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Abstract 
The simplified neutrosophic set (SNS) is an essential modelling technique for effectively modelling and expressing 
inconsistent and ambiguous information. A crucial tool often utilized in a number of contexts, from clustering approach 
to medical diagnostics, is the distance measure. Although there are several distance measures in neutrosophic literature, 
some of them have the drawback of not providing the general requirements of the distance measure for certain particular 
values. We introduce a brand-new distance measure in this paper to deal with the relationship between two SNSs. When 
compared to alternative distance measures that are already in use, it appears that the new distance measure produces better 
results. The suggested distance measure has been put to use in a number of numerical instance concerning pattern 
recognition that is medical diagnosis. 
 
Keywords: Simplified neutrosophic set, Pattern recognition, Distance measure, Medical diagnosis 
 
 
Öz 
Basitleştirilmiş nötrosofik küme (BNK), tutarsız ve belirsiz bilgileri etkili bir şekilde ifade etmek ve işlemek için temel bir 
modelleme tekniğidir. Kümeleme analizinden tıbbi teşhise kadar birçok bağlamda sıklıkla kullanılan önemli bir araç, 
mesafe ölçümüdür. Nötrosofik literatüründe birkaç uzaklık ölçütü olmasına rağmen, bunlardan bazıları belirli değerler 
için mesafe ölçüsünün genel gereksinimlerini sağlamama dezavantajına sahiptir. Bu yazıda iki basitleştirilmiş nötrosofik 
küme arasındaki ilişkiyi ele almak için yepyeni bir mesafe ölçüsü sunuyoruz. Hâlihazırda kullanımda olan alternatif 
mesafe ölçüleri ile karşılaştırıldığında, yeni mesafe ölçüsünün daha iyi sonuçlar verdiği görülmektedir. Önerilen mesafe 
ölçüsü, tıbbi teşhis de olmak üzere örüntü tanıma ile ilgili sayısal bir örnekte kullanıma sunulmuştur. 
 
Anahtar kelimeler: Basitleştirilmiş nötrosofik kümeler, Örüntü tanıma, Mesafe ölçüsü, Tıbbi teşhis 
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1. Introduction 
1. Giriş 
 
In a world full of uncertainty, clustering 
approaches and pattern recognition are two of the 
most crucial scientific areas. The intricacy of the 
data or information pertaining to the issue area 
makes it impossible to handle the uncertain data 
with standard tools. Therefore, the necessity for 
new modelling tool development is unavoidable. 
First, in 1965, Zadeh (1965) introduced the fuzzy 
sets (FSs). The fact that each of its members has 
only one membership degree is its most obvious 
trait. Since the FSs definition, other scholars have 
attempted to glean various expansions of this idea. 
The FSs were extended by Atanassov (1986) to 
intuitionistic fuzzy sets (IFSs). Each of its members 
has a degree of membership and non-membership, 
which is one of its distinctive features. Then, two 
of the most important information metrics are the 
distance measure and its counterpart, the similarity 
measure. Many scholars have used the measures 
for clustering analysis and pattern recognition 
(Balopoulos, 2007; Hatzimichailidis et al., 2012; 
Khatibi & Montazer, 2009; Tian, 2013; Zhang et 
al., 2007; Wang et al., 2011). FSs, and IFSs in the 
methodologies discussed above can only manage 
uncertainty and partial information; inconsistent 
and ambiguous information, which frequently 
exists in the actual life, cannot be handled. The idea 
of neutrosophic sets (NSs), which is an extension 
of FSs and IFSs, was developed philosophically by 
Smarandache (1999) in order to more effectively 
handle inconsistent and uncertain information. Its 
distinguishing feature is that each of its members 
has separately earned degrees in truth-membership, 
indeterminate-membership, and falsity-
membership. However, applying NSs to actual 
decision-making problems is challenging. The 
definitions of a single-valued neutrosophic set 
(SVNS) and a simplified neutrosophic set (SNS), 
which are the subclasses of a neutrosophic set, 
were derived by Wang et al. (2010) and Ye (2014), 
respectively to address this issue. Both SVNS and 
SNSs have been used widely for modelling 
ambiguous and inconsistent information that is 
occurred in clustering approaches, machine 
learning, medical diagnosis, and pattern 
recognition because evolving technology 
necessitates an increasing amount of information 
processing processes. Two crucial tools are utilized 
to assess the similarity or difference between items 
in an uncertain environment: the similarity and 
distance measures. Because of their capacity to 
handle ambiguity and the fact that they have 
accumulated numerous works the related with 
similarity or distance measurements in 

