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Abstract: In this paper, the nonnegative Q-matrix completion problem is studied. A real n × n matrix is a
Q-matrix if for k ∈ {1, . . . , n}, the sum of all k × k principal minors is positive. A digraph D is
said to have nonnegative Q-completion if every partial nonnegative Q-matrix specifying D can be
completed to a nonnegative Q-matrix. For nonnegative Q-completion problem, necessary conditions
and sufficient conditions for a digraph to have nonnegative Q-completion are obtained. Further, the
digraphs of order at most four that have nonnegative Q-completion have been studied.
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1. Introduction

A partial matrix is a rectangular array of numbers in which some entries are specified while others
are free to be chosen. A partial matrix M is fully specified if all entries of M are specified, i.e., if M is
a matrix. Let 〈n〉 = {1, . . . , n} and M be an n× n partial matrix, i.e., one with n rows and n columns.
For a subset α of 〈n〉, the principal partial submatrix M(α) is the partial matrix obtained from M by
deleting all rows and columns not indexed by α. A principal minor of M is the determinant of a fully
specified principal submatrix of M . A partial nonnegative (positive) matrix is a partial matrix whose
specified entries are nonnegative (positive).

A real n× n matrix B is a P -matrix (P0-matrix ) if every principal minor of B is positive (nonneg-
ative). The matrix B is a Q-matrix, if for each k ∈ {1, . . . , n} the sum of all k × k principal minors of
B is positive. A nonnegative Q-matrix is a Q-matrix whose all entries are nonnegative. The property of
being P , P0 or Q-matrix is invariant under permutation similarity.

For a given class Π of matrices (e.g., P , P0 or Q-matrices) a partial Π-matrix is a partial matrix
for which the specified entries fulfill the requirements of a Π-matrix. Thus, a partial P0-matrix (partial
P -matrix ) is one in which all fully specified principal minors are nonnegative (positive). Similarly, a
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partial Q-matrix is a partial matrix M in which Sk(M) > 0 for every k ∈ {1, 2, . . . , n} for which all k× k
principal submatrices are fully specified.

A completion of a partial matrix is a specific choice of values for the unspecified entries. A Π-
completion of a partial Π-matrix M is a completion of M which is a Π-matrix. Matrix completion
problems for several classes of matrices including the classes of P and P0-matrices have been studied by
a number of authors (e.g., [2, 3, 5, 7, 8, 10, 11]).

In 2009, DeAlba et al. [4] considered the Q-matrix completion problem. Since the property of
being a Q-matrix is not inherited by principal submatrices, the authors observed that the Q-matrix
completion problem is substantially different from the completion problems studied earlier and attracts
special attention. In their paper, it was shown that for Q-matrix completion of a digraph, stratification
(see Section 2) of its complement is necessary and positive signing of the stratified complement of the
digraph is sufficient. (Here, positive signing of a digraph means a signing of each of its arcs with the
property that for each even (resp. odd) cycle the product of the signs of arcs on the cycle is negative (resp.
positive).) Further, the authors classified all digraphs of order up to order 4 as to Q-matrix completion.

Theorem 1.1. [4] Let D be a digraph of order n that omits at least one loop.

(i) If D has Q-completion, then D is stratified.

(ii) If n ≤ 4 and D is stratified, then D has Q-completion.

Theorem 1.2. [4] Let D 6= Kn be an order n digraph that includes all loops and has Q-completion. Then
for each k = 2, 3, . . . , n, either,

(i) D has a permutation digraph of order k, or

(ii) for each v ∈ V (D), D − v has a permutation digraph of order k − 1.

Theorem 1.3. [4] Let D be a digraph such that D is stratified. If it is possible to sign the arcs of D so
that the sign of every cycle is +, then D has Q-completion.

For an extensive survey of matrix completion problems, we refer the relevant sections in Handbook
of Linear Algebra [9] published by Chapman and Hall/CRC Press. In this paper, we make a combina-
torial study of the completion problem of partial nonnegative Q-matrices in which digraphs will play an
important role.

2. Preliminaries

Most of the definitions of the graph-theoretic terms used in this paper can be found in any standard
reference, for example, in [1] and [6].

