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characterization and enumeration of such codes are given. An algorithm to find all 1-generator
quasi-abelian codes is provided. Two 1-generator quasi-abelian codes whose minimum distances are
improved from Grassl’s online table are presented.
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1. Introduction

As a family of codes with good parameters, rich algebraic structures, and wide ranges of applications
(see [8], [9], [11], [10], [13], [14] , and references therein), quasi-cyclic codes have been studied for a half-
century. Quasi-abelian codes, a generalization of quasi-cyclic codes, have been introduced in [15] and
extensively studied in [7].

Given finite abelian groups H < G and a finite field F,, an H -quasi-abelian code is defined to be an
F,[H]-submodule of F,[G]. Note that H-quasi-abelian codes are not only a generalization of quasi-cyclic
codes (see [7], [8], [9], and [15]) if H is cyclic but also of abelian codes (see [1] and [2]) if G = H, and of
cyclic codes (see [12]) if G = H is cyclic. The characterization and enumeration of quasi-abelian codes
have been established in [7]. An H-quasi-abelian code C' is said to be of 1-generator if C' is a cyclic
F,[H]-module. Such a code can be viewed as a generalization of 1-generator quasi-cyclic codes which
are more frequently studied and applied (see [11], [13], and [14]). Analogous to the case of 1-generator
quasi-cyclic codes, the number of 1-generator quasi-abelian codes has been determined in [7]. However,
an explicit construction and an algorithm to determine all 1-generator quasi-abelian codes have not been
well studied.
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In this paper, we give an alternative discussion on the algebraic structure of 1-generator quasi-abelian
codes and an algorithm to find all 1-generator quasi-abelian codes. Examples of new codes derived from
1-generator quasi-abelian codes are presented.

The paper is organized as follows. In Section 2, we recall some notations and basic results. An
alternative discussion on the algebraic structure of 1-generator quasi-abelian codes is given in Section 3
together with an algorithm to find all 1-generator quasi-abelian codes and the number of such codes.
Examples of new codes derived from 1-generator quasi-abelian codes are presented in Section 4.

2. Preliminaries

Let F, denote a finite field of order ¢ and let G be a finite abelian group of order n, written additively.
Denote by Fy[G] the group ring of G over F,. The elements in F¢[G] will be written as } | ; agY¥, where
ay € F,. The addition and the multiplication in F,[G] are given as in the usual polynomial rings over F,
with the indeterminate Y, where the indices are computed additively in G. We note that Y° = 1 is the
identity of Fy[G], where 1 is the identity in Fy and 0 is the identity of G.

Given a ring R, a linear code of length n over R refers to a submodule of the R-module R™. A linear
code in Fy[G] refers to an F,-subspace C of F,[G]. This can be viewed as a linear code of length n over Fy
by indexing the n-tuples by the elements in G. The Hamming weight wt(u) of u =73 o uyY9 € Fy[G]
is defined to be the number of nonzero term u,’s in w. The minimum Hamming distance a code C' is
defined by d(C) := min{wt(u) | v € C,u # 0}. A linear code C in F,[G] is referred to as an [n, k, d],
code if C has Fy-dimension k£ and minimum Hamming distance d.

Given a subgroup H of G, a code C in F,[G] is called an H-quasi-abelian code if C' is an F,[H]-
module, i.e., C is closed under the multiplication by the elements in F,[H]. Such a code will be called
a quasi-abelian code if H is not specified or where it is clear in the context. An H-quasi-abelian code
C is said to be of 1-generator if C is a cyclic F,[H]-module. Since every H-quasi-abelian code C' in
F,[G] is an F,[H]-module, it is also an F,[A]-module for all cyclic subgroups of H. It follows that C
is quasi-cyclic of index |G|/|A|. However, being 1-generator H-quasi-abelian does not imply that C is
1-generator quasi-cyclic. Therefore, it makes sense to study 1-generator H-quasi-abelian codes.