neutrosophic environment, increasing numbers of 
researchers have begun to explore SVNSs and 
SNSs (Mondal et al., 2018; Pramanik et al., 2017; 
Majumdar & Samanta, 2014; Ren et al., 2019; Ye 
and Fu, 2016; Shahzadi et al., 2017; Şahin & Liu, 
2015; Şahin & Küçük, 2015; Şahin, 2019; Ye, 
2014a, 2014b, 2014c, 2015, 2016, 2017a, 2017b; 
Luo & Zhao, 2018; Köseoğlu, 2022a, 2022b). 
 
Even though the current distance measurement 
considers how elements interact, some situations 
frequently yield irrational findings (see Example 
1). As a result, it is currently unclear how to 
produce a reliable distance measurement. We 
provide a unique distance between SNSs matching 
the axiomatic definition in Section 3 to address 
these circumstances. 
 
In a broader sense, this study suggests a novel 
distance measure of SNSs and uses it to solve 
decision-making issues. Thus, the remainder of the 
study is put together as follows. We present a 
summary of several fundamental SNS ideas in 
Section 2. The Section 3 examines the 
shortcomings of the current SNS distance 
measures. Additionally, we construct a SNS 
distance measure and go through some of its 
characteristics. In Section 4, the established 
distance measure is employed to address a problem 
of pattern recognition concerning medical 
diagnosis to show their efficacy and validity. Final 
section provides conclusions. 
  
2. Neutrosophic sets 
2. Nötrosofik kümeler 
 
To accomplish the objectives, we succinctly 
outline certain fundamental concepts pertaining to 
single-valued neutrosophic sets and associated 
distance measures from axiomatic qualities in this 
section. 
 
Definition 1. (Smarandache, 1999) Let 𝑋 be a 
space of points (objects) and 𝑥 ∈ 𝑋. A 
neutrosophic set 𝐴 in 𝑋 is defined by a truth-
membership function 𝑇஺(𝑥), an 
indeterminacy-membership function 𝐼஺(𝑥) and 
a falsity-membership function 𝐹஺(𝑥). 
𝑇஺(𝑥), 𝐼஺(𝑥) and 𝐹஺(𝑥) are real standard or real 
nonstandard subsets of ]0ି, 1ା[. That is 
𝑇஺(𝑥): 𝑋 → ]0ି, 1ା[, 𝐼஺(𝑥): 𝑋 → ]0ି, 1ା[ and 
𝐹஺(𝑥): 𝑋 → ]0ି, 1ା[. There is not restriction 
on the sum of 𝑇஺(𝑥), 𝐼஺(𝑥) and 𝐹஺(𝑥), so 0ି ≤
sup 𝑇஺(𝑥) ≤ sup 𝐼஺(𝑥) ≤ sup 𝐹஺(𝑥) ≤ 3ା. 
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Definition 2. (Ye, 2014) Let 𝑋 be a discourse 
universe, then a simplified neutrosophic set (SNS) 
is defined as: 
 
𝐴 = {〈𝑥, 𝑇஺(𝑥), 𝐼஺(𝑥), 𝐹஺(𝑥)〉: 𝑥 ∈ 𝑋}                      (1) 
 
where, 𝑇஺: 𝑋 → [0,1], 𝐼஺: 𝑋 → [0,1] and 𝐹஺: 𝑋 →
[0,1] with 0 ≤ 𝑇஺(𝑥) + 𝐼஺(𝑥) + 𝐹஺(𝑥) ≤ 3 for all 
𝑥 ∈ 𝑋. The values 𝑇஺(𝑥), 𝐼஺(𝑥) and 𝐹஺(𝑥) express 
the degree of truth-membership, the degree of 
indeterminacy-membership and the degree of 
falsity membership of 𝑥 to 𝐴, respectively. 
 
