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1. Introduction

As a family of codes with good parameters, rich algebraic structures, and wide ranges of applications
(see [8], [9], [11], [10], [13], [14] , and references therein), quasi-cyclic codes have been studied for a half-
century. Quasi-abelian codes, a generalization of quasi-cyclic codes, have been introduced in [15] and
extensively studied in [7].

Given finite abelian groups H ≤ G and a finite field Fq, an H-quasi-abelian code is defined to be an
Fq[H]-submodule of Fq[G]. Note that H-quasi-abelian codes are not only a generalization of quasi-cyclic
codes (see [7], [8], [9], and [15]) if H is cyclic but also of abelian codes (see [1] and [2]) if G = H, and of
cyclic codes (see [12]) if G = H is cyclic. The characterization and enumeration of quasi-abelian codes
have been established in [7]. An H-quasi-abelian code C is said to be of 1-generator if C is a cyclic
Fq[H]-module. Such a code can be viewed as a generalization of 1-generator quasi-cyclic codes which
are more frequently studied and applied (see [11], [13], and [14]). Analogous to the case of 1-generator
quasi-cyclic codes, the number of 1-generator quasi-abelian codes has been determined in [7]. However,
an explicit construction and an algorithm to determine all 1-generator quasi-abelian codes have not been
well studied.
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In this paper, we give an alternative discussion on the algebraic structure of 1-generator quasi-abelian
codes and an algorithm to find all 1-generator quasi-abelian codes. Examples of new codes derived from
1-generator quasi-abelian codes are presented.

The paper is organized as follows. In Section 2, we recall some notations and basic results. An
alternative discussion on the algebraic structure of 1-generator quasi-abelian codes is given in Section 3
together with an algorithm to find all 1-generator quasi-abelian codes and the number of such codes.
Examples of new codes derived from 1-generator quasi-abelian codes are presented in Section 4.

2. Preliminaries

Let Fq denote a finite field of order q and let G be a finite abelian group of order n, written additively.
Denote by Fq[G] the group ring of G over Fq. The elements in Fq[G] will be written as

∑
g∈G αgY

g, where
αg ∈ Fq. The addition and the multiplication in Fq[G] are given as in the usual polynomial rings over Fq
with the indeterminate Y , where the indices are computed additively in G. We note that Y 0 = 1 is the
identity of Fq[G], where 1 is the identity in Fq and 0 is the identity of G.

Given a ring R, a linear code of length n over R refers to a submodule of the R-module Rn. A linear
code in Fq[G] refers to an Fq-subspace C of Fq[G]. This can be viewed as a linear code of length n over Fq
by indexing the n-tuples by the elements in G. The Hamming weight wt(u) of u =

∑
g∈G ugY

g ∈ Fq[G]
is defined to be the number of nonzero term ug’s in u. The minimum Hamming distance a code C is
defined by d(C) := min{wt(u) | u ∈ C,u 6= 0}. A linear code C in Fq[G] is referred to as an [n, k, d]q
code if C has Fq-dimension k and minimum Hamming distance d.

Given a subgroup H of G, a code C in Fq[G] is called an H-quasi-abelian code if C is an Fq[H]-
module, i.e., C is closed under the multiplication by the elements in Fq[H]. Such a code will be called
a quasi-abelian code if H is not specified or where it is clear in the context. An H-quasi-abelian code
C is said to be of 1-generator if C is a cyclic Fq[H]-module. Since every H-quasi-abelian code C in
Fq[G] is an Fq[H]-module, it is also an Fq[A]-module for all cyclic subgroups of H. It follows that C
is quasi-cyclic of index |G|/|A|. However, being 1-generator H-quasi-abelian does not imply that C is
1-generator quasi-cyclic. Therefore, it makes sense to study 1-generator H-quasi-abelian codes.

Assume that H ≤ G such that |H| = m and the index [G : H] = n
m = l. Let {g1, g2, . . . , gl} be a

fixed set of representatives of the cosets of H in G. Let R := Fq[H]. Define Φ : Fq[G]→ Rl by

Φ

(∑
h∈H

l∑
i=1

αh+giY
h+gi

)
= (α1(Y ),α2(Y ), . . . ,αl(Y )) , (1)

where αi(Y ) =
∑
h∈H αh+gi

Y h ∈ R, for all i ∈ {1, 2, . . . , l}. It is not difficult to see that Φ is an
R-module isomorphism, and hence, the next lemma follows.

Lemma 2.1. The map Φ induces a one-to-one correspondence between H-quasi-abelian codes in Fq[G]
and linear codes of length l over R.

Throughout, assume that gcd(q, |H|) = 1, or equivalently, Fq[H] is semisimple. Following [7, Section
3], the group ring R = Fq[H] is decomposed as follows.