Assume that H < G such that |H| = m and the index [G : H] = - = 1. Let {g1,02,...,0:} be a
fixed set of representatives of the cosets of H in G. Let R :=F,[H]. Define ® : F,[G] — R' by

l
® <Z Zah+giyh+gi> = (al(Y)’ O‘Q(Y)a ceey al(Y)) y (1)

heH 1=1

where o;(Y) = Y, cp Ontg,Y" € R, for all i € {1,2,...,1}. It is not difficult to see that ® is an
R-module isomorphism, and hence, the next lemma follows.

Lemma 2.1. The map ® induces a one-to-one correspondence between H -quasi-abelian codes in Fy[G]
and linear codes of length | over R.

Throughout, assume that ged(g, |[H|) = 1, or equivalently, F,[H] is semisimple. Following [7, Section
3], the group ring R = F,[H] is decomposed as follows.

For each h € H, denote by ord(h) the order of h in H. The g-cyclotomic class of H containing
h € H, denoted by S;(h), is defined to be the set

S,(h):={q"-h|i=0,1,...} ={¢" - h|0<i<w},
where ¢' - h := 25:1 hin H and v, is the multiplicative order of ¢ in Zgq)-

An idempotent in a ring R is a non-zero element e such that e = e. An idempotent e is said to
be primitive if for every other idempotent f, either ef = e or ef = 0. The primitive idempotents in R



S. Jitman, P. Udomkavanich / J. Algebra Comb. Discrete Appl. 4(1) (2017) 49-60

are induced by the g-cyclotomic classes of H (see [4, Proposition 11.4]). Every idempotent e in R can
be viewed as a unique sum of primitive idempotents in R. The F,-dimension of an idempotent e € R is
defined to be the Fy-dimension of Re.

From [7, Subsection 3.2], R := F,[H] can be decomposed as
R = Re; + Res + -+ - + Reg,

where eg, es,...,es are the primitive idempotents in R. Moreover, every ideal in R is of the form Re,
where e is an idempotent in R.

3. 1l-generator quasi-abelian codes

In [7], characterization and enumeration of 1-generator H-quasi-abelian codes in F,[G] have been
given. In this section, we give alternative characterization and enumeration of such codes. The char-
acterization in Subsection 3.1 allows us to express an algorithm to find all 1-generator H-quasi-abelian
codes in F,[G] in Subsection 3.2.

Using the R-module isomorphism ® defined in (1), to study 1-generator H-quasi-abelian codes in
F,[G], it suffices to consider cyclic R-submodules Ra, where a = (a1, az,...,a;) € R'.

For each @ = (a1, as,...,a;) € R', there exists a unique idempotent e € R such that Re = Ra; +
Ras + - - -+ Raj. The element e is called the idempotent generator element for Ra. An idempotent f € R
of largest F,-dimension such that

fa=0

is called the idempotent check element for Ra.

Let S = F[H], where F: is an extension field of Iy of degree I. Let {a, a, ..., a;} be a fixed basis
of Fyi over Fy. Let o : R! — S be an R-module isomorphism defined by

!
a:(al,ag,...,al)HA:Zaiai. (2)
i=1

Using the map ¢, the code Ra can be regarded as an R-module RA in S.

Lemma 3.1 ([7, Lemma 6.1]). Let a € R and let e and f be the idempotent generator and idempotent
check elements of Ra, respectively, Then

e+ f=1
and

dimg, (Ra) = dimg, (Re) = m — dimg_(Rf).

For a ring R, denote by R* and R* the set of non-zero elements and the group of units of R,
respectively.

In order to enumerate and determine all 1-generator H-quasi-abelian codes in F4[G], we need the
following result.

Lemma 3.2. Let a,b € R! and let e be the idempotent generator of Ra. Let A = ¢(a) and B = ¢(b),
where @ is defined in (2). Then Ra = Rb if and only if there exists u € (Re)* such that b = ua.

