tα, bβ⟩,
λ4 = ⟨nα, tβ⟩, λ5 = ⟨nα, nβ⟩, λ6 = ⟨nα, bβ⟩,
λ7 = ⟨bα, tβ⟩, λ8 = ⟨bα, nβ⟩, λ9 = ⟨bα, bβ⟩.

(3.17)

Thus, the Frenet vector fields of the curve α can be expressed as linear combination of {tβ , nβ , bβ} as follows
tα = −λ1tβ + λ2nβ + λ3bβ ,

nα = −λ4tβ + λ5nβ + λ6bβ ,

bα = −λ7tβ + λ8nβ + λ9bβ .

(3.18)

Similarly, the Frenet vector fields of the curve β can be expressed as linear combination of {tα, nα, bα} as follows
tβ = −λ1tα + λ4nα + λ7bα,

nβ = −λ2tα + λ5nα + λ8bα,

bβ = −λ3tα + λ6nα + λ9bα.

(3.19)
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Now, the unit normal vector N of the translation surface M2 is given as

N(u, v) =
κακβ(tα × tβ) + κατβ(tα × bβ) + τακβ(bα × tβ) + τατβ(bα × bβ)√

|EG− F 2|
, (3.20)

where
EG− F 2 = (τ2α − κ2α)(τ

2
β − κ2β)−

[
κακβ(λ1 +

τβ
κα
λ3) + τακβ

(
λ7 +

τβ
κβ
λ9)

]2
.

Thus, by using (2.2), (3.19) and (3.20), the unit normal N can be written as

N1(u, v) =
κακβ

[
τα
κα

(λ4 +
τβ
κβ
λ6)tα +

{
(−λ7 − τβ

κβ
λ9) +

τα
κα

(−λ1 − τβ
κβ
λ3)

}
nα + (λ4 +

τβ
κβ
λ6)bα

]√
|EG− F 2|

.

Also by using (2.2), (3.18) and (3.20), the unit normal N can be written as

N2(u, v) =
κακβ

[
− τβ

κβ
(λ2 +

τα
κα
λ8)tβ +

{
(λ3 +

τβ
κβ
λ1) +

τα
κα

(λ9 +
τβ
κβ
λ7)

}
nβ − (λ2 +

τα
κα
λ8)bβ

]√
|EG− F 2|

.

The coefficients of second fundamental form of the translation surface M2 are obtained as follows
l = − κακβ√

|EG−F 2|

[
κα(

τα
κα

)′(λ4 + λ6
τβ
κβ

)− (κ2α − τ2α){(λ7 +
τβ
κβ
λ9) +

τα
κα

(λ1 +
τβ
κβ
λ3)}

]
,

m = 0,

n =
κακβ√
|EG−F 2|

[
− κβ(

τβ
κβ

)′(λ2 + λ8
τα
κα

) + (κ2β − τ2β){(λ3 +
τβ
κβ
λ1) +

τα
κα

(λ9 +
τβ
κβ
λ7)}

]
.

(3.21)

Now, using the equations (2.5), (2.6), and above calculations, we obtain the following results.

Theorem 3.11. The Gaussian curvature K and the mean curvature H of the translation surface M2 are obtained as
follows, respectively,

K =
κ2ακ

2
β

(EG− F 2)2

[(
κα(

τα
κα

)′(λ4 + λ6
τβ
κβ

)− (κ2α − τ2α){(λ7 +
τβ
κβ
λ9) +

τα
κα

(λ1 +
τβ
κβ
λ3)}

)
×
(
− κβ(

τβ
κβ

)′(λ2 + λ8
τα
κα

) + (κ2β − τ2β){(λ3 +
τβ
κβ
λ1) +

τα
κα

(λ9 +
τβ
κβ
λ7)}

)]
,

H =
κακβ

2(
√

|EG− F 2|)3

[
(τ2β − κ2β)

(
κα(

τα
κα

)′(λ4 + λ6
τβ
κβ

)− (κ2α − τ2α){(λ7 +
τβ
κβ
λ9) +

τα
κα

(λ1 +
τβ
κβ
λ3)}

)
+ (τ2α − κ2α)

(
− κβ(

τβ
κβ

)′(λ2 + λ8
τα
κα

) + (κ2β − τ2β){(λ3 +
τβ
κβ
λ1) +

τα
κα

(λ9 +
τβ
κβ
λ7)}

)]
.

Theorem 3.12. Let the translation surface M2 be flat. If the curves α and β are planar curves, then either tα and bβ are
orthogonal or tβ and bα are orthogonal.