For each h ∈ H, denote by ord(h) the order of h in H. The q-cyclotomic class of H containing
h ∈ H, denoted by Sq(h), is defined to be the set

Sq(h) := {qi · h | i = 0, 1, . . . } = {qi · h | 0 ≤ i ≤ νh},

where qi · h :=
∑qi

j=1 h in H and νh is the multiplicative order of q in Zord(h).

An idempotent in a ring R is a non-zero element e such that e2 = e. An idempotent e is said to
be primitive if for every other idempotent f , either ef = e or ef = 0. The primitive idempotents in R
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are induced by the q-cyclotomic classes of H (see [4, Proposition II.4]). Every idempotent e in R can
be viewed as a unique sum of primitive idempotents in R. The Fq-dimension of an idempotent e ∈ R is
defined to be the Fq-dimension of Re.

From [7, Subsection 3.2], R := Fq[H] can be decomposed as

R = Re1 +Re2 + · · ·+Res,

where e1, e2, . . . , es are the primitive idempotents in R. Moreover, every ideal in R is of the form Re,
where e is an idempotent in R.

3. 1-generator quasi-abelian codes

In [7], characterization and enumeration of 1-generator H-quasi-abelian codes in Fq[G] have been
given. In this section, we give alternative characterization and enumeration of such codes. The char-
acterization in Subsection 3.1 allows us to express an algorithm to find all 1-generator H-quasi-abelian
codes in Fq[G] in Subsection 3.2.

Using the R-module isomorphism Φ defined in (1), to study 1-generator H-quasi-abelian codes in
Fq[G], it suffices to consider cyclic R-submodules Ra, where a = (a1, a2, . . . , al) ∈ Rl.

For each a = (a1, a2, . . . , al) ∈ Rl, there exists a unique idempotent e ∈ R such that Re = Ra1 +
Ra2 + · · ·+Ral. The element e is called the idempotent generator element for Ra. An idempotent f ∈ R
of largest Fq-dimension such that

fa = 0

is called the idempotent check element for Ra.

Let S = Fql [H], where Fql is an extension field of Fq of degree l. Let {α1, α2, . . . , αl} be a fixed basis
of Fql over Fq. Let ϕ : Rl → S be an R-module isomorphism defined by

a = (a1, a2, . . . , al) 7→ A =

l∑
i=1

αiai. (2)

Using the map ϕ, the code Ra can be regarded as an R-module RA in S.

Lemma 3.1 ([7, Lemma 6.1]). Let a ∈ Rl and let e and f be the idempotent generator and idempotent
check elements of Ra, respectively, Then

e+ f = 1

and

dimFq
(Ra) = dimFq

(Re) = m− dimFq
(Rf).

For a ring R, denote by R∗ and R× the set of non-zero elements and the group of units of R,
respectively.

In order to enumerate and determine all 1-generator H-quasi-abelian codes in Fq[G], we need the
following result.

Lemma 3.2. Let a, b ∈ Rl and let e be the idempotent generator of Ra. Let A = ϕ(a) and B = ϕ(b),
where ϕ is defined in (2). Then Ra = Rb if and only if there exists u ∈ (Re)× such that b = ua.

Equivalently, RA = RB if and only if there exists u ∈ (Re)× such that B = uA.
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Proof. Write a = (a1, a2, . . . , al) and b = (b1, b2, . . . , bl), where ai, bi ∈ R for all i ∈ {1, 2, . . . , l}.
Assume that Ra = Rb. Then b = va for some v ∈ R. Let u = ve ∈ Re. Note that, for each

i ∈ {1, 2, . . . , l}, we have ai = rie for some ri ∈ R. Then uai = (ve)(rie) = vrie
2 = v(rie) = vai = bi for

all i ∈ {1, 2, . . . , l}. Hence, b = ua and

Re = Ra = Rb = R(ua) = uRa = uRe.

Since u ∈ Re and Re = uRe, we have u ∈ (Re)×.

Conversely, assume that there exists u ∈ (Re)× such that b = ua. Then Rb = Rua ⊆ Ra. We need
to show that dimFq (Ra) = dimFq (Rb). Let e′ be an idempotent generator of Rb. We have

Re′ = Rb = R(ub) = u(Rb) = u(Re) = Re

since u ∈ (Re)×. Hence, by Lemma 3.1, we have

dimFq
(Ra) = dimFq

(Re) = dimFq
(Re′) = dimFq

(Rb).

Therefore, Rb = Ra as desired.

3.1. The enumeration of 1-generator quasi-abelian codes

First, we focus on the number of 1-generator H-quasi-abelian codes of a given idempotent generator
in Fq[H]. Using the fact that the idempotents in Fq[H] are known, the number of 1-generator H-quasi-
abelian codes in Fq[G] can be concluded.