Equivalently, RA = RB if and only if there exists u € (Re)* such that B = uA.
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Proof. Write a = (a1,as,...,a;) and b= (by,ba,...,b), where a;,b; € R for all i € {1,2,...,1}.

Assume that Ra = Rb. Then b = va for some v € R. Let u = ve € Re. Note that, for each

i€{1,2,...,l}, we have a; = r;e for some r; € R. Then ua; = (ve)(rie) = vrie? = v(r;e) = va; = b; for

alli € {1,2,...,1}. Hence, b = ua and
Re = Ra = Rb = R(ua) = uRa = uRe.
Since u € Re and Re = uRe, we have u € (Re)*.
Conversely, assume that there exists u € (Re)* such that b = ua. Then Rb = Rua C Ra. We need
to show that dimp, (Ra) = dimg, (Rb). Let ¢’ be an idempotent generator of Rb. We have
Re’ = Rb = R(ub) = u(Rb) = u(Re) = Re
since u € (Re)*. Hence, by Lemma 3.1, we have
dimp, (Ra) = dimg, (Re) = dimg, (Re') = dimg, (Rb).

Therefore, Rb = Ra as desired. O

3.1. The enumeration of 1-generator quasi-abelian codes

First, we focus on the number of 1-generator H-quasi-abelian codes of a given idempotent generator
in F,[H]. Using the fact that the idempotents in F,[H] are known, the number of 1-generator H-quasi-
abelian codes in F,[G] can be concluded.

Proposition 3.3. Let {e1,ea,...,e.} be a set of primitive idempotents of R and e = e1 +ea+ -+ + ¢,.
Then the following statements hold.

i) e1,€ea,...,e. are pairwise orthogonal (non-zero) idempotents of Se.

i) e; is the identity of Se; for all j € {1,2,...,r}.

1i1) e is the identity of Se.

)
)
)
)

iw) Se = Se; @ Sea @ --- P Se,..

Proof. For i), it is clear that ej, e, ..., e, are pairwise orthogonal (non-zero) idempotents in S. They
are in Se since e; = eje € Se for all j € {1,2,...,7}. The statements ii) and iii) follow since se; = se3 =
(sej)ej for all se; € Se; and se = se? = (se)e for all se € Se. The last statement can be verified using
i). O

Corollary 3.4. Let {e1,ea,...,e.} be a set of primitive idempotents of R and e = e +e3 + -+ + €.
Then the following statements hold.

i) e1,ea,...,e. are pairwise orthogonal (non-zero) idempotents of Re.

i) e; is the identity of Re; for all j € {1,2,...,r}.

iii) e is the identity of Re.
)

iv) Re = Re1®Re2®- - -@Re,., where Re; is isomorphic to an extension field of Fy forallj € {1,2,...,7}.

Let Q = {25:1 AjlA; e (Sej)*} C Se. Then we have the following results.

Lemma 3.5. Let A = Zizl aza; € S, where a; € R, and let b € R. Then RA C Sb if and only if
Ra; + Ras + - - - + Ra; C Rb.
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Proof. Assume that RA C Sb. Then A = Bb for some B € S. Write B = 22:1 a;b;, where b; € R.
Then a; = bb; for all ¢ € {1,2,...,1}. Hence, we have

l l l
Zriai = Zribbi = (Z ’I“ibi> be Rb
=1 =1 =1

for all Y°'_, ria; € Ray + Ras + --- + Ray.

Conversely, it suffices to show that A € Sb. Since Ra; + Ras + - - - + Ra; C Rb, we have a; € Rb for
all i € {1,2,...,1}. Then, for each i € {1,2,...,1}, there exists r; € R such that a; = r;b. Hence,

l l l
A:Zaiai:Zairib:(Zain)bESb
i=1 i=1 i=1

as desired. 0

Lemma 3.6. Let A = 22:1 wa;a; € Se, where a; € R. Then A € Q if and only if
Re = Ray + Ras + - - - + Ra;y.

Proof. First, we note that RA C Se since A € Se. Then Rai + Ras + - -+ + Ra; C Re by Lemma 3.5.

