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ABSTRACT

Design optimization of microwave circuits is a crucial matter for microwave engineers. For 
the last decades, researchers had been studying surrogate models for a computationally effi-
cient design optimization process. Artificial Intelligence based algorithms had been used for 
modelling of complex microwave stages such as antenna, amplifiers and frequency selective 
surfaces. In this study, design optimization of a Low Noise Amplifier (LNA) based on sur-
rogate models for both transistor stage and input & output matching circuits had been pre-
sented. Support Vector Regression Machine had been used for creating surrogate models of a 
microwave transistor and a non-uniform transmission line for having a fast and accurate LNA 
design optimization process alongside a low profile and high performance LNA using on-uni-
form transmission lines. By using this methodology, not only designer can create a mapping 
for missing points in the sparse sample S parameter data points provided by manufacturers but 
also the overall simulation duration can be significantly reduced thanks to the fast nature of 
surrogates compared to EM simulators. Here, the proposed surrogate models had been used 
alongside of Particle Swarm Optimization algorithm to determine optimal geometrical values 
of input/output matching networks. Then the obtained designs are prototyped and measured. 
The measured results are also compared with the performance results of counterpart design in 
literature. As for results, not only the proposed methodology is an effective, fast and 
reliable method for computationally efficient design optimization process of LNA but also 
provides better results than the counterpart design in literature.

Cite this article as: Belen  MA,   Güneş   F .  Surrogate based design optimization of low noise 
amplifier for ISM band. Sigma J Eng Nat Sci 2022;40(3):490–498.

INTRODUCTION

Design optimization of microwave circuits is a crucial 
matter for microwave engineers in order to answer the ever 
increasing demands of industry. Although with the improve-

ment of computers hardware systems and development of 
high performance Microwave circuit simulation tools, still 
computationally efficiency is a challenging problem for de-
sign of microwave stages where repetitive calculations that 
are time consuming [1, 2]. For the last decades, researchers 
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had been studying surrogate models for a computationally 
efficient design optimization process. Artificial Intelligence 
(AI) based algorithms had been being used for modelling 
of complex microwave stages using Artificial Neural Net-
work (ANN), machine learning based algorithms, such as 
Support Vector regression machines, Symbolic Regression, 
and state of the art deep learning algorithms like Convo-
lutional Neural Networks. Some of the applications of sur-
rogate base modelling of microwave circuits can be named 
as scattering parameter prediction of microwave transistors 
[3–7], estimation of reflection phase value of Reflectarray 
unit elements [8–11], modelling of Microstrip lines [12, 13], 
performance estimation of Microstrip antenna designs [14–
16], and surrogate Modeling of Low Noise Amplifiers [17]. 

In this study, design optimization of a Low Noise Am-
plifier (LNA) based on surrogate models for both transistor 
stage and input & output matching circuits had been stud-
ied. Firstly by using Support Vector Regression Machine a 
surrogate model of a microwave transistor had been creat-
ed for having a fast and accurate LNA design optimization 
process. Furthermore, for having a low profile and high per-
formance LNA design instead of traditionally Microstrip 
transmission lines, Non-uniform transmission lines (Fig. 
1) are taken into consideration. This design had been used
for different type of microwave stages for having a wide
operation band such as antenna designs [18]. Here, geo-
metrical design parameters and operation frequency of a
simple transmission line are taken as the input of the surro-
gate model while the characteristic impedance and effective 
dielectric constant of the Microstrip line are taken as the
output of the surrogate model. Then, this surrogate mod-
el will be used for calculation of the equivalent impedance
value of Exponentially Tapered Microstrip Line (ETML) to
be used as either input or output matching network of the
LNA design (Fig. 1). Then a multi objective optimization
process had been carried out using a traditionally optimi-
zation algorithm Particle Swarm Optimization (PSO) for

design optimization of a LNA design. The flow chart of the 
proposed work had been presented in Figure 2. As it can be 
seen from the figure, by using two separate surrogate mod-
els of (i) Transistor, for obtaining the Scattering and noise 
parameter of a microwave transistor at any given DC oper-
ation condition, (ii) ETML, for fast and accurate calculation 
of impedance of a ETML line for any given required input 
& output impedance at requested operation frequencies, a 
computationally efficient design optimization process for 
design of a LNA design can be achieved.

The paper is organized as follows: in the next section 
Support Vector Regression Machine (SVRM) based sur-
rogate modelling of a microwave transistor (BFP640) and 
ETML had been studied. In section III, design optimization 
of the LNA design using generated surrogates as are studied 
alongside the experimental results of the proposed LNA. 
Finally work ends with a brief conclusion in section IV.

SURROGATE BASED MODELLINGS

Surrogate Based Modelling of Microwave Transistor
In this section, a surrogate based model for the Scat-

tering and Noise parameters of BFP640 are modelled us-
ing SVRM. The data set given in Table 1 had been used for 
training the surrogate model.

Figure 1. Schematic of an exponentially tapered microstrip 
line.

Figure 2. Flow chart of design optimization of the work.