Proposition 3.3. Let {e1, e2, . . . , er} be a set of primitive idempotents of R and e = e1 + e2 + · · ·+ er.
Then the following statements hold.

i) e1, e2, . . . , er are pairwise orthogonal (non-zero) idempotents of Se.

ii) ej is the identity of Sej for all j ∈ {1, 2, . . . , r}.

iii) e is the identity of Se.

iv) Se = Se1 ⊕ Se2 ⊕ · · · ⊕ Ser.

Proof. For i), it is clear that e1, e2, . . . , er are pairwise orthogonal (non-zero) idempotents in S. They
are in Se since ej = eje ∈ Se for all j ∈ {1, 2, . . . , r}. The statements ii) and iii) follow since sej = se2j =

(sej)ej for all sej ∈ Sej and se = se2 = (se)e for all se ∈ Se. The last statement can be verified using
i).

Corollary 3.4. Let {e1, e2, . . . , er} be a set of primitive idempotents of R and e = e1 + e2 + · · · + er.
Then the following statements hold.

i) e1, e2, . . . , er are pairwise orthogonal (non-zero) idempotents of Re.

ii) ej is the identity of Rej for all j ∈ {1, 2, . . . , r}.

iii) e is the identity of Re.

iv) Re = Re1⊕Re2⊕· · ·⊕Rer, where Rej is isomorphic to an extension field of Fq for all j ∈ {1, 2, . . . , r}.

Let Ω =
{∑r

j=1Aj

∣∣∣Aj ∈ (Sej)
∗
}
⊂ Se. Then we have the following results.

Lemma 3.5. Let A =
∑l
i=1 αiai ∈ S, where ai ∈ R, and let b ∈ R. Then RA ⊆ Sb if and only if

Ra1 +Ra2 + · · ·+Ral ⊆ Rb.
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Proof. Assume that RA ⊆ Sb. Then A = Bb for some B ∈ S. Write B =
∑l
i=1 αibi, where bi ∈ R.

Then ai = bbi for all i ∈ {1, 2, . . . , l}. Hence, we have

l∑
i=1

riai =

l∑
i=1

ribbi =

(
l∑
i=1

ribi

)
b ∈ Rb

for all
∑l
i=1 riai ∈ Ra1 +Ra2 + · · ·+Ral.

Conversely, it suffices to show that A ∈ Sb. Since Ra1 +Ra2 + · · ·+Ral ⊆ Rb, we have ai ∈ Rb for
all i ∈ {1, 2, . . . , l}. Then, for each i ∈ {1, 2, . . . , l}, there exists ri ∈ R such that ai = rib. Hence,

A =

l∑
i=1

αiai =

l∑
i=1

αirib =

(
l∑
i=1

αiri

)
b ∈ Sb

as desired.

Lemma 3.6. Let A =
∑l
i=1 αiai ∈ Se, where ai ∈ R. Then A ∈ Ω if and only if

Re = Ra1 +Ra2 + · · ·+Ral.

Proof. First, we note that RA ⊆ Se since A ∈ Se. Then Ra1 +Ra2 + · · ·+Ral ⊆ Re by Lemma 3.5.

Assume that A ∈ Ω. Then A = A1 + A2 + · · · + Ar, where Aj ∈ (Sej)
∗. We have Aej = Aj 6= 0

for all j ∈ {1, 2, . . . , r}. Suppose that Ra1 + Ra2 + · · · + Ral ( Re. By Corollary 3.4, we have Re =
Re1 ⊕Re2 ⊕ · · · ⊕Rer. Then

Ra1 +Ra2 + · · ·+Ral ⊆ R̂ej = R(e− ej)

for some j ∈ {1, 2, . . . , r}, where R̂ej := Re1 ⊕ · · · ⊕Rej−1 ⊕Rej+1 ⊕ · · · ⊕Rer. By Lemma 3.5, we have

0 6= Aj = Aej ∈ RA ⊆ S(e− ej),

a contradiction. Therefore, Ra1 +Ra2 + · · ·+Ral = Re.

Conversely, assume that Re = Ra1 +Ra2 + · · ·+Ral. Then RA ⊆ Se by Lemma 3.5. Since A ∈ Se,
by Theorem 3.3, we have A = A1 +A2 + · · ·+Ar, where Aj ∈ Sej for all j ∈ {1, 2, . . . , r}. Suppose that
Aj = 0 for some j ∈ {1, 2, . . . , r}. Then RA = R̂Aj ⊆ Ŝej = S(e− ej). By Lemma 3.5, we have

Re = Ra1 +Ra2 + · · ·+Ral ⊆ R(e− ej)

which is a contradiction. Hence, Aj ∈ (Sej)
∗ for all j ∈ {1, 2, . . . , r}.