Assume that A € Q. Then A = A; + Ay +--- + A,, where A; € (Se;)*. We have Ae; = A; # 0
for all j € {1,2,...,r}. Suppose that Ra; + Ras + -+ + Ra; C Re. By Corollary 3.4, we have Re =
Rei1 & Rea & --- ® Re,.. Then

Ray + Ras + - - - + Ray Qée\j = R(e —¢;)
for some j € {1,2,...,r}, where 1/26\]- ‘=Re; ®---®Rej_1 ® Reji1®---® Re,. By Lemma 3.5, we have
0#A; =Ae; € RAC S(e—¢j),

a contradiction. Therefore, Ra; + Ras + - - - + Ra; = Re.

Conversely, assume that Re = Raj + Ras + - -+ Ra;. Then RA C Se by Lemma 3.5. Since A € Se,
by Theorem 3.3, we have A = A; + Ay +---+ A,, where A; € Se; for all j € {1,2,...,7}. Suppose that

Aj =0 for some j € {1,2,...,r}. Then RA = 1@ C §e\j = S(e — e;). By Lemma 3.5, we have
Re = Ray + Ras + - - + Ra; C R(e — ¢;)
which is a contradiction. Hence, A; € (Se;)* for all j € {1,2,...,r}. O

Corollary 3.7. Let A = Zézl a;a; € Se;, where a; € R. Then A € (Se;)* if and only if Re; =
Ray + Ras + -+ - + Ray.

Let j € {1,2,...,r} and let k; denote the F,-dimension of e;. Then Re; is isomorphic to a finite
field of ¢* elements.

Define an equivalence relation on (Se;)* by
A~ B <= 3Jue€ (Re;)* such that A = uB.

For A € (Se;)*, denote by [A] the equivalence class of A and let [(Se;)*] = {[A4] | A € (Se;)*}.
Lemma 3.8. Let j € {1,2,...,r}. Then |[A]| = ¢~ — 1 for all A € (Se;)*.
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Proof. Let A € (Se;)* and define p : (Re;)* — [4],
u— uA.

From the definition of ~, p is a well-defined surjective map. For each ui,us € (Re;)*, if u1A = usA,
then (u; — ug)A = 0. Write A = Zé:l aja;, where a; € R. Then a;(u; —ug) =0 for all ¢ € {1,2,...,1}.
Since A € (Se;)*, by Corollary 3.7, we can write e; = >_:_, r;a;, where r; € R. Hence,

ej(ur —ug) = <Z ria¢> (ug —ug) = Zriai(ul —ug) =0 € Re;.
i=1 i=1

Since e; is the identity of Re;, it follows that u; = us € (Re;)*. Hence, p is a bijection. Therefore,
4] = {(Rej)*| = [F5, | = g% - 1. 0

Corollary 3.9. For eachi € {1,2,...,r}, we have

ey [(Se)*l gt -1
H(Sej) ]| - HA“ - qkj 1 .

qlkjfl
gk —1°

Let [ = T]1(5e;)"). Then |[]] = T]

The number of 1-generator quasi-abelian codes sharing a idempotent has been determined in |7,
Corollary 6.1]. Here, an alternative proof using a different technique is provided.

Theorem 3.10. Let € denote the set of all 1-generator H-quasi-abelian codes in Fq[G] with idempotent
generator e. Then there exists a one-to-one correspondence between [Q] and €. Hence, the number of
1-generator quasi-abelian codes having e as their idempotent generator is

kj _1°
=

Proof. Define o: [Q] — €,
([Al]v [AQ]a ey [AT‘]) — Rav

where A := A; + Ay +---+ A, € Se is viewed as A = Zizl aza; and a := (a1,a9,...,a;).

Since A; € (Se;)* for all j € {1,2,...,r}, we have A € Q. Then Re = Ra; + Ras + --- + Ra; by
Lemma 3.6, and hence, Ra is a 1-generator quasi-abelian code with idempotent generator e, i.e., Ra € €.