Definition 3. (Ye, 2014) The complement of 
simplified neutrosophic set 𝐴 is denoted by 𝐴௖ and 
is defined as 𝑇஺

௖(𝑥) = 𝐹஺(𝑥), 𝐼஺
௖(𝑥) = 1 − 𝐼஺(𝑥), 

and 𝐹஺
௖(𝑥) = 𝑇஺(𝑥) for all 𝑥 ∈ 𝑋. That is,  

 
𝐴௖ = {〈𝑥, 𝐹஺(𝑥), 1 − 𝐼஺(𝑥), 𝑇஺(𝑥)〉: 𝑥 ∈ 𝑋}.       (2) 
 
Definition 4. (Ye, 2014) A simplified neutrosophic 
set 𝐴 is contained in the other simplified 
neutrosophic set 𝐵, 𝐴 ⊆ 𝐵, iff 𝑇஺ (𝑥) ≤ 𝑇஻(𝑥), 
𝐼஺(𝑥) ≥ 𝐼஻(𝑥) and 𝐹஺(𝑥) ≥ 𝐹஻(𝑥) for each 𝑥 ∈ 𝑋. 
The SNSs 𝐴 and 𝐵 are equal, denoted as 𝐴 = 𝐵, iff 
𝐴 ⊆ 𝐵 and 𝐵 ⊆ 𝐴. 
 
The collection of all the SVNSs in 𝑋 shall be 
referred to as 𝑆𝑁𝑆(𝑋). 
 
3. A new distance measure of SNSs  
3. BNK’lerin yeni bir mesafe ölçüsü 
 
In this section, firstly, the existing distance 
measures for the SNSs are presented, and secondly, 
a new distance measure is defined. 
 
3.1. The existing distance measure of SNSs 
3.1. BNK’lerin varolan mesafe ölçüleri 
 
Suppose that 𝑈 = {𝑥ଵ, 𝑥ଶ, … 𝑥௡} is a discussion 
universe, and 𝐴 and 𝐵 are two SNSs in 𝑈. Then the 
some current distance measures between SNSs 𝐴 
and 𝐵 can be presented as follows: 

For ∆𝑇(𝑥௜) = |𝑇஺(𝑥௜) − 𝑇஻(𝑥௜)|, ∆𝐼(𝑥௜) =
|𝐼஺(𝑥௜) − 𝐼஻(𝑥௜)|, and ∆𝐹(𝑥௜) = |𝐹஺(𝑥௜) −
𝐹஻(𝑥௜)|,  

(1) The extended Hausdorff distance (Şahin and 
Küçük, 2014): 

 

𝐷ு(𝐴, 𝐵) =
ଵ

௡
∑ max൫∆𝑇(𝑥௜), ∆𝐼(𝑥௜), ∆𝐹(𝑥௜)൯௡

௜ୀଵ   

 
(2) The normalized-Hamming distance 

(Majumdar and Samanta, 2014): 
 

𝐷ேு(𝐴, 𝐵) =
ଵ

ଷ௡
∑ ൫∆𝑇(𝑥௜) + ∆𝐼(𝑥௜) +௡

௜ୀଵ

∆𝐹(𝑥௜)൯  
 

(3) The normalized-Euclidean distance 
(Majumdar and Samanta, 2014): 
 

𝐷ோ(𝐴, 𝐵) = ቄ
ଵ

ଷ௡
∑ ቀ∆𝑇(𝑥௜)ଶ + ൫∆𝐼(𝑥௜)൯

ଶ
+௡

௜ୀଵ

൫∆𝐹(𝑥௜)൯
ଶ

ቁቅ

భ

మ  

 
(4) The similarities of cosine (Ye, 2015): 

 
𝑆஼௢௦ଵ(𝐴, 𝐵) =

ଵ

௡
∑ cos ቄ

గ(∆்(௫೔)ା∆ூ(௫೔)ା∆ி(௫೔))