Table 1. Training and test data set of BFP 640

VCE IC 1(mA) 5(mA) 10(mA)

1 (V) Train Train Train
2 (V) Test Test Test
3 (V) Train Train Train
Frequency 1–10 GHz Sample size 0.1 GHz
Total number of samples
Training 180 Test 90
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The performance measures of the SVRM based sur-
rogate for the given data set are presented in Table 2. As 
it is well known, modelling of noise parameters of a LNA 
transistor is not a challenging problem, here the used 
SVRM based surrogate model had achieved a high accu-
racy of almost perfect estimation in Noise parameter with 
a Mean Absolute Error (MAE) value of almost zero. How-
ever it also should be noted that the SVRM had shown 
good performance on modelling of scattering parameters. 
Visualized estimation performance of the SVRM based 
surrogates are presented in Figure 3. Following error 
metrics had been used for performance measuring of the 
SVRM surrogate MAE and Relative Mean Error (RME). 
The hyper-parameters of the SVRM model are taken as 
Nu-SVR, with a radial basis kernel function, the Nu pa-
rameter is taken as 0.5. By using mentioned hyper-pa-
rameters, the Mean Absolute error of the model had 
been achieved as 0.086 for Magnitude and 0.23 degree for 
phase of 4 scattering parameters.

(1)

(2)

As it can be seen from the figures the SVRM based 
surrogate transistor model had achieved a remarkable per-
formance in estimation of both Scattering and Noise pa-
rameters of a microwave transistor. In the next subsection 
surrogate modelling of ETML will be studied.

Surrogate Based Modelling of ETML
In this section, using 3D EM simulation tool SON-

NET a surrogate model of a simple transmission line is 
modelled. This unit element then will be used for obtain-
ing the equivalent impedance value of the ETML based 
on Figure 1 [19].

(3)

(4)

Here, it should be noted that, for input matching 
network, the input impedance value is taken equal to 50 
ohm while the output impedance of the input matching 
network should be equal to the required source imped-
ance of the transistor to operate at requested performance 
measures. Similarly to input matching network for output 
matching networks, the output impedance of network 
should be equal to 50 ohm while the input impedance of 
the matching network should be equal to the transistors 
required load impedance value for the requested perfor-
mance measures.

The SVRM based surrogate of transmission line (Fig. 
4) had been created based on the given data set in Table
3. A cross validation of K=5 (K: number of folds that the
training data had been divided) had been used for train-
ing and testing the SVRM model using data set (Table 3)
had been done.

Here, an epsilon type SVRM model with kernel func-
tion of radial basis had been used for modelling of the 
transmission line. Other user defined parameters are taken 
as default. With such a model a mean absolute error of 0.5 
and 0.2 had been achieved for Characteristic impedance 
and effective dielectric constant values. Thus, it can be con-
cluded that with a mean absolute error of less than “0.5” for 
each of the outputs, SVRM based surrogate has a high accu-
racy rate in prediction of impedance values with respect to 
the geometrical design variables and operation frequency. 
In the next section a design optimization process had been 
achieved using the obtained SVRM surrogate.

DESIGN OPTIMIZATION OF LOW NOISE AMPLIFIER

In this section, design of LNA stage is taken as a multi 
objective multi variable optimization problem [20] to deter-
mine the geometrical design parameters of ETML to satisfy 
the required ZS and ZL termination. In Table 4, targeted 
load and source terminations of transistor had been given 
for the requested performance measures. These values are 
obtained by solving the transistor Feasible Design Target 
Space of transistors [21–23].

Table 3. Data set

Parameter Range Step size

εr 1–4 0.25
H (mm) 0.5–2 0.25
W (mm) 0.2–4 0.1
fr (GHz) 1–5 0.1

Table 2. Performance Benchmarking of the SVRM model for scattering parameters

Parameter MAE Average MAE value Total RME

S11 S21 S12 S22

Magnitude 0.232 0.017 0.027 0.07 0.086 0.099
Phase 0.107 0.195 0.39 0.228 0.23
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Here, Eqs. (5–6) had been used for determination 
of geometrical parameters of the ETML. As it shown in 
Figure 5, a combination of two powerful Artificial In-
telligence algorithm Particle Swarm Optimization and 
SVRM had been used for determination of optimal geo-
metrical design parameters of ETML ( , min-

imum and maximum width of the transmission line,  
length of the transmission line,  the coefficient of the 
exponential curve of the line) to satisfy the requested 
source and load termination of LNA transistor given in 
Table 4 using Eqs. (3–7) using the methodology present-
ed in Figure 5 [19].

Figure 3. Predicted and measured (datasheet) (a) S21, (b) S11, (c) S12, (d) S22, (e) Noise Figure, at the bias condition of 
VCE=2V, IC= 5mA.

(a)

(c)

(b)

(d)

(e)
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Figure 4. Black box model of the SVRM based ETLM sur-
rogate.