For ([A4], [A2], ..., [Ar]) = ([B1],[Bal, ..., [B:]) € [, there exists u; € (Re;)* such that A; = u;B;
for all j € {1,2,...,r}. Let u:=wu; +uz+ -+ u,. Then

u(u' +uyt o tus ) =ertet+ o te =e

is the identity of Re (see Corollary 3.4), where uj_l refers to the inverse of u; in Re;. Hence, u is a unit
in (Re)*. Let B := Z;Zl Bj. Then

A = iA] = ZT:U,]‘B]‘ = ’U,B
j=1 Jj=1

Hence, Ra = Rb by Lemma 3.2. Therefore, o is a well-defined map.
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For ([A1],[As],...,[4:]), ([B1],[Ba2],--.,[Br]) € [Q], if Ra = Rb, then, by Lemma 3.2, there exists
u € (Re)* such that A = uB. Then A; = uB; = ue; B, since e; is the identity of Se; by Proposition 3.3.
Since A; € (Se;)*, ue; is a non-zero in Re; which is a finite field. Thus ue; is a unit in (Re;)*. Hence,

([A1]7 [A2]= AR [AT]) = ([Bl]v [32]7 LR [BT])
which implies that o is an injective map.

To verify that o is surjective, let Ra € €, where a = (a1, as,...,a;) € R'. Then Re = Ra; + Ray +
.-+ 4 Ra;. Hence, by Lemma 3.6, we conclude that

l
A= Z()éi(li € Q.
i=1

Write A =3""_, Aj, where A; € (Se;)*. Then ([A4],[A2],...,[A,]) € [2], and hence,

o(([A1], [4e], .., [A,]) = Ra,

3.2. The generators for 1-generator quasi-abelian codes

In this subsection, we establish an algorithm to find all 1-generator H-quasi-abelian codes in F4[G].
Note that every idempotent in R := F,[H| can be written as a unique sum of primitive idempotents in
R. Hence, it is sufficient to study H-quasi-abelian codes of a given idempotent generator.

Let e = eq +e2+- - - +e, be an idempotent in R, where, for each j € {1,2,...,r}, e; is the primitive
idempotent in R induced by a g-cyclotomic class Sq(h;) for some h; € H.

For each j € {1,2,...,r}, assume that e; is decomposed as
€j =¢€j1+ e+ + €y,
where, for each i € {1,2,...,s;}, ej; is the primitive idempotent in S defined corresponding to a q'-
cyclotomic class S, (hj;) for some hj; € Sq(h;).

Note that all the elements in S,(h;) have the same order. Hence, the g¢'-cyclotomic classes Sy (hji)
have the same size for all 1 < i < s;. Without loss of generality, we assume that e;; is defined cor-
responding to S, (h;). For each j € {1,2,...,7}, let k; and d; denote the F,-dimension of e; and the
[F-dimension of e;1, respectively. Then k; and d; are the smallest positive integers such that

¢ -hj = h; and ¢'¥ - hj = h;.
kj ) l
Then k;|id; which implies that c/—|d;. Since ¢ FET Ly = ¢VEUET L p = by we have
k‘]‘ _ kj
dj‘igcd(l,kj)' It follows that d; = AR
ged(l, kj).

Using arguments similar to those in the proof of Proposition 3.3, we conclude the following result.

) 1_o o k; o
Hence, e;;’s have the same ¢'-size d; = ) and s; =

Proposition 3.11. Let {e1,e2,...,e,} be a set of primitive idempotents of R. Assume that e; = ej1 +
ejo + -+ ejs;, where ej; is a primitive idempotent in S for all i € {1,2,...,s;}. Then the following
statements hold.

i) For j € {1,2,...,r}, the elements ej1,¢eja,...,¢ejs, are pairwise orthogonal (non-zero) idempotents

of Se;.
i) ej; is the identity of Sej; for all j € {1,2,...,7} andi € {1,2,...,s;}.
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ii1) e; = ej1 + ejo + -+ ejs; is the identity of Se; for all j € {1,2,...,r}.

iv) Forj€{1,2,...,r}, we have Se; = Sej; ® Sejo @ --- @ Sejs,;, where Sej; is an extension field of F,
of order ¢'%i for alli € {1,2,...,5;}.