଺
ቅ௡

௜ୀଵ   

𝑆஼௢௦ଶ(𝐴, 𝐵) =
ଵ

௡
∑ cos ቄ𝜋

୫ୟ୶(∆்(௫೔),∆ூ(௫೔),∆ி(௫೔))

ଶ
ቅ௡

௜ୀଵ   

 
and the distances between them are shown by 
𝐷஼ଵ(𝐴, 𝐵) = 1 − 𝑆஼ଵ(𝐴, 𝐵) and 𝐷஼ଶ(𝐴, 𝐵) = 1 −
𝑆஼ଶ(𝐴, 𝐵). 
 
(5) The cotangent similarities (Ye, 2017a): 

𝑆஼௢௧ଵ(𝐴, 𝐵) =
ଵ

௡
∑ cot ቄ

గ

ସ
+

గ

ଵଶ
(∆𝑇(𝑥௜) +௡

௜ୀଵ

∆𝐼(𝑥௜) + ∆𝐹(𝑥௜))ቅ,  

𝑆஼௢௧ଶ(𝐴, 𝐵) =
ଵ

௡
∑ cot ቄ

గ

ସ
+௡

௜ୀଵ

గ

ସ
(max(∆𝑇(𝑥௜), ∆𝐼(𝑥௜), ∆𝐹(𝑥௜)))ቅ,  

 
and the distances between them are shown by 
𝐷஼௢ (𝐴, 𝐵) = 1 − 𝑆஼௢ (𝐴, 𝐵) and 𝐷஼௢ଶ(𝐴, 𝐵) =
1 − 𝑆஼௢ଶ(𝐴, 𝐵). 
 
(6) The tangent similarities (Ye and Fu, 2016): 
𝑆்௔௡ଵ(𝐴, 𝐵) = 1 −
ଵ

௡
∑ tan ቄ

గ൫∆்(௫೔)ା∆ூ(௫೔)ା∆ி(௫೔)൯

ଵଶ
ቅ௡

௜ୀଵ ,  

𝑆்௔௡ଶ(𝐴, 𝐵) = 1 −
ଵ

௡
∑ tan ቄ𝜋

୫ୟ୶൫∆்(௫೔),∆ூ(௫೔),∆ி(௫೔)൯

ସ
ቅ௡

௜ୀଵ ,  

 
and the distances between them are shown by 
𝐷்௔௡ଵ(𝐴, 𝐵) = 1 − 𝑆்௔௡ଵ(𝐴, 𝐵) and 
𝐷்௔௡ଶ(𝐴, 𝐵) = 1 − 𝑆்௔௡ଶ(𝐴, 𝐵). 
 
(7) The logarithmic similarities (Mondal et al., 

2018): 
 

𝑆௅ଵ(𝐴, 𝐵) =
ଵ

௡
∑ logଶ ቄ2 − ൬

ଵ

ଷ
(∆𝑇(𝑥௜) +௡

௜ୀଵ

∆𝐼(𝑥௜) + ∆𝐹(𝑥௜))൰ቅ  
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𝑆௅ଶ(𝐴, 𝐵) =
ଵ

௡
ቀ𝜆 ቂ∑ logଶ ቄ2 − ൬

ଵ

ଷ
(∆𝑇(𝑥௜) +௡

௜ୀଵ

∆𝐼(𝑥௜) + ∆𝐹(𝑥௜))൰ቅቃ + (1 − 𝜆) ቂ∑ logଶ ቄ2 −௡
௜ୀଵ

max ൬
ଵ

ଷ
(∆𝑇(𝑥௜), ∆𝐼(𝑥௜), ∆𝐹(𝑥௜))൰ቅቃ  

 
and distances between them are shown by 
𝐷௅ଵ(𝐴, 𝐵) = 1 − 𝑆௅ଵ(𝐴, 𝐵) and 𝐷௅ଶ(𝐴, 𝐵) = 1 −
𝑆௅ଶ(𝐴, 𝐵). 
 