Proof. Let the surface M2 be flat, then K = 0. Also the curves α and β are planar curves then τα = τβ = 0, which
implies λ3 = 0 or λ7 = 0. Thus, either ⟨tα, bβ⟩ = 0 or ⟨tβ , bα⟩ = 0. Hence, either tα and bβ are orthogonal or tβ
and bα are orthogonal.

Theorem 3.13. Let the translation surface M2 be minimal. Then the following occurs,

(τ2β − κ2β)
(
κα(

τα
κα

)′(λ4 + λ6
τβ
κβ

)− (κ2α − τ2α){(λ7 +
τβ
κβ
λ9) +

τα
κα

(λ1 +
τβ
κβ
λ3)}

)
= (τ2α − κ2α)

(
κβ(

τβ
κβ

)′(λ2 + λ8
τα
κα

)− (κ2β − τ2β){(λ3 +
τβ
κβ
λ1) +

τα
κα

(λ9 +
τβ
κβ
λ7)}

)
.

Theorem 3.14. If M2 is minimal and the curves α and β are planar, then the hyperbolic angle between tα and bβ is same
as the hyperbolic angle between tβ and bα.
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Proof. Suppose the curves α and β are planar, then τα = 0 = τβ . Now, by Theorem 3.11, we have, λ7 =

λ3, i.e., ⟨tα, bβ⟩ = ⟨tβ , bα⟩.

Example 3.2. Let α and β be two timelike curves in Minkowski 3-space E3
1 given by

α(s) = ( 2s√
3
, cos s√

3
, sin s√

3
) and β(t) = (

√
2 sinh t, 1− cosh t, sinh t),

where s and t are arc-length parameters of the curves α and β, respectively. The principal normal indicatrices
of the curve α and β are given by
nα(s) = (0,− cos s√

3
,− sin s√

3
) and nβ(t) = (

√
2 sinh t,− cosh t, sinh t).

The translation surface generated by the principal normal indicatrices is given by
M2 : X(s, t) = nα(s) + nβ(t) = (

√
2 sinh t,− cos s√

3
− cosh t,− sin s√

3
+ sinh t).

Figure 2. Translation surface generated by Principal normal indicatrices of timelike curves.

3.3. Translation Surfaces generated by binormal indicatrices of two timelike space curves in E3
1

Let α, β be timelike space curves in E3
1 . Translation surface generated by binormal indicatrices of the space

curves α, β in E3
1 is defined by

M3 : X(u, v) = bα(u) + bβ(v), (3.22)

since α and β are both timelike curves, thus bα and bβ are spacelike vectors.
Differentiating the above equation (3.22) with respect to u and v, we obtain Xu = b′α, Xv = b′β . Now, using
Frenet equations (2.3) for the curves α and β, we get

Xu = −ταnα, Xv = −τβnβ , (3.23)

where τα and τβ are the torsions of the curves α and β, respectively. The unit normal vector N of the surface
M3 is given by

N(u, v) =
Xu ×Xv

∥Xu ×Xv∥
, (3.24)

where Xu ×Xv = τατβ(nα × nβ) and ∥Xu ×Xv∥ =
√

−ϵ(EG− F 2), ϵ = ⟨N,N⟩.
Now, we have two cases according to causality of the plane spanned by nα and nβ .
Case (i) We suppose that, nα and nβ span timelike plane. Thus, by Definition 2.1(b), we have ⟨nα, nβ⟩ = cosh θ
and the coefficients of first fundamental form are obtained as follows

E = τ2α, F = τατβ cosh θ, G = τ2β , (3.25)

where θ is the smooth hyperbolic angle function between nα and nβ .
In this case, EG− F 2 = −τ2ατ2β sinh2 θ < 0 shows that the surface M3 is timelike, and hence, the unit normal N
is spacelike, i.e., ⟨N,N⟩ = 1. Thus, we obtain the spacelike unit normal as

N(u, v) =
nα × nβ
sinh θ

, (3.26)
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so that ⟨N,nα⟩ = ⟨N,nβ⟩ = 0.
Now, suppose the hyperbolic angle between tα and N is ϕ and between tβ and N is ψ, then N can be expressed
as follows [13]:

N(u, v) = − sinhϕ tα + coshϕ bα,

N(u, v) = − sinhψ tβ + coshψ bβ .

The coefficients of second fundamental form of the timelike surface M3 are given by
l = −τακα(sinhϕ+ τα

κα
coshϕ),

m = 0,

n = −τβκβ(sinhψ +
τβ
κβ

coshψ).

(3.27)

Now, using (2.5), (2.6), and above calculations, we obtain the following results.