For our purpose, a directed graph or digraph D = (V (D), A(D)) of order n > 0 is a finite nonempty
set V (D), with |V (D)| = n of objects called vertices together with a (possibly empty) set A(D) of ordered
pairs of vertices (not necessarily distinct), called arcs or directed edges. Sometimes, we simply write v ∈ D
(resp. (u, v) ∈ D) to mean v ∈ V (D) (resp. (u, v) ∈ A(D)). If x = (u, v) is an arc in D, we say that
x is incident with u and v. If x = (u, u), then x is called a loop at the vertex u. By K∗

n we denote the
digraph with vertex set 〈n〉 = {1, . . . , n} and arc set 〈n〉 × 〈n〉, i.e., one with all possible arcs including
loops on the vertex set 〈n〉.

A digraph H is a subdigraph of the digraph D if V (H) ⊆ V (D), A(H) ⊆ A(D). If V (W ) ⊆ V (D),
the subdigraph induced by V (W ), i.e. W , is the digraph W = (V (W ), A(W )) with A(W ) the set of all
arcs of D between the vertices in W . The digraph W is a spanning subdigraph if V (W ) = V (D). The
complement of a digraph D is the digraph D, where V (D) = V (D) and (v, w) ∈ A(D) if and only if
(v, w) /∈ A(D). Two digraphs D1 = (V1, A1) and D2 = (V2, A2) are isomorphic, if there is a bijection
ψ : V1 → V2 such that A2 = {(ψ(u), ψ(v)) : (u, v) ∈ A1}.
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A (directed) u-v path P of length k ≥ 0 in D is an alternating sequence (u = v0, x1, v1, . . . ,
xk, vk = v) of vertices and arcs, where vi, 1 ≤ i ≤ k, are distinct vertices and xi = (vi−1, vi). Then, the
vertices vi and the arcs xi are said to be on P . Further, if k ≥ 2 and u = v, then a u-v path is a cycle of
length k. We then write Ck = 〈v1, v2, . . . , vk〉 and call Ck a k-cycle in D. Paths and cycles in a digraph
D are considered to be subdigraphs of D in a natural way. A cycle C is even (resp. odd) if its length is
even (resp. odd). A digraph D is said to be connected (resp. strongly connected) if for every pair u, v of
vertices, D contains a u-v path (resp. both a u-v path and a v-u path). The maximal connected (resp.
strongly connected) subdigraphs of D are called components (resp. strong components) of D.

Let π be a permutation of a nonempty finite set V . The digraph Dπ = (V,Aπ), where Aπ =
{
(
v, π(v)

)
: v ∈ V }, is called a permutation digraph. Clearly, each component of a permutation digraph is

a loop or a cycle. The digraph Dπ is said to be positive (resp. negative) if π is an even permutation (resp.
an odd permutation). It is clear that Dπ is negative if and only if it has odd number of even cycles.

A permutation subdigraph H (of order k) of a digraphD is a permutation digraph that is a subdigraph
of D (of order k). Further, H is positive (negative) if the corresponding permutation is even (odd). A
digraph D is (positively) stratified if D has a (positive) permutation subdigraph of order k for every
k = 2, 3, . . . , |D|.

By Pk we denote the collection of all permutation subdigraphs of order k of K∗
n. Further, we denote

by P+
k (resp. P−

k ) the collection of all positive (resp. negative) permutation subdigraphs of order k of
K∗

n.

Let B = [bij ] be an n× n matrix. We have

detB =
∑

(sgnπ)b1π(1) · · · bnπ(n) (1)

where the sum is taken over all permutations π of 〈n〉. For a permutation digraph P of K∗
n we denote the

product
∏
{bij : (i, j) ∈ A(P )} by w(P,B). For k ∈ {1, . . . , n} we denote the sum of all k × k principal

minors of B by Sk(B). In view of (1), we have

Sk(B) =
∑

P∈P
+

k

w(P,B) −
∑

P∈P
−

k

w(P,B). (2)

3. Partial nonnegative Q-matrices and their completions

Recall that a partial Q-matrix M is a partial matrix such that Sk(M) > 0 for every k ∈ {1, . . . , n}
for which all k× k principal submatrices are fully specified. Let M be a partial nonnegative Q-matrix. If
all 1× 1 principal submatrices (i.e., all diagonal entries) in M are specified, then their sum S1(M) (the
trace of M) must be positive. If all k × k principal submatrices are fully specified for some k ≥ 2, then
M is fully specified and, therefore, is a nonnegative Q-matrix. Thus, a partial nonnegative Q-matrix is
characterized as follows.