Theorem 3.12. Letj € {1,2,...,r} be fizred. Fori e {1,2,...,s;}, let m; be a primitive element of Sej;,

a finite field of ¢'% elements. Let L; = ql:j__ll and T; = {00,0,1,2,... ,q'% — 2}, Then the elements

q
Vs
T s (3)
forall1 <t <s;, 0<vy < Lj—1, and v4y1,V42,...,vs; €T}, are a complete set of representatives of

[(Se;)*]. (By convention, m5° =0.)
Proof. Note that the number of elements in (3) is

1d;(s;—1 1d;(s;—2 gt -1
qu J(S]_ )+qu J(Sg_ )++L_] — qkj — — |[(56])*]|

Hence, it suffices to show that the elements in (3) are in different equivalence classes. Let
A:ﬂ-zjt +7T7:Vl+11 —|—-~'—|-7T:;j andB:ﬂfE‘” +7T5ril _’_”._1_7.‘_;‘;1',

where 0 < vy, pip < Lj—1, Vi1, Vego, ..., Vs, € Ty, and pigi1, foyo, - - -, fs, € Tj. Assume that [A] = [B].
Then there exists u € (Re;)* such that

vy Vit1 Vei o — - Hat1 Hsj
T sy = A=uB =unh® fum, ] e s,

Since m* € (Sej;)* and umhs € (Sej,)*, by the decomposition in Proposition 3.11, t = = and m;* =

Mt 1

— . ki
uml® € Seji. Then uej; = " ", Since u € (Re;)*, we have u?”’

k.
— J
ﬂ_t(w ne)(q

= ej, and hence, e;; = eje; =
b Since 0 < v, < Lj —1 and m has order ¢'% — 1, we conclude that v, = ;. Hence,
ue;t = ej; = eje;; which implies (v — ej)e;; = 0 in Sej;. It follows that

S(U7 Ej) Q S(ejl =+ +ej,t—1 +€j,t+1 =+ +ejsj) g Sej.

Since u,e; € Rej, we have u —e; € Re; and R(u —e;j) C Re;. Hence, R(u — ¢;) is the zero ideal, i.e.,
u = e;j. Therefore, A = uB = e¢;B = B since ¢; is the identity of Se;. O

The following corollary now follows from Theorem 3.10 and Theorem 3.12.

Corollary 3.13. Let {e1,€ea,...,e.} be a set of primitive idempotents of R and e = e; +e3 + -+ + €.
Then all 1-generator quasi-abelian codes having e as their idempotent generator are of the form

Art Ay + oot A,

where Aj € (Se;)* is as defined in (3).

Combining the results above, we summarize the steps of finding all 1-generator H-quasi-abelian codes
in F,[G] as in Algorithm 1. We note that the 1-generator H-quasi-abelian codes in F,[G] are possible to
determined using [7, Theorem 6.1] which depend on linear codes of dimension 1 over various extension
fields of IF,. Using this concept, the algorithm might look more tedious and complicated.

An illustrative example for Algorithm 1 is given as follows.
Example 3.14. Let q = 2, G = Z3 x Zg and H = Z3z x 2Zg. Denote by ay := (0,0), a1 := (1,0),

as := (2,0), ag :=(0,2), ag := (1,2), as := (2,2), as := (0,4), ar := (1,4), and ag := (2,4), the elements
in H. Then |l =[G : H] = 2 and the elements in H can be partitioned into the following 2-cyclotomic
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For abelian groups H < G and a finite field F, with ged(q, |H|) =1 and [G : H] =, do the
following steps.