Theorem 3.15. The Gaussian curvature K and the mean curvature H of the timelike translation surface M3 are found
as follows, respectively,

K = −
κακβ(sinhϕ+ τα

κα
coshϕ)(sinhψ +

τβ
κβ

coshψ)

τατβ sinh
2 θ

,

H = −
κακβ

[
τβ
κβ

(sinhϕ+ τα
κα

coshϕ) + τα
κα

(sinhψ +
τβ
κβ

coshψ)

]
2τατβ sinh

2 θ
.

Corollary 3.7. The timelike translation surface M3 is flat if and only if

tanhϕ = − τα
κα

or tanhψ = − τβ
κβ
.

Proof. By putting K = 0 in Theorem 3.15, we get the desired result.

Corollary 3.8. Let the timelike translation surface M3 be minimal. Then,
τβ
κβ

(sinhϕ+
τα
κα

coshϕ) = − τα
κα

(sinhψ +
τβ
κβ

coshψ).

Proof. By putting H = 0 in Theorem 3.15, we get the stated result.

Case (ii) We assume that, nα and nβ span spacelike plane. Thus, by Definition 2.1(a), ⟨nα, nβ⟩ = cos θ and the
coefficients of first fundamental form are obtained as follows

E = τ2α, F = τατβ cos θ, G = τ2β , (3.28)

where θ is the smooth angle function between nα and nβ .
In this case, EG− F 2 = τ2ατ

2
β sin2 θ > 0 shows that the surface M3 is spacelike, and hence, the unit normal N is

timelike, i.e., ⟨N,N⟩ = −1. Thus, we obtain the timelike unit normal as

N(u, v) =
nα × nβ
sin θ

, (3.29)

so that ⟨N,nα⟩ = ⟨N,nβ⟩ = 0.
Now, suppose the hyperbolic angle between tα and N is ϕ and between tβ and N is ψ, then N can be expressed
as follows [13] :

N(u, v) = coshϕ tα + sinhϕ bα,

N(u, v) = coshψ tβ + sinhψ bβ .

The coefficients of second fundamental form of the spacelike surface M3 are given by
l = τακα(coshϕ− τα

κα
sinhϕ),

m = 0,

n = τβκβ(coshψ − τβ
κβ

sinhψ).

(3.30)

Now, using (2.5), (2.6), and above calculations, we obtain the following results.
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Theorem 3.16. The Gaussian curvature K and the mean curvature H of the spacelike translation surface M3 are found
as follows, respectively,

K = −
κακβ(coshϕ− τα

κα
sinhϕ)(coshψ − τβ

κβ
sinhψ)

τατβ sin
2 θ

,

H =

κακβ

[
τβ
κβ

(coshϕ− τα
κα

sinhϕ) + τα
κα

(coshψ − τβ
κβ

sinhψ)

]
2τατβ sin

2 θ
.

Corollary 3.9. The spacelike translation surface M3 is flat if and only if

cothϕ =
τα
κα

or cothψ =
τβ
κβ
.

Proof. By putting K = 0 in Theorem 3.16, we get the desired result.

Corollary 3.10. Let the spacelike translation surface M3 be minimal. Then,

τβ
κβ

(coshϕ− τα
κα

sinhϕ) = − τα
κα

(coshψ − τβ
κβ

sinhψ).

Proof. By putting H = 0 in Theorem 3.16, we get the stated result.

Theorem 3.17. The generating curve bα is an asymptotic curve on
(i) the timelike translation surface M3 iff tanhϕ = − τα

κα
,

(ii) the spacelike translation surface M3 iff cothϕ = τα
κα
, ϕ ̸= 0.

Proof. Following similar steps as the Theorem 3.7, we find that the normal curvature of the curve bα on timelike
translation surfaceM3 is given by κn = −κα

τα
(sinhϕ+ τα

κα
coshϕ). Hence, bα is asymptotic onM3 iff tanhϕ = − τα

κα
.

Similarly, we can prove for the spacelike surface.

Corollary 3.11. The Gaussian and mean curvatures of the translation surface M3 are given as

K = −κn1
κn2

sinh2 θ
, H =

κn1
+ κn2

2 sinh2 θ
,

respectively, where κn1 and κn2 are normal curvatures of the generating curves bα and bβ . Moreover, M3 is flat if and
only if either the curve bα or bβ is an asymptotic curve on M3.

Proof. Proof is same as in the proof of Corollary 3.5.