Corollary 3.7. Let A =
∑l
i=1 αiai ∈ Sej, where ai ∈ R. Then A ∈ (Sej)

∗ if and only if Rej =
Ra1 +Ra2 + · · ·+Ral.

Let j ∈ {1, 2, . . . , r} and let kj denote the Fq-dimension of ej . Then Rej is isomorphic to a finite
field of qkj elements.

Define an equivalence relation on (Sej)
∗ by

A ∼ B ⇐⇒ ∃u ∈ (Rej)
× such that A = uB.

For A ∈ (Sej)
∗, denote by [A] the equivalence class of A and let [(Sej)

∗] = {[A] | A ∈ (Sej)
∗}.

Lemma 3.8. Let j ∈ {1, 2, . . . , r}. Then |[A]| = qkj − 1 for all A ∈ (Sej)
∗.
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Proof. Let A ∈ (Sej)
∗ and define ρ : (Rej)

× → [A],

u 7→ uA.

From the definition of ∼, ρ is a well-defined surjective map. For each u1, u2 ∈ (Rej)
×, if u1A = u2A,

then (u1 − u2)A = 0. Write A =
∑l
i=1 αiai, where ai ∈ R. Then ai(u1 − u2) = 0 for all i ∈ {1, 2, . . . , l}.

Since A ∈ (Sej)
∗, by Corollary 3.7, we can write ej =

∑i
i=1 riai, where ri ∈ R. Hence,

ej(u1 − u2) =

(
i∑
i=1

riai

)
(u1 − u2) =

i∑
i=1

riai(u1 − u2) = 0 ∈ Rej .

Since ej is the identity of Rej , it follows that u1 = u2 ∈ (Rej)
×. Hence, ρ is a bijection. Therefore,

|[A]| = |(Rej)×| = |F∗qkj
| = qkj − 1.

Corollary 3.9. For each i ∈ {1, 2, . . . , r}, we have

|[(Sej)∗]| =
|(Sej)∗|
|[A]|

=
qlkj − 1

qkj − 1
.

Let [Ω] =

r∏
j=1

[(Sej)
∗]. Then |[Ω]| =

r∏
j=1

qlkj − 1

qkj − 1
.

The number of 1-generator quasi-abelian codes sharing a idempotent has been determined in [7,
Corollary 6.1]. Here, an alternative proof using a different technique is provided.

Theorem 3.10. Let C denote the set of all 1-generator H-quasi-abelian codes in Fq[G] with idempotent
generator e. Then there exists a one-to-one correspondence between [Ω] and C. Hence, the number of
1-generator quasi-abelian codes having e as their idempotent generator is

r∏
j=1

qlkj − 1

qkj − 1
.

Proof. Define σ : [Ω]→ C,

([A1], [A2], . . . , [Ar]) 7→ Ra,

where A := A1 +A2 + · · ·+Ar ∈ Se is viewed as A =
∑l
i=1 αiai and a := (a1, a2, . . . , al).

Since Aj ∈ (Sej)
∗ for all j ∈ {1, 2, . . . , r}, we have A ∈ Ω. Then Re = Ra1 + Ra2 + · · · + Ral by

Lemma 3.6, and hence, Ra is a 1-generator quasi-abelian code with idempotent generator e, i.e., Ra ∈ C.

For ([A1], [A2], . . . , [Ar]) = ([B1], [B2], . . . , [Br]) ∈ [Ω], there exists uj ∈ (Rej)
× such that Aj = ujBj

for all j ∈ {1, 2, . . . , r}. Let u := u1 + u2 + · · ·+ ur. Then

u
(
u−11 + u−12 + · · ·+ u−1r

)
= e1 + e2 + · · ·+ er = e

is the identity of Re (see Corollary 3.4), where u−1j refers to the inverse of uj in Rej . Hence, u is a unit
in (Re)×. Let B :=

∑r
j=1Bj . Then

A =

r∑
j=1

Aj =

r∑
j=1

ujBj = uB.

Hence, Ra = Rb by Lemma 3.2. Therefore, σ is a well-defined map.
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For ([A1], [A2], . . . , [Ar]), ([B1], [B2], . . . , [Br]) ∈ [Ω], if Ra = Rb, then, by Lemma 3.2, there exists
u ∈ (Re)× such that A = uB. Then Aj = uBj = uejBj since ej is the identity of Sej by Proposition 3.3.
Since Aj ∈ (Sej)

∗, uej is a non-zero in Rej which is a finite field. Thus uej is a unit in (Rej)
×. Hence,

([A1], [A2], . . . , [Ar]) = ([B1], [B2], . . . , [Br])

which implies that σ is an injective map.