1. Compute the g-cyclotomic classes of H in G.

2. Compute the set {e1, es,. .., e} of primitive idempotents of R = Fq[H] (see [4, Propo-
sition I1.4]).

3. For each 1 < j < r, compute a set B; of a complete set of representatives of [(Se;)”]
(see Theorem 3.12).

4. Compute the idempotents of R, i.e., the set

Jj=1

1§t§randl§i1<i2<~~~<it§r}.

5. For each e = 2;11 ei; € T, compute the 1-generator quasi-abelian codes having e as
their idempotent generator of the form

Ar+ Az + -+ As,
where A; € B;; (see Corollary 3.13).

6. Run e over all elements of T, the 1l-generator H-quasi-abelian codes in F4[G] are
obtained.

Algorithm 1. Steps for determining all 1-generator H-quasi-abelian codes in F,[G]

classes Sg(ao) = {(ZQ}, 32(01) = {(11,(12}, Sz(ag) = {ag,ag}, Sz(a4> = {a4,a8}, and SQ(Q5) = {a7,a5}.
From [/, Proposition II.4], we note that

e =Y+ YU Y2 LY LYM LY LY LYY LY

€2 =YM FY2 L YU LY LYY LY,

e3 =Y + Y™ Y@ 4V + YT 4 Y,

er =Y YR Y Y Y00+ Y,

es =Y + Y Y 4 YO 4 Y00 4 YT
are primitive idempotents of R := Fa[H| induced by Sa(ag), Sa(a1), Sa(as), S2(as), and Sa(as), respec-
tively.

Let e := e + ex + e3. From Theorem 3.10, it follows that the number of 1-generator H-quasi abelian
codes in Fo[G) with idempotent generator e is 3-5-5=T75.

Let S :=F4[H], where Fy = {0,1,,a® = 1+ a}. Then ez = eg1 + eao and e3 = e31 + €32, where

eo1 =Y +02Y M 4+ aY 2 + Y% 4+ a2V ™ 4 aY% + Y% 4+ o?YY + Y%,
€22 =Y 4+ oYM +a%Y2 +Y® 4+ aY™ +a’Y% + 1Y% 4+ aY 7 4+ a2V,
e31 =Y YU 41V 4 a2V 4 02V 4 0?2V 4 aY % + oYY + oY,
€30 =YW £ YU L V2 4 qY% 4 aY % 4+ aY® 4+ a2V % 4+ a?YY 4+ a2y

are primitive idempotents in S induced by 4-cyclotomic classes {a1}, {az2}, {as} and {ag}, respectively.

Now, we have k1 = 1, ko = ks =2, d; =dy =d3 =1, sy =1, and sy = s3 = 2. It follows that

L1 = 222:11 = 3, L2 = L3 = gz:% == 1, and T1 == T2 = T3 = {00,0,1,2}.

Then aeq, aeay, aess, aesy, and aezy are primitive elements of Sey, Sear, Seas, Sesi, and Sess,
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respectively. Therefore, we have that

2
B, = {61,0161704 61}»

2
By = {e21, 21 + €22, €21 + ean, €21 + €22, €22}, and

2
By = {e31, €31 + €32, €31 + aesa, €31 + a“ezz, €32}

are complete sets of representatives of [(Se1)*], [(Se2)*], and [(Ses)*], respectively. Hence, all the gener-
ators of the 75 1-generator H-quasi abelian codes in Fo[G] with idempotent generator e are of the form

Ay + A + As,

where A; € B; for all i € {1,2,3}.

In order to find permutation inequivalent 1-generator H-quasi abelian codes, the following theorem
is useful.
Theorem 3.15. Let H < G be finite abelian groups of index [G : H| =1 and let {a? |1<i<1}bea
fived basis of Fi over Fy. If A= 2521 a9 € Se, then A and A9 = Zi 1 90" generate permutation

=1"

equivalent H-quasi abelian codes (viewed in F4[G]) with the same idempotent generator.