Proposition 3.1. Let M be a partial nonnegative matrix. Then, M is a partial nonnegative Q-matrix
if and only if exactly one of the following holds:

(i) At least one diagonal entry of M is not specified.

(ii) All diagonal entries are specified, at least one diagonal entry is positive and M has an off-diagonal
unspecified entry.

(iii) All entries of M are specified and M is a Q-matrix.

A completion B of a partial nonnegative Q-matrix M is called a nonnegative Q-completion of M , if
B is a nonnegative Q-matrix. Since any matrix which is permutation similar to a Q-matrix is a Q-matrix,
it is evident that if a partial nonnegative Q-matrix has a nonnegative Q-completion, so does any partial
matrix which is permutation similar to M .
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Any partial nonnegative matrix M with all diagonal entries unspecified has nonnegative Q-
completion. A completion of M can be obtained by choosing sufficiently large values for the unspecified
diagonal entries.

Let M = [mij ] be a partial nonnegative Q-matrix which contains both specified and unspecified diag-
onal entries. Consider the principal partial submatrix M(α) of M induced by α = {i : mii is specified} ⊆
〈n〉. In case M(α) is fully specified, M may not have a nonnegative Q-completion. For example, the
partial matrix

M =



1 0 0
0 0 0
0 0 ∗




where ∗ denotes an unspecified entry, M(1, 2) is fully specified. That M does not have a nonnegative
Q-completion is evident; because for any completion B of M , S3(B) = detB = 0. For the case when
M(α) is not fully specified or itself a Q-matrix, we have the following.

Theorem 3.2. Let M = [mij ] be a partial nonnegative Q-matrix and α = {i : mii is specified}. If
the principal partial submatrix M(α) of M has nonnegative Q-completion, then M has nonnegative Q-
completion.

Proof. If α = {1, . . . , n}, then M =M(α) has a nonnegative Q-completion, by the hypothesis. Other-
wise, without any loss of generality, we assume α = {1, . . . , r} for some 1 ≤ r ≤ n− 1 and

M =

[
M11 M12

M21 M22

]
,

where M11 = M(1, . . . , r) and M22 = M(r + 1, . . . , n). Let B11 be a nonnegative Q-completion of
M(1, . . . , r). Then,

M ′ =

[
B11 M12

M21 M22

]

is a partial nonnegative Q-matrix, since M22 has unspecified diagonal entries. For t > 0, consider the
completion

B(t) =

[
B11 B12

B21 B22

]

of M obtained by taking bii = t, i = r+1, . . . , n, and bij = 0 for all other unspecified entries in M . Since
B11 is a nonnegative Q-matrix we have Si(B11) > 0 for 1 ≤ i ≤ r. Now, for 1 ≤ j ≤ n,

Sj(B(t)) =

{ (
n−r
j

)
tj + pj(t), if j ≤ n− r,

Sj−n+r(B11)t
n−r + pj(t), if j > n− r,

where pj(t) is a polynomial in t of degree at most j − 1, if j ≤ n− r, and of degree at most n− r − 1, if
j > n− r. As a consequence, for sufficiently large values of t, Sj(B(t)) > 0 for 1 ≤ j ≤ n and B(t) is a
nonnegative Q-completion of M .

The converse of Theorem 3.2 is not true. The following example shows that a partial nonnegative
Q-matrix M may have Q-completion, even when M(α) does not have.

Example 3.3. Consider the partial matrix,

M =




∗ b12 b13 b14

b21 d2 b23 ∗

∗ ∗ d3 b34

∗ b42 ∗ ∗


 , (3)
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where ∗ denotes the unspecified entries. Here, α = {2, 3} and M(α) does not have a Q-completion for
d2 = b23 = 0 and d3 = 1. However, we show that for any choice of nonnegative values of the specified
entries bij, M has nonnegative Q-completions. For t > 0 consider the completion

B(t) =




t b12 b13 b14

b21 d2 b23 t

t t d3 b34

t b42 t t




of M . Then,

S1(B(t)) = 2t+ d2 + d3,

S2(B(t)) = t2 + f1(t),

S3(B(t)) = t3 + f2(t),

S4(B(t)) = t4 + f3(t),

where fi(t) is a polynomial in t of degree at most i, i = 1, 2, 3. Consequently, B(t) is a nonnegative
Q-matrix for sufficiently large t, and therefore, M has nonnegative Q-completions.