The aforementioned measures have been widely 
employed, but they also have some disadvantages, 

which are demonstrated with the help of the next 
numerical example. 
 
Example 1. Let 𝐴, 𝐵, 𝐶 and𝐷 be four SNSs on 𝑋, 
given by 𝐴 = {〈0.5,0,0〉, 〈0,0.6,0〉}, 𝐵 =
{〈0,0.3,0〉, 〈0.4,0,0〉}, 𝐶 = {〈0,0,0.3〉, 〈0.4,0,0〉}. If 
we apply the existing measures (Şahin and Küçük, 
2014; Majumdar and Samanta, 2014; Majumdar 
and Samanta, 2014; Ye, 2015; Ye, 2017a; Ye and 
Fu, 2016; Mondal et al., 2018) defined above, then 
we obtain the following: 

 
 
Table 1. Computed values of distances regarding Example 1. 
Tablo 1. Örnek 1 ile ilgili hesaplanan mesafe değerleri 
 

Pair 𝐷ு 𝐷ேு 𝐷ோ 𝐷஼௢௦ଵ 𝐷஼௢௦ଶ 𝐷்௔௡ଵ 𝐷்௔௡ଶ 𝐷௅ଵ 𝐷௅ଶ 𝐷஼௢௧ଵ 𝐷஼௢௧ଶ 

(𝐴, 𝐵) 0.550 0.300 0.379 0.110 0.353 0.240 0.717 0.235 0.327 0.387 0.630 
(𝐴, 𝐶) 0.550 0.300 0.379 0.110 0.353 0.240 0.717 0.235 0.327 0.387 0.630 

 
 
According to Table 1, for the simplified 
neutrosophic sets 𝐴, 𝐵 and 𝐶, if the distance 
measures between sets 𝐴 and 𝐵, and 𝐴 and 𝐶 are 
equal, it is expected that sets 𝐵 and 𝐶 will be equal, 
but none of the distance measures discussed above 
can meet this expectation. Thus, we conclude that 
these measures are unable and inconsistent to 
perform the information measure between SNSs. 
Then, we can say that the distance measures 
defined above are not accurate and useful in actual 
decision-making circumstances. 
 
As a result, it is necessary to create a new measure 
of distance in order to resolve the disadvantages of 
the current measures. 
 
3.2. The proposed measure for SNSs 
3.1. BNK’ler için amaçlanan mesafe ölçüsü 
 
Definition 5. A mapping 𝐷: 𝑆𝑁𝑆(𝑋) × 𝑆𝑁𝑆(𝑋) →
[0,1] is a distance measure of the SNSs if it meets 
the following conditions: 
 
(D1) 0 ≤ 𝐷(𝐴, 𝐵) ≤ 1 for all 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), 
(D2) 𝐷(𝐴, A) = 0 for all 𝐴 ∈ 𝑆𝑁𝑆(𝑋), 
(D3) 𝐷(𝐴, B) =  𝐷(𝐵, A)  for all 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋). 
(D4) For all 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑁𝑆(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 

max{𝐷(𝐴, B), 𝐷(𝐵, C)} ≤ 𝐷(𝐴, C). 
 

There are a basic relation between distance and 
similarity measures 
That is, for A, B ∈ 𝑆𝑁𝑆(𝑋), it follows that 
𝑆(𝐴, 𝐵) = 1 − 𝐷(𝐴, 𝐵).  
 

Definition 6. Let 𝑋 = {𝑥ଵ, 𝑥ଶ, … 𝑥௡} be a discourse 
universe and A, B be two arbitrary SNSs in 𝑋. Then 
a distance measure between SNSs is define by 
 

𝐷ெ(𝐴, 𝐵) =
ଵ

௡
∑

஽೔
೅(஺,஻)ା ஽೔

಺(஺,஻)ା஽೔
ಷ(஺,஻)

ଷ
௡
௜ୀଵ ,         (3) 

where 

𝐷௜
்(𝐴, 𝐵) = 1 −

௘షห೅ಲ൫ೣ೔൯ష೅ಳ൫ೣ೔൯หି௘షభ

ଵି௘షభ  , 𝐷௜
ூ(𝐴, 𝐵) =

|𝐼஺(𝑥௜) − 𝐼஻(𝑥௜)|, and 𝐷௜
ி(𝐴, 𝐵) = หඥ𝐹஺(𝑥௜) −

ඥ𝐹஻(𝑥௜)ห (𝑖 = 1,2, … , 𝑛).  