Table 4. Required load and source terminations of transistor for 
selected performance measures

RL= 102.331 XL= 72.869 F=Fmin=0.74 dB GT=15.5 dB
RS= 63.364 XS= 24.857 Vout=1.5 Vin=1.62

Table 5. Solutions of the exponential type microstrip IMC and 
OMC elements

Section wmax(mm) wmin(mm)  (mm) α

Input matching 3 1.3 5.14 0.162
Output matching 2 0.8 4.8 0.19

Figure 5. Flow chart of design optimization of the ETML Based on SVRM surrogate.
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(5)

(6)

 (7)

After the definition of operational conditions of the op-
timization problem (Frequency band, Requested cost, stop-
ping criteria etc.) for a randomly selected initial population 
cost function (Eq. 7) will be calculated using the proposed 
SVRM surrogate model of transmission line. Then based on 
the obtained cost values the position of these initial solu-
tions had been updated using the PSO algorithm. This pro-
cess is repeated until either the requested cost function or 
the other stopping criteria such as maximum iteration or 
maximum computation time have been achieved. For each 
of the matching networks, an optimization process had 
been done. The results of the optimally selected geometri-
cal design variables for each of the matching networks are 
presented in Table 5. The selected material as substrate is 
FR4 (h=1.6 mm and εr= 4.6).

In order to justify the performance of the proposed 
methodology, the proposed LNA design with ETML 
matching network had been prototyped (Fig. 6) and mea-

sured. The prototyped design has a size of 21.5x25.75 mm2. 
The measured experimental results of the prototyped, LNA 
design with ETML matching network had been presented 
in Figures 7, 8. The Rohde & Schwarz vector network ana-
lyzer with a bandwidth of 9 KHz–13.5 GHz had been used 
for measurements.

Figure 6. Fabricated LNA circuit.

Table 6. Table of comparison of proposed LNA design with counterpart design in literature 

Parameters Here [24] [25] [26] [27] [28] [29] [30]

Frequency [GHz] 2.4 2.45 2.4 3 5.8 5.75 5.8 2.4
Gain (dB) 15 14.3 15.45 15 15.2 14.2 16.7 >10
Input return loss (dB) <-10 -24 -25.7 <-7 -51.6 -8 -23 <-10
Output return loss (dB) <-12 -32 -6 <-7 -40.7 -19 -25 <-10
1 dB compression point (dBm) -10 -7 --- 3 -17 --- -15.6 -
Stability (K) >1 >1.5 --- --- >1 >1 >1 -
Simulated noise figure (NF) (dB) 0.74 0.9 0.8 3 2.5 0.9 1.4  0.6
Technology SiGe SiGe 0.18 mm CMOS E-PHEMT 

BiCMOS 
HBT

Figure 7. Measured S parameters of the LNA.
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As it can be seen from Figures 7, 8, the proposed design 
not only achieves a good performance on aimed 2.4 GHz but 
it also has a good operation band between 2.2 and 2.8 GHz (a 
return loss level of less than 10 dB). Furthermore as it can be 
seen from Figure 8, the proposed LNA has a 1 dB compari-
son point of almost -10 dBm which make it a good candidate 
to be used in many wireless applications for ISM band.

A further analysis on the performance of the proposed 
LNA design had been presented in Table 6, where the per-
formance measures of the proposed design had been com-
pared with counterpart design in literature [24–30]. When 
compared to [24], the proposed design achieves better gain 
performance, while the other performance measures seem a 
bit better, it should be noted that the results given in [24] are 
only simulated results. In comparison between [25, 26, 28] 
although the designs have similar gain the counterpart ei-
ther has worse return loss or 1 dB compression points com-
pared to the proposed design. In [27] although both designs 
have similar performance 1 dB compression is much lower 
than the proposed design. Finally compared with [30], the 
proposed design achieves much better gain. Thus as it can 
be seen from Table 6, the proposed design achieved a good 
overall performance compared to the design in literature in 
means of 1 dB comparison point (-10 dBm) without having 
any deterioration in input or output return loss. The stability 
and gain performance of the proposed design are the same 
with other designs, even though the proposed design has a 
better 1 dB compression point and low measured return loss 
characteristics with a profile size of 21.5x25.75 mm2.

CONCLUSONS

Here in, by using SVRM based surrogate model design op-
timization of a LNA stage for ISM band applications had been 
studied. Firstly a selected microwave transistor (BFP 640) had 
been modelled using the measured data gathered by manu-

facturers using SVRM surrogate. As a result it has been seen 
that SVRM achieves a very good estimation performance for 
both scattering and noise parameters, which make it a good 
candidate to create microwave transistors surrogate models. 
After that, a SVRM based surrogate model of a Microstrip 
transmission line had been created to be used for calculation 
of impedance value of ETML in a computationally efficient 
way. Thus, a very accurate surrogate model for estimation of 
impedance value of Microstrip transmission line with respect 
to its geometrical design parameters. Finally the surrogate 
models had been used alongside of the PSO algorithm to de-
termine optimal geometrical values of input/output matching 
networks. Then the obtained designs are prototyped and mea-
sured and the experimental results had been compared with 
counterpart designs in literature. As it can be seen from the 
experimental results, the proposed methodology is an effec-
tive, fast and reliable method for computationally efficient de-
sign optimization process of microwave stages such as LNA.
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