4. Digraphs and nonnegative Q-completions

It is useful to associate a partial matrix with a digraph that describes the positions of the specified
entries in the partial matrix. We say that an n×n partial matrix M specifies a digraph D = (〈n〉, A(D)),
if for 1 ≤ i, j ≤ n, (i, j) ∈ A(D) if and only if the (i, j)-th entry of M is specified. For example, the
partial nonnegative Q-matrix M in Example 3.3 specifies the digraph D1 in Figure 1.

b4 b

3

b
2

b1

Figure 1. The digraph D1

Theorem 4.1. Suppose M is a partial nonnegative Q-matrix specifying the digraph D. If the partial sub-
matrix of M induced by every strongly connected induced subdigraph of D has nonnegative Q-completion,
then M has nonnegative Q-completion.

Proof. We prove the result for the case when D has two strong components H1 and H2. The general
result will then follow by induction. By a relabelling of the vertices of D, if required, we have

M =

[
M11 M12

X M22

]
,

where Mii is a partial nonnegative Q-matrix specifying Hi, i = 1, 2, and all entries in X are unspecified.
By the hypothesis, Mii has a nonnegative Q-completion Bii. Consider the completion

B =

[
B11 B12

B21 B22

]
,
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by choosing all unspecified entries in M12 and X as 0. Then, for 2 ≤ k ≤ |D| we have

Sk(B) = Sk(B11) + Sk(B22) +

k−1∑

r=1

Sr(B11)Sk−r(B22) > 0,

Here, we mean Sk(Bii) = 0 whenever k exceeds the size of Bii. ThusM can be completed to a nonnegative
Q-matrix.

The proof of the following result is similar.

Theorem 4.2. Suppose M is a partial nonnegative Q-matrix specifying the digraph D. If the partial sub-
matrix of M induced by each component of D has a nonnegative Q-completion, then M has a nonnegative
Q-completion.

That the converse of Theorem 4.1 is not true can be seen from the following example.

Example 4.3. Consider the digraph D2 in Figure 2. We show that every partial nonnegative Q-matrix

b
1

b
2

b 3

b

4

b

5

b
6

D2

Figure 2. A digraph having nonnegative Q-completion

specifying the digraph D2 has nonnegative Q-completion. To see this consider any partial nonnegative
Q-matrix M = [aij ] specifying D2. For t > 1 consider the completion

B(t) =




t a12 0 0 a15 0

0 a22 t 0 a25 a26

0 a32 t a34 t 0

0 0 0 t a45 0

0 t 0 0 a55 a56

a61 0 0 0 0 t




of M . Then, we have

S1(B(t)) = 4t+ a22 + a55,

S2(B(t)) = 6t2 + f1(t),

S3(B(t)) = 5t3 + f2(t),

S4(B(t)) = 4t4 + f3(t),

S5(B(t)) = 3t5 + f4(t),

S6(B(t)) = t6 + f5(t),
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where fi are polynomials of degree at most i in t. It is clear that Sk(B(t)) > 0, 1 ≤ k ≤ 6, for sufficiently
large values of t. Hence M has nonnegative Q-completions.

On the other hand, the vertices 1, 2, 5 and 6 induce a strong component H of D2. Consider the
partial nonnegative Q-matrix M1 specifying H and with all specified entries as zero and

B1 =




x11 0 0 x16

x21 0 0 0

x51 x52 0 0

0 x62 x65 x66


 ,

any nonnegative completion of M1. Then

S4(B1) = −x16x21x52x65 ≤ 0,

and consequently B1 is not a nonnegative Q-matrix.