To verify that σ is surjective, let Ra ∈ C, where a = (a1, a2, . . . , al) ∈ Rl. Then Re = Ra1 +Ra2 +
· · ·+Ral. Hence, by Lemma 3.6, we conclude that

A :=

l∑
i=1

αiai ∈ Ω.

Write A =
∑r
j=1Aj , where Aj ∈ (Sej)

∗. Then ([A1], [A2], . . . , [Ar]) ∈ [Ω], and hence,

σ(([A1], [A2], . . . , [Ar])) = Ra.

3.2. The generators for 1-generator quasi-abelian codes

In this subsection, we establish an algorithm to find all 1-generator H-quasi-abelian codes in Fq[G].
Note that every idempotent in R := Fq[H] can be written as a unique sum of primitive idempotents in
R. Hence, it is sufficient to study H-quasi-abelian codes of a given idempotent generator.

Let e = e1 + e2 + · · ·+ er be an idempotent in R, where, for each j ∈ {1, 2, . . . , r}, ej is the primitive
idempotent in R induced by a q-cyclotomic class Sq(hj) for some hj ∈ H.

For each j ∈ {1, 2, . . . , r}, assume that ej is decomposed as

ej = ej1 + ej2 + · · ·+ ejsj ,

where, for each i ∈ {1, 2, . . . , sj}, eji is the primitive idempotent in S defined corresponding to a ql-
cyclotomic class Sql(hji) for some hji ∈ Sq(hj).

Note that all the elements in Sq(hj) have the same order. Hence, the ql-cyclotomic classes Sql(hji)
have the same size for all 1 ≤ i ≤ sj . Without loss of generality, we assume that ej1 is defined cor-
responding to Sql(hj). For each j ∈ {1, 2, . . . , r}, let kj and dj denote the Fq-dimension of ej and the
Fql -dimension of ej1, respectively. Then kj and dj are the smallest positive integers such that

qkj · hj = hj and qldj · hj = hj .

Then kj |ldj which implies that kj
gcd(l,kj)

|dj . Since ql
kj

gcd(l,kj) · hj = q
kj

l
gcd(l,kj) · hj = hj , we have

dj | kj
gcd(l,kj)

. It follows that dj =
kj

gcd(l,kj)
. Hence, eji’s have the same ql-size dj =

kj
gcd(l,kj)

and sj =

gcd(l, kj).

Using arguments similar to those in the proof of Proposition 3.3, we conclude the following result.

Proposition 3.11. Let {e1, e2, . . . , er} be a set of primitive idempotents of R. Assume that ej = ej1 +
ej2 + · · · + ejsj , where eji is a primitive idempotent in S for all i ∈ {1, 2, . . . , sj}. Then the following
statements hold.

i) For j ∈ {1, 2, . . . , r}, the elements ej1, ej2, . . . , ejsj are pairwise orthogonal (non-zero) idempotents
of Sej.

ii) eji is the identity of Seji for all j ∈ {1, 2, . . . , r} and i ∈ {1, 2, . . . , sj}.
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iii) ej = ej1 + ej2 + · · ·+ ejsj is the identity of Sej for all j ∈ {1, 2, . . . , r}.

iv) For j ∈ {1, 2, . . . , r}, we have Sej = Sej1⊕Sej2⊕ · · · ⊕Sejsj , where Seji is an extension field of Fq
of order qldj for all i ∈ {1, 2, . . . , sj}.

Theorem 3.12. Let j ∈ {1, 2, . . . , r} be fixed. For i ∈ {1, 2, . . . , sj}, let πi be a primitive element of Seji,
a finite field of qldj elements. Let Lj = qldj−1

qkj−1
and Tj = {∞, 0, 1, 2, . . . , qldj − 2}. Then the elements

πνtt + π
νt+1

t+1 + · · ·+ π
νsj
sj , (3)

for all 1 ≤ t ≤ sj, 0 ≤ νt ≤ Lj − 1, and νt+1, νt+2, . . . , νsj ∈ Tj, are a complete set of representatives of
[(Sej)

∗]. (By convention, π∞i = 0.)

Proof. Note that the number of elements in (3) is

Ljq
ldj(sj−1) + Ljq

ldj(sj−2) + · · ·+ Lj =
qlkj − 1

qkj − 1
= |[(Sej)∗]|.

Hence, it suffices to show that the elements in (3) are in different equivalence classes. Let

A = πνtt + π
νt+1

t+1 + · · ·+ π
νsj
sj and B = πµx

x + π
µx+1

x+1 + · · ·+ π
µsj
sj ,

where 0 ≤ νt, µx ≤ Lj−1, νt+1, νt+2, . . . , νsj ∈ Tj , and µx+1, µx+2, . . . , µsj ∈ Tj . Assume that [A] = [B].
Then there exists u ∈ (Rej)

× such that

πνtt + π
νt+1

t+1 + · · ·+ π
νsj
sj = A = uB = uπµx

x + uπ
µx+1

x+1 + · · ·+ uπ
µsj
sj .