Theorem 3.18. The generating curve bα is a geodesic curve on
(i) the timelike translation surface M3 iff tanhϕ = −κα

τα
,

(ii) the spacelike translation surface M3 iff cothϕ = κα

τα
, ϕ ̸= 0.

Proof. By similar steps as the Theorem 3.8, we obtain the geodesic curvature of the curve bα on timelike
translation surface M3 as κg = −(sinhϕ+ κα

τα
coshϕ). Hence, bα is a geodesic curve on M3 iff κg = 0 iff tanhϕ =

−κα

τα
. Similarly, we can prove for the spacelike surface.

Theorem 3.19. The generating curve bα is a line of curvature on timelike (spacelike) translation surface M3 if and only
if the angle between N and tα is constant along bα.

Proof. Following the steps of the Theorem 3.9, we get that the geodesic curvature of bα as τg = ϕu

τα
. We know

that the curve bα is a line of curvature on M3 iff τg = 0, so the curve bα is a line of curvature on M3 iff ϕu = 0,

i.e., the angle between N and tα is constant along bα.

Theorem 3.20. Let M3 be a constant angle timelike translation surface generated by binormal indicatrices bα and bβ
of the space curves α and β, and N be the unit normal of M3 such that the angle between N and tα is not constant. If
⟨N,Uα⟩ = a (const.), where Uα is a fixed unit vector called the axis of the surface, then the axis Uα is given by

Uα = −a sinhϕ tα + a coshϕ bα − aτg sinhϕ nα,

which is a spacelike vector.
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Proof. After following similar steps to that of Theorem 3.10, we obtain the axis Uα as follows

Uα = −a sinhϕ tα + a coshϕ bα +
aϕu coshϕ

κα
nα = −a sinhϕ tα + a coshϕ bα − aϕu sinhϕ

τα
nα.

Now, by Theorem 3.19, we have τg = ϕu

τα
=⇒ ϕu = τατg. So,

Uα = −a sinhϕ tα + a coshϕ bα − aτg sinhϕ nα.

Now, ⟨Uα, Uα⟩ = a2 + a2τ2g sinh2 ϕ > 0 implies that the axis of the translation surface M3 is a spacelike vector.
Similarly, we can obtain the result for the spacelike translation surface.

Corollary 3.12. Let M3 be a constant angle timelike translation surface generated by binormal indicatrices of the space
curves α and β with the spacelike unit vector Uα as the axis of the surface and N be the unit normal of the surface such
that the angle between N and tα is not constant. Then, either the curve α or the curve β is a slant helix with the same
axis.

Proof. The proof is same as in the proof of Corollary 3.6.

Example 3.3. Let α and β be two timelike curves in Minkowski 3-space E3
1 given by

α(s) = ( 2s√
3
, cos s√

3
, sin s√

3
) and β(t) = (

√
2 sinh t,

√
2 cosh t, t),

where α and β are curves given by the arc-length parameters s and t, respectively. The binormal indicatrices of
the curve α and β are given by
bα(s) = ( 1√

3
,− 2√

3
sin s√

3
, 2√

3
cos s√

3
), and bβ(t) = (− cosh t,− sinh t,−

√
2).

The translation surface generated by the binormal indicatrices is given by
M3 : X(s, t) = bα(s) + bβ(t) = ( 1√

3
− cosh t,− 2√

3
sin s√

3
− sinh t, 2√

3
cos s√

3
−
√
2).

Figure 3. Translation surface generated by binormal indicatrices of timelike curves.
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[7] Çetin, M., Kocayiğit, H., Önder, M.: Translation surfaces according to Frenet frame in Minkowski 3-space. International Journal of Physical

Sciences. 7 (47), 6135-6143 (2012).
[8] Çetin, M., Tunçer, Y.: Parallel surfaces to translation surfaces in Euclidean 3- space. Communications Faculty of Sciences University of Ankara

Series A1 Mathematics and Statistics. 64 (2), 47-54 (2015).
[9] Couto, I. T., Lymberopoulas, A.: Introduction to Lorentz Geometry, curves and surfaces. CRC Press. Florida (2021).

https://doi.org/10.1201/9781003031574-1
[10] do Carmo, M. P.: Differential geometry of curves and surfaces. Prentice-Hall Inc. New Jersey (1976).
[11] Fu, Y., Yang, D.: On constant slope Spacelike surfaces in 3-dimensional Minkowski space. Journal of Mathematical Analysis and Application.

385 (1), 208-220 (2012). https://doi.org/10.1016/j.jmaa.2011.06.040
[12] Izumiya, S., Takeuchi, N.: New special curves and developable surfaces. Turk. J. Math. 28 (2), 531-537 (2004).
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