5. The nonnegative Q-completion problem

For a class Π of matrices (e.g., P , P0 or Q-matrices) a digraph D is said to have Π-completion, if
every partial Π-matrix specifying D can be completed to a Π-matrix. The Π-matrix completion problem
refers to the study of digraphs which have Π-completion.

We say that a digraph D has nonnegative (positive) Q-completion, if every partial nonnegative
(positive)Q-matrix specifying D can be completed to a nonnegative (positive) Q-matrix. The nonnegative
(positive) Q-matrix completion problem aims at studying and classifying all digraphs D which have
nonnegative (positive) Q-completion.

Example 5.1. It follows from Example 4.3 that the digraph D2 in Figure 2 has nonnegative Q-completion.
However, its strong component H induced by the vertices 1, 2, 5 and 6 does not have nonnegative Q-
completion. In particular, this exhibits that the property of having nonnegative Q-completion is not
preserved to induced subdigraphs.

It is clear that if a digraph D has (nonnegative, positive) Q-completion, then any digraph which is
isomorphic to D has (nonnegative, positive) Q-completion.

5.1. Sufficient conditions for nonnegative Q-completion

Proposition 5.2. If a digraph D 6= K∗
n of order n has nonnegative Q-completion, then any spanning

subdigraph of D has nonnegative Q-completion.

Proof. LetH be a spanning subdigraph ofD. LetMH be a partial nonnegativeQ-matrix specifying the
digraph H . Consider the partial matrix MD obtained from MH by specifying the entries corresponding
to (i, j) ∈ A(D) \ A(H) as 0. Since D 6= K∗

n, by Proposition 3.1, MD is a partial nonnegative Q-matrix
specifying D. Let B be a nonnegative Q-completion of MD. Clearly, B is a nonnegative Q-completion
of MH .

For a digraph D = (V,A), a weight function on D is a real valued function φ defined on A. The
triplet (V,A, φ) is then called a weighted digraph. For e ∈ A, φ(e) is called the weight of e. Further, for
any permutation subdigraph P of D, we denote the sum of the weights of the edges on P by φ∗(P ).

Theorem 5.3. Let D be a digraph of order n. Suppose there is a weight function φ on D satisfying the
following: for each k ∈ {1, . . . , n}, there is a positive permutation subdigraph Pk of order k in D such
that,
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1

b

2

b 3b4

D3

b1 b 2

b

3

b

4 D3

1

1 1

11

Figure 3. The digraph D3 and its complement D3

(i) φ∗(Pk) > φ∗(P ) for every negative permutation subdigraph P of D of size k, and

(ii) φ∗(Pk) >
∑
e∈S

φ(e), for any subset S ⊆ A(D) with |S| ≤ k − 1.

Then, D has nonnegative Q-completion.

Proof. Let M = [mij ] be a partial nonnegative Q-matrix specifying D. For x > 1 consider the
completion B(x) = [bij ] of M defined by,

bij =

{
mij , if (i, j) ∈ D

xφ(e), if e = (i, j) ∈ D.

For k ∈ {1, . . . , n}, we have

Sk(B(x)) =
∑

P∈P
+

k

w(P,B(x)) −
∑

P∈P
−

k

w(P,B(x)).

Since Pk ∈ P+
k , w(Pk, B(x)) = xφ

∗(Pk) is a term with a positive coefficient in Sk(B(x)). On the other

hand, any P ∈ P−

k is one of the following:

(i) a negative permutation subdigraph of D of order k,

(ii) a permutation subdigraph of K∗
n with at most k − 1 arcs from D.

In view of the properties of φ, we have,

w(P,B(x)) = αxt, where α ≥ 0 and t < φ∗(Pk).

Consequently, for large values of x, we have Sk(B(x)) > 0 for k = 1, . . . , n and hence D has nonnegative
Q-completion.

Example 5.4. Consider the digraph D3 in Figure 3. Consider the weight function φ on the arcs of D3

obtained by assigning unit weights to the arcs (1, 4), (4, 2), (2, 1) and to the loops at 3 and 4, and assigning
zero weights to all other arcs. The nonzero weights have been marked in bold-faces in D3 in Figure 3.
We choose the following positive permutation digraphs with their respective weights in D3.