Since πνtt ∈ (Sejt)
× and uπµx

x ∈ (Sejx)×, by the decomposition in Proposition 3.11, t = x and πνtt =

uπµt

t ∈ Sejt. Then uejt = πνt−µt

t . Since u ∈ (Rej)
×, we have uq

kj−1 = ej , and hence, ejt = ejtej =

π
(νt−µt)(q

kj−1)
t . Since 0 ≤ νt, µt ≤ Lj − 1 and πt has order qldj − 1, we conclude that νt = µt. Hence,
uejt = ejt = ejejt which implies (u− ej)ejt = 0 in Sejt. It follows that

S(u− ej) ⊆ S(ej1 + · · ·+ ej,t−1 + ej,t+1 + · · ·+ ejsj ) ( Sej .

Since u, ej ∈ Rej , we have u − ej ∈ Rej and R(u − ej) ( Rej . Hence, R(u − ej) is the zero ideal, i.e.,
u = ej . Therefore, A = uB = ejB = B since ej is the identity of Sej .

The following corollary now follows from Theorem 3.10 and Theorem 3.12.

Corollary 3.13. Let {e1, e2, . . . , er} be a set of primitive idempotents of R and e = e1 + e2 + · · · + er.
Then all 1-generator quasi-abelian codes having e as their idempotent generator are of the form

A1 +A2 + · · ·+Ar,

where Aj ∈ (Sej)
∗ is as defined in (3).

Combining the results above, we summarize the steps of finding all 1-generatorH-quasi-abelian codes
in Fq[G] as in Algorithm 1. We note that the 1-generator H-quasi-abelian codes in Fq[G] are possible to
determined using [7, Theorem 6.1] which depend on linear codes of dimension 1 over various extension
fields of Fq. Using this concept, the algorithm might look more tedious and complicated.

An illustrative example for Algorithm 1 is given as follows.

Example 3.14. Let q = 2, G = Z3 × Z6 and H = Z3 × 2Z6. Denote by a0 := (0, 0), a1 := (1, 0),
a2 := (2, 0), a3 := (0, 2), a4 := (1, 2), a5 := (2, 2), a6 := (0, 4), a7 := (1, 4), and a8 := (2, 4), the elements
in H. Then l = [G : H] = 2 and the elements in H can be partitioned into the following 2-cyclotomic
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For abelian groups H ≤ G and a finite field Fq with gcd(q, |H|) = 1 and [G : H] = l, do the
following steps.

1. Compute the q-cyclotomic classes of H in G.

2. Compute the set {e1, e2, . . . , er} of primitive idempotents of R = Fq[H] (see [4, Propo-
sition II.4]).

3. For each 1 ≤ j ≤ r, compute a set Bj of a complete set of representatives of [(Sej)∗]
(see Theorem 3.12).

4. Compute the idempotents of R, i.e., the set

T =

{
t∑

j=1

eij

∣∣∣∣∣ 1 ≤ t ≤ r and 1 ≤ i1 < i2 < · · · < it ≤ r

}
.

5. For each e =
∑t

j=1 eij ∈ T , compute the 1-generator quasi-abelian codes having e as
their idempotent generator of the form

A1 +A2 + · · ·+At,

where Aj ∈ Bij (see Corollary 3.13).

6. Run e over all elements of T , the 1-generator H-quasi-abelian codes in Fq[G] are
obtained.

Algorithm 1. Steps for determining all 1-generator H-quasi-abelian codes in Fq[G]

classes S2(a0) = {a0}, S2(a1) = {a1, a2}, S2(a3) = {a3, a6}, S2(a4) = {a4, a8}, and S2(a5) = {a7, a5}.
From [4, Proposition II.4], we note that

e1 =Y a0 + Y a1 + Y a2 + Y a3 + Y a4 + Y a5 + Y a6 + Y a7 + Y a8 ,

e2 =Y a1 + Y a2 + Y a4 + Y a5 + Y a7 + Y a8 ,

e3 =Y a3 + Y a4 + Y a5 + Y a6 + Y a7 + Y a8 ,

e4 =Y a1 + Y a2 + Y a3 + Y a4 + Y a6 + Y a8 ,

e5 =Y a1 + Y a2 + Y a3 + Y a5 + Y a6 + Y a7

are primitive idempotents of R := F2[H] induced by S2(a0), S2(a1), S2(a3), S2(a4), and S2(a5), respec-
tively.