Proof. Let e be the idempotent generator of a quasi-abelian code RA. Then
Ra{ + Ra +---+ Ra} C Rai + Raz + - - -+ Ra; = Re

Assume that e = 22:1 r;a;, where r; € R. It follows that
l
ezeq=era? € Ra{ + Raj + --- + Raj.
i=1

Hence, we have Re = Ra{ 4+ Ral + - - - + Ra]. Therefore, A and A7 generate 1-generator H-quasi-abelian
codes with the same idempotent generator e.

Let ¢ : R — R be a ring homomorphism defined by
v =L
Let v = hcn YY" and g = doheH BrY" be elements in R, where v;, and 3, are elements in F,. If
¢ () = ¢(B), then
0=7—=B7=(y=B)1 = (v —Bu)Y""
heH

By comparing the coefficients, we have v, = 8, forall h € H, i.e., v = 5. Hence, v is a ring automorphism
and

R(af,ai,...,af |) = R(W(w),¥(ar),...,¢¥(ai—1)) = ¥(R(ay, a1, ..., a1-1)), (4)

where U is a natural extension of ¥ to R'.

Since ¥(y) = Y ,eg Y 9", ¥(y) is just a permutation on the coefficients of . Hence, by
(4), ¥ o ® is a permutation on F,[G] such that ®~! (R(a],af,...,a}_;)) is permutation equivalent to
&1 (R(aj,a1,...,a;-1)) in F[G], where ® is the R-module isomorphism defined in (1). Therefore, the
result follows since R(ayj, a1, ...,a;—1) is permutation equivalent to R(aq,as,...,q;). O
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4. Computational results

It has been shown in [6] and [7] that a family of quasi-abelian codes contains various new and optimal
codes. Here, we present other 2 new codes from 1-generator quasi-abelian codes together with 1 new code
obtained by shortening of one of these codes.

Given an abelian group H = Z,,, X Z,, of order n = ning, denote by u = (ug, u1, u2,...,Un—1) € ]FZ
the vector representation of

ngfl nlfl

w= > Y in Fy[H].

j=0 =0
Let

C(a,b) = {(favfb) | f € FQ[H]}7 (5)

where a and b are elements in F [H]. Using (5), 2 quasi-abelian codes whose minimum distance improves
on Grassl’s online table [5] can be found. The codes Cy and C are presented in Table 1 and the generator
matrices of C7 and Cy are

i 1303413204121404104304 7
1344314024130224311340
1443404001031201032444
4433423313403321111030
4334324232322303210143
4424414124214001120404
0211314112101142001323
I, 10121431211110214100332
0112143121011421010233
1222344441314433101224
1231402243404122011332
1132213423413041002143
4041032401032221104140
4140230041230343014104

G

and

0104400144041323311332014 ]
4411212414321443242011012
1040004441410233113323140
0100404103130314134143341
4400001143341431413031301
1000044031301143341431413 |,
1140404321004131233234242
40040014102331133231404141
0411211213212422443120033
1100444222222000000333333
0011111222444111111111444 |

Go

I
~
—
-

respectively.

By puncturing Cs at the first coordinate, a [35,11, 17]5 code can be obtained with minimum distance
improved by 1 from Grassl’s online table [5]. All the computations are done using MAGMA [3].

Acknowledgment: The authors thank to San Ling for useful discussions and to the anonymous
referees for their helpful comments.
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Table 1. New codes from quasi-abelian codes

name Cla,p) H a and b

C1 |[36,14,15]5|Zs x Z¢|a = (3,3,3,0,0,1,4,3,4,0,4,4,4,4,3,0,1,0)
b=(2,4,1,1,3,3,0,0,4,4,1,0,0,1,4,2,2,4)
C2 |[36,11,18]5|Zs x Z¢|a = (2,4,4,3,4,4,3,2,4,3,4,4,3,4,2,3,4,4)
b=(3,0,0,0,3,3,3,0,3,0,3,0,1,1,1,1,1,1)
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