P1 - the loop at 3, φ∗(P1) = 1
P2 - the union of the loops at 3 and 4, φ∗(P2) = 2
P3 - the 3-cycle [1, 4, 2], φ∗(P3) = 3
P4 - the union of the loop at 3 and the 3-cycle [1, 4, 2], φ∗(P4) = 4.

Further, the only even cycles in D3 are the cycles [2, 3] and [1, 3, 4, 2] of weights 0 and 2, respectively.
It is clear that φ satisfies the conditions (i) and (ii) in Theorem 5.3, and therefore, D3 has nonnegative
Q-completion.
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Corollary 5.5. Let D be a digraph of order n such that

(i) D is stratified, and

(ii) D does not have an even cycle.

Then D has nonnegative Q-completion.

Proof. Let 2 ≤ k ≤ n. Since D is stratified, D has a permutation subdigraph Pk of order k. Since D
does not have an even cycle, D does not have any negative permutation subdigraph. Thus, Pk is positive.
Further, P2 being even, it must be composed of two loops, and therefore, D has a (positive) permutation
subdigraph of order 1 as well. We define φ(e) = 1 for each e ∈ A(D). Then the weight function φ in D
satisfies conditions (i) and (ii) of Theorem 5.3.

Remark 5.6. One does not expect the converse of Theorem 5.3 to be true. However, the converse holds
for all digraphs we have examined, including all digraphs of order at most four. That is, for each of these
digraphs which have nonnegative Q-completion, there is a weight function on its complement satisfying
the conditions (i) and (ii) in Theorem 5.3.

5.2. Necessary conditions for nonnegative Q-completion

Proposition 5.7. Let D be a digraph with at least two vertices. If D has nonnegative Q-completion,
then D omits at least two loops.

Proof. Suppose D omits at most one loop. Let M be a partial nonnegative Q-matrix specifying the
digraph D with all specified entries as 0. Then for any nonnegative completion B of M , S2(B) ≤ 0.

The converse of the Proposition 5.7 is not true. The digraph D4 in Figure 4 omits 2 loops but does
not have nonnegative Q-completion. For example,

M =




0 0 0
0 x22 x23
x31 0 x33




is a partial nonnegative Q-matrix specifying D4 which has no nonnegative Q-completion. In fact, a

b

1

b 2

b
3

D4

Figure 4. A digraph which does not have nonnegative Q-completion

digraph needs to satisfy stronger conditions to have nonnegative Q-completion, as the following result
shows.

Theorem 5.8. If a digraph D of order n (n ≥ 2) has nonnegative Q-completion, then D is positively
stratified.
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Proof. Suppose D has nonnegative Q-completion. Assume D has no positive permutation digraph of
order k for some k ≥ 2. If M is the partial matrix that specifies D with all specified entries zero, and B
is a nonnegative completion of M , then all k × k principal minors of B are nonpositive implying that B
is not a nonnegative Q-matrix.

Corollary 5.9. Let D be a digraph of order n such that |A(D)| > n(n − 1). Then D does not have
nonnegative Q-completion.

Proof. If D has more than n(n− 1) arcs (including loops), then D has fewer than n2 − n(n− 1) = n
arcs. Thus D does not contain permutation subdigraph of order n. Therefore, by Theorem 5.8, D does
not have nonnegative Q-completion.

The converse of the Theorem 5.8 is not true, which can be seen from the following example.

b
1

b
2

b
3

b
4

b5

D5

b
1

b
2

b

3

b
4

b
5

D5

Figure 5. A digraph whose complement is positively stratified

Example 5.10. The complement D5 of the digraph D5 in Figure 5 is positively stratified. However,
we show that D5 does not have nonnegative Q-completion. Let M be the partial nonnegative Q-matrix
specifying D5 with all specified entries as zero. Consider a nonnegative completion

B =




0 x12 0 x14 0
0 0 0 x24 0
x31 0 d3 0 x35
0 0 x43 0 0
x51 0 0 0 d5




of M . For B to be a nonnegative Q-matrix, we have

S1(B) = d3 + d5 > 0, (4)

S2(B) = d3d5 > 0, (5)

S3(B) = x14x43x31 > 0, (6)

S4(B) = d5x14x43x31 − x12x24x43x31 − x14x43x35x51 > 0, (7)

S5(B) = x12x24x43x35x51 − x12x24x43x31d5 > 0. (8)

Clearly, the entries in B against all unspecified entries in M must be positive. Now, from (7) we have
d5x14x31 > x12x24x31 + x14x35x51 which yields d5x31 > x35x51. On the other hand, (8) implies that
x35x51 > d5x31. Hence B cannot be a nonnegative Q-matrix.