Let e := e1 + e2 + e3. From Theorem 3.10, it follows that the number of 1-generator H-quasi abelian
codes in F2[G] with idempotent generator e is 3 · 5 · 5 = 75.

Let S := F4[H], where F4 = {0, 1, α, α2 = 1 + α}. Then e2 = e21 + e22 and e3 = e31 + e32, where

e21 =Y a0 + α2Y a1 + αY a2 + Y a3 + α2Y a4 + αY a5 + Y a6 + α2Y a7 + αY a8 ,

e22 =Y a0 + αY a1 + α2Y a2 + Y a3 + αY a4 + α2Y a5 + 1Y a6 + αY a7 + α2Y a8 ,

e31 =Y a0 + Y a1 + Y a2 + α2Y a3 + α2Y a4 + α2Y a5 + αY a6 + αY a7 + αY a8 ,

e32 =Y a0 + Y a1 + Y a2 + αY a3 + αY a4 + αY a5 + α2Y a6 + α2Y a7 + α2Y a8

are primitive idempotents in S induced by 4-cyclotomic classes {a1}, {a2}, {a3} and {a6}, respectively.
Now, we have k1 = 1, k2 = k3 = 2, d1 = d2 = d3 = 1, s1 = 1, and s2 = s3 = 2. It follows that

L1 = 22−1
2−1 = 3, L2 = L3 = 22−1

22−1 = 1, and T1 = T2 = T3 = {∞, 0, 1, 2}.
Then αe1, αe21, αe22, αe31, and αe32 are primitive elements of Se1, Se21, Se22, Se31, and Se32,
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respectively. Therefore, we have that

B1 = {e1, αe1, α2e1},
B2 = {e21, e21 + e22, e21 + αe22, e21 + α2e22, e22}, and

B2 = {e31, e31 + e32, e31 + αe32, e31 + α2e32, e32}

are complete sets of representatives of [(Se1)∗], [(Se2)∗], and [(Se3)∗], respectively. Hence, all the gener-
ators of the 75 1-generator H-quasi abelian codes in F2[G] with idempotent generator e are of the form

A1 +A2 +A3,

where Ai ∈ Bi for all i ∈ {1, 2, 3}.

In order to find permutation inequivalent 1-generator H-quasi abelian codes, the following theorem
is useful.

Theorem 3.15. Let H ≤ G be finite abelian groups of index [G : H] = l and let {αqi | 1 ≤ i ≤ l} be a
fixed basis of Fql over Fq. If A =

∑l
i=1 aiα

qi ∈ Se, then A and Aq =
∑l
i=1 a

q
iα

qi+1

generate permutation
equivalent H-quasi abelian codes (viewed in Fq[G]) with the same idempotent generator.

Proof. Let e be the idempotent generator of a quasi-abelian code RA. Then

Raq1 +Raq2 + · · ·+Raql ⊆ Ra1 +Ra2 + · · ·+Ral = Re

Assume that e =
∑l
i=1 riai, where ri ∈ R. It follows that

e = eq =

l∑
i=1

rqi a
q
i ∈ Ra

q
1 +Raq2 + · · ·+Raql .

Hence, we have Re = Raq1 +Raq2 + · · ·+Raql . Therefore, A and Aq generate 1-generator H-quasi-abelian
codes with the same idempotent generator e.

Let ψ : R→ R be a ring homomorphism defined by

γ 7→ γq.

Let γ =
∑
h∈H γhY

h and β =
∑
h∈H βhY

h be elements in R, where γh and βh are elements in Fq. If
ψ(γ) = ψ(β), then

0 = γq − βq = (γ − β)q =
∑
h∈H

(γh − βh)Y q·h.

By comparing the coefficients, we have γh = βh for all h ∈ H, i.e., γ = β. Hence, ψ is a ring automorphism
and

R(aql , a
q
1, . . . , a

q
l−1) = R(ψ(al), ψ(a1), . . . , ψ(al−1)) = Ψ(R(al, a1, . . . , al−1)), (4)

where Ψ is a natural extension of ψ to Rl.

Since ψ(γ) =
∑
h∈H γhY

q·h, ψ(γ) is just a permutation on the coefficients of γ. Hence, by
(4), Ψ ◦ Φ is a permutation on Fq[G] such that Φ−1

(
R(aql , a

q
1, . . . , a

q
l−1)

)
is permutation equivalent to

Φ−1 (R(al, a1, . . . , al−1)) in F[G], where Φ is the R-module isomorphism defined in (1). Therefore, the
result follows since R(al, a1, . . . , al−1) is permutation equivalent to R(a1, a2, . . . , al).
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4. Computational results

It has been shown in [6] and [7] that a family of quasi-abelian codes contains various new and optimal
codes. Here, we present other 2 new codes from 1-generator quasi-abelian codes together with 1 new code
obtained by shortening of one of these codes.