 
Proposition 1. Let 𝑋 be a discourse universe. 
Then 𝐷௜

்(𝐴, 𝐵), 𝐷௜
ூ(𝐴, 𝐵) and 𝐷௜

ி(𝐴, 𝐵) (𝑖 =
1,2, … , 𝑛) meet the following requirements: 
 
(1) 0 ≤ 𝐷௜

்(𝐴, 𝐵), 𝐷௜
ூ(𝐴, 𝐵), 𝐷௜

ி(𝐴, 𝐵) ≤ 1 for all 
𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), 

(2) 𝐷௜
்(𝐴, 𝐴) = 0, 𝐷௜

ூ(𝐴, 𝐴) = 0, 𝐷௜
ி(𝐴, 𝐴) = 0 

for all 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), 
(3) 𝐷௜

்(𝐴, 𝐵) = 𝐷௜
்(𝐵, 𝐴), 𝐷௜

ூ(𝐴, 𝐵) = 𝐷௜
ூ(𝐵, 𝐴) 

and 𝐷௜
ி(𝐴, 𝐵) = 𝐷௜

ி(𝐵, 𝐴) for all 𝐴, 𝐵 ∈
𝑆𝑁𝑆(𝑋); 

(4) For all 𝐴, 𝐵 and 𝐶 ∈ 𝑆𝑁𝑆(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶 
then 

max൛𝐷௜
்(𝐴, 𝐵), 𝐷௜

்(𝐵, 𝐶)ൟ ≤ 𝐷௜
்(𝐴, 𝐶),  

max൛𝐷௜
ூ(𝐴, 𝐵), 𝐷௜

ூ(𝐵, 𝐶)ൟ ≤ 𝐷௜
ூ(𝐴, 𝐶),  

max൛𝐷௜
ி(𝐴, 𝐵), 𝐷௜

ி(𝐵, 𝐶)ൟ ≤ 𝐷௜
ி(𝐴, 𝐶). 

 
Proof. (1) For 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), we have 0 ≤
|𝑇஺(𝑥௜) − 𝑇஻(𝑥௜)| ≤ 1, 0 ≤ |𝐼஺(𝑥௜) − 𝐼஻(𝑥௜)| ≤ 1, 
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0 ≤ หඥ𝐹஺(𝑥௜) − ඥ𝐹஻(𝑥௜)ห ≤ 1 and  𝑒ିଵ ≤

𝑒ି|்ಲ(௫೔)ି்ಳ(௫೔)| ≤ 1.  
 
(2) For 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋) and 𝐴 = 𝐵, we have 
𝑇஺(𝑥௜) = 𝑇஻(𝑥௜), 𝐼஺(𝑥௜) = 𝐼஻(𝑥௜), and 𝐹஺(𝑥௜) =
𝐹஻(𝑥௜). Then it means that 𝐷௜

்(𝐴, 𝐵) =

0, 𝐷௜
ூ(𝐴, 𝐵) = 0, 𝐷௜

ி(𝐴, 𝐵) = 0. 
 
(3) It is obvious. 
 