Theorem 5.11. Let D be a digraph with at least four vertices. Suppose D has more than one 2-cycle and
does not have a 3-cycle. If D has nonnegative Q-completion, then D must omit more than three loops.
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Proof. For D to have nonnegative Q-completion, D must omit at least two loops, by Proposition 5.7.
We prove that if D omits exactly three loops, then D does not have nonnegative Q-completion. Then,
the result for the case when D omits exactly two loops will follow from Proposition 5.2.

Suppose D omits loops at the vertices 1, 2 and 3. Now, we label the 2-cycles as E1, . . . , Ek (k > 1)
such that the number of vertices among 1, 2 and 3 that Ej is incident with is in ascending order in j.
Let M be the partial nonnegative Q-matrix specifying the digraph D with all specified entries as zero.
Suppose that M has a nonnegative Q-completion B = [bij ]. We put d1 = b11, d2 = b22, d3 = b33. For a

2-cycle E = 〈r, s〉 in D, we write w(E) = w(E,B) = brsbsr. Then, by (2) we have

S3(A) = d1d2d3 − (d1σ1 + d2σ2 + d3σ3), (9)

where σt =
∑{

w(Ei) : Ei is not incident with t
}
, t = 1, 2, 3. Since S3(B) > 0, (9) implies

d1d2 > σ3, d2d3 > σ1, d3d1 > σ2, (10)

and therefore

d1d2 + d2d3 + d3d1 > σ1 + σ2 + σ3. (11)

For 1 ≤ j ≤ k, let

βj =
∑{

w(Ei) : Ei ∩ Ej = ∅ and i > j
}

γj =
∑{

dsdt : Ej is incident with none of s and t
}
.

Then, by (2) we have

S4(A) =

k∑

j=1

βj w(Ej)−
k∑

j=1

γj w(Ej) =

k∑

j=1

(βj − γj)w(Ej). (12)

However, we show that βj − γj ≤ 0 for 1 ≤ j ≤ k. Then, it will follow from (12) that S4(B) ≤ 0, a
contradiction to the fact that B is a Q-matrix. Fix j ∈ {1, 2, . . . , k}. We have

γj =





d1d2 + d2d3 + d3d1, if Ej is not incident with any of the vertices 1, 2, 3,

(d1d2d3)/dt, if Ej is incident with only t, t = 1, 2 or 3,

0, if Ej is incident with two of the vertices 1, 2 and 3.

If Ej is not incident with any of the vertices 1, 2 and 3, then from (11) we get

βj ≤
k∑

i=1

w(Ei) ≤ σ1 + σ2 + σ3 < d1d2 + d2d3 + d3d1 = γj .

Next, suppose Ej is incident with exactly one vertex t in {1, 2, 3}. Consider the case t = 1. Since

{Ei : Ei ∩ Ej = ∅, i > j} ⊆ {Ei : 1 is not incident with Ei},

we have βj ≤ σ1. Therefore, from (10) we get βj ≤ σ1 < d2d3 = γj . The cases when t = 2 and 3 are
similar. Finally, assume that Ej is incident to two among the vertices 1, 2 and 3 so that γj = 0. Now, for
any i > j the 2-cycle Ei is incident with two vertices among 1, 2 and 3. Consequently, by our choice of
the ordering of the 2-cycles, Ei and Ej have a vertex in common yielding βj = 0. Therefore, our assertion
that βj − γj ≤ 0 for 1 ≤ j ≤ k holds.
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6. Nonnegative Q-completion of digraphs of small order

We have examined the digraphs of order at most four to nonnegative Q-completion. Clearly, any
digraph of order 1 (with or without a loop) has nonnegative Q-completion. Any digraph of order 2
without a loop has nonnegative Q-completion.

There are only four non-isomorphic digraphs of order 3 without loops for which the digraphs obtained
by attaching a loop at any of the vertices have nonnegative Q-completion. These digraphs are precisely
the spanning subdigraphs of a 3-cycle.