Given an abelian group H = Zn1
×Zn2

of order n = n1n2, denote by u = (u0, u1, u2, . . . , un−1) ∈ Fnq
the vector representation of

u =

n2−1∑
j=0

n1−1∑
i=0

ujn1+iY
(i,j) in Fq[H].

Let

C(a,b) := {(fa, fb) | f ∈ Fq[H]}, (5)

where a and b are elements in Fq[H]. Using (5), 2 quasi-abelian codes whose minimum distance improves
on Grassl’s online table [5] can be found. The codes C1 and C2 are presented in Table 1 and the generator
matrices of C1 and C2 are

G1 =



1 3 0 3 4 1 3 2 0 4 1 2 1 4 0 4 1 0 4 3 0 4
1 3 4 4 3 1 4 0 2 4 1 3 0 2 2 4 3 1 1 3 4 0
1 4 4 3 4 0 4 0 0 1 0 3 1 2 0 1 0 3 2 4 4 4
4 4 3 3 4 2 3 3 1 3 4 0 3 3 2 1 1 1 1 0 3 0
4 3 3 4 3 2 4 2 3 2 3 2 2 3 0 3 2 1 0 1 4 3
4 4 2 4 4 1 4 1 2 4 2 1 4 0 0 1 1 2 0 4 0 4
0 2 1 1 3 1 4 1 1 2 1 0 1 1 4 2 0 0 1 3 2 3

I14 0 1 2 1 4 3 1 2 1 1 1 1 0 2 1 4 1 0 0 3 3 2
0 1 1 2 1 4 3 1 2 1 0 1 1 4 2 1 0 1 0 2 3 3
1 2 2 2 3 4 4 4 4 1 3 1 4 4 3 3 1 0 1 2 2 4
1 2 3 1 4 0 2 2 4 3 4 0 4 1 2 2 0 1 1 3 3 2
1 1 3 2 2 1 3 4 2 3 4 1 3 0 4 1 0 0 2 1 4 3
4 0 4 1 0 3 2 4 0 1 0 3 2 2 2 1 1 0 4 1 4 0
4 1 4 0 2 3 0 0 4 1 2 3 0 3 4 3 0 1 4 1 0 4


and

G2 =



0 1 0 4 4 0 0 1 4 4 0 4 1 3 2 3 3 1 1 3 3 2 0 1 4
4 4 1 1 2 1 2 4 1 4 3 2 1 4 4 3 2 4 2 0 1 1 0 1 2
1 0 4 0 0 0 4 4 4 1 4 1 0 2 3 3 1 1 3 3 2 3 1 4 0
0 1 0 0 4 0 4 1 0 3 1 3 0 3 1 4 1 3 4 1 4 3 3 4 1
4 4 0 0 0 0 1 1 4 3 3 4 1 4 3 1 4 1 3 0 3 1 3 0 1

I11 1 0 0 0 0 4 4 0 3 1 3 0 1 1 4 3 3 4 1 4 3 1 4 1 3
1 1 4 0 4 0 4 3 2 1 0 0 4 1 3 1 2 3 3 2 3 4 2 4 2
4 0 0 4 0 0 1 4 1 0 2 3 3 1 1 3 3 2 3 1 4 0 4 4 1
0 4 1 1 2 1 1 2 1 3 2 1 2 4 2 2 4 4 3 1 2 0 0 3 3
1 1 0 0 4 4 4 2 2 2 2 2 2 0 0 0 0 0 0 3 3 3 3 3 3
0 0 1 1 1 1 1 2 2 2 4 4 4 1 1 1 1 1 1 1 1 1 4 4 4


,

respectively.

By puncturing C2 at the first coordinate, a [35, 11, 17]5 code can be obtained with minimum distance
improved by 1 from Grassl’s online table [5]. All the computations are done using MAGMA [3].

Acknowledgment: The authors thank to San Ling for useful discussions and to the anonymous
referees for their helpful comments.
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Table 1. New codes from quasi-abelian codes

name C(a,b) H a and b

C1 [36, 14, 15]5 Z3 × Z6 a = (3, 3, 3, 0, 0, 1, 4, 3, 4, 0, 4, 4, 4, 4, 3, 0, 1, 0)

b = (2, 4, 1, 1, 3, 3, 0, 0, 4, 4, 1, 0, 0, 1, 4, 2, 2, 4)

C2 [36, 11, 18]5 Z3 × Z6 a = (2, 4, 4, 3, 4, 4, 3, 2, 4, 3, 4, 4, 3, 4, 2, 3, 4, 4)

b = (3, 0, 0, 0, 3, 3, 3, 0, 3, 0, 3, 0, 1, 1, 1, 1, 1, 1)
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