Some types of digraphs of order four with respect to nonnegative Q-completion are presented below.

(a) Let D̂6 be a digraph obtained from the digraph D6 in Figure 6 by adding at most two loops at

any of its vertices. Then, D̂6 has nonnegative Q-completion. (In fact, D̂6 satisfies the conditions
of Theorem 5.3.) There are 41 non-isomorphic digraphs of order 4 without loops having similar
property as D6, i.e., all digraphs obtained from them by attaching at most two loops at any of the
vertices have nonnegative Q-completion.

b1 b 2

b 3b4

b1 b 2

b 3b4

Figure 6. The digraph D6 and its complement D6

(b) Let D̂7 be any digraph obtained from the digraph D7 in Figure 7 by attaching two loops. If D̂7

has nonnegative Q-completion, then it must omit a loop at the vertex 2. In fact, in that case D̂7

satisfies the conditions of Theorem 5.3. There are 66 non-isomorphic digraphs D of order 4 without
loops having similar property as D7, i.e., a digraph obtained from D by attaching at most two loops
at its vertices has nonnegative Q-completion only when D omits a loop at a particular vertex.

b1 b 2

b 3b4

b1 b 2

b 3b4

Figure 7. The digraph D7 and its complement D7

(c) Let D̂8 be any digraph obtained from the digraph D8 in Figure 8 by adding a loop at any of the

vertices. Then, D̂8 does not have nonnegative Q-completion (by Theorem 5.11). There are 22
non-isomorphic digraphs of order 4 without loops having similar property as D8, i.e., any digraph
obtained from them by attaching a loop at a vertex does not have nonnegative Q-completion.
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b1 b 2

b 3b4

b1 b 2

b 3b4

Figure 8. The digraph D8 and its complement D8

7. Comparison between Q-completion, and nonnegative and pos-

itive Q-completion problems

In this section, we compare the nonnegative Q-completion problem with the Q-completion and the
positive Q-completion problems.

Proposition 7.1. If a digraph D has nonnegative Q-completion, then D has positive Q-completion.

Proof. Suppose D has nonnegative Q-completion. Let M = [aij ] be a partial positive Q-matrix
specifying the digraphD. ThenM is a partial nonnegativeQ-matrix specifyingD. LetB be a nonnegative
Q-completion of M . Then, perturbing the zero entries in B by small positive quantities, a positive Q-
completion of M can be obtained.

However, the converse is not true which can be seen from the following example.

Example 7.2. Consider the digraph D9 in Figure 9. Let M = [mij ] be a partial positive Q-matrix
specifying D9. We write

M =



m11 m12 x13

x21 m22 m23

m31 x32 m33


 ,

where xij are unspecified. It is easy to see that putting sufficiently small values for xij , M can be completed
to a positive Q-matrix, implying that D9 has positive Q-completion. However, in view of Proposition 5.7,
D9 does not have nonnegative Q-completion, since D9 has all loops.

b
1

b
2

b
3

D9

Figure 9. A digraph having positive Q-completion, but not nonnegative Q-completion

The following example shows that a digraph having Q-completion may fail to have nonnegative
Q-completion.

Example 7.3. Consider the digraph D10 in Figure 10. Let M = [mij ] be a partial Q-matrix specifying
D10. We write,

M =



x11 x12 x13

x21 m22 m23

m31 x32 m33


 ,
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where xij are unspecified. We put x12 = −x and all other unspecified entries as x. It is easy to see
that with sufficiently large values for x, M can be completed to a Q-matrix, implying that D10 has Q-
completion. However, in view of Proposition 5.7, D10 does not have nonnegative Q-completion, because
it omits only one loop.

b
1

b
2

b
3

D10

Figure 10. A digraph having Q-completion, but not nonnegative Q-completion

Suppose D is a digraph having nonnegative Q-completion. Then, D is stratified and omits at least
two loops. For all small digraphs (including all digraph of order 4) having these properties are seen to
have Q-completion. Whether a stratified digraph omitting a loop necessarily have Q-completion is not
known (see Question 2.9 in [4]). We do not know whether there is a digraph having nonnegative Q
completion, but not Q-completion.
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