(4) For all 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑁𝑆(𝑋) and  𝐴 ⊆ 𝐵 ⊆ 𝐶, 
we have 𝑇஺(𝑥௜) ≤ 𝑇஻(𝑥௜) ≤ 𝑇஼(𝑥௜), 𝐼஼(𝑥௜) ≤
𝐼஻(𝑥௜) ≤ 𝐼஺(𝑥௜), and 𝐹஼(𝑥௜) ≤ 𝐹஻(𝑥௜) ≤ 𝐹஺(𝑥௜). 
Then, it follows that |𝑇஺(𝑥௜) − 𝑇஻(𝑥௜)| ≤
|𝑇஺(𝑥௜) − 𝑇஼(𝑥௜)| and |𝑇஻(𝑥௜) − 𝑇஼(𝑥௜)| ≤
|𝑇஺(𝑥௜) − 𝑇஼(𝑥௜)| for all 𝑖 = 𝑖, 2, … , 𝑛 and so we 
have 𝑒ି|்ಲ(௫೔)ି்಴(௫೔)| ≤ 𝑒ି|்ಲ(௫೔)ି்ಳ(௫೔)| and 
𝑒ି|்ಲ(௫೔)ି்಴(௫೔)| ≤ 𝑒ି|்ಳ(௫೔)ି்಴(௫೔)| and thus 
 
(5)  
 

1 −
௘షห೅ಲ൫ೣ೔൯ష೅ಳ൫ೣ೔൯หି௘షభ

ଵି௘షభ ≤ 1 −
௘షห೅ಲ൫ೣ೔൯ష೅಴൫ೣ೔൯ห ି௘షభ

ଵି௘షభ  

and 1 −
௘షห೅ಳ൫ೣ೔൯ష೅಴൫ೣ೔൯หି௘షభ

ଵି௘షభ ≤ 1 −

௘షห೅ಲ൫ೣ೔൯ష೅಴൫ೣ೔൯หି௘షభ

ଵି௘షభ . 

 
Then we have max൛𝐷௜

்(𝐴, 𝐵), 𝐷௜
்(𝐵, 𝐶)ൟ ≤

𝐷௜
்(𝐴, 𝐶). Moreover, since|𝑇஺(𝑥௜) − 𝑇஻(𝑥௜)| ≤

|𝑇஺(𝑥௜) − 𝑇஼(𝑥௜)| and |𝑇஻(𝑥௜) − 𝑇஼(𝑥௜)| ≤
|𝑇஺(𝑥௜) − 𝑇஼(𝑥௜)|, this implies that  
max{|𝑇஺(𝑥௜) − 𝑇஻(𝑥௜)|, |𝑇஻(𝑥௜) − 𝑇஼(𝑥௜)|} ≤
|𝑇஺(𝑥௜) − 𝑇஼(𝑥௜)| for all 𝑖 = 𝑖, 2, … , 𝑛. Then 
max൛𝐷௜

்(𝐴, 𝐵), 𝐷௜
்(𝐵, 𝐶)ൟ ≤ 𝐷௜

்(𝐴, 𝐶). Finally, 
the other can be shown similarly. 
 
Theorem 1. For 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), the expression 
𝐷ெ(𝐴, 𝐵) meets the following conditions: 
 
(1) 0 ≤ 𝐷ெ(𝐴, 𝐵) ≤ 1 for all 𝐴, 𝐵 ∈ 𝑆𝑁𝑆(𝑋), 
(2) 𝐷ெ(𝐴, A) = 0 for all 𝐴 ∈ 𝑆𝑁𝑆(𝑋), 
(3) 𝐷ெ(𝐴, B) =  𝐷ெ(𝐵, A)  for all 𝐴, 𝐵 ∈

𝑆𝑁𝑆(𝑋). 
(4) For all 𝐴, 𝐵, 𝐶 ∈ 𝑆𝑁𝑆(𝑋), if 𝐴 ⊆ 𝐵 ⊆ 𝐶, then 

max{𝐷ெ(𝐴, B), 𝐷ெ(𝐵, C)} ≤ 𝐷ெ(𝐴, C). 
 

Proof. It is easy to prove this proof from 
Proposition 1. 
 
The benefits of the proposed distance measure 
above all other distance measures, which are based 
on a number of counterintuitive instances, are 
presented in the subsection through a comparative 
analysis.  
 

Example 2. If we apply the proposed distance 
measure 𝐷 on the data considered in Example 1, 
then we obtain 𝐷(𝐴, 𝐵) = 0.341 and 𝐷(𝐴, 𝐶) =
0.382. With this result, we can easily see that the 
distance measure developed meets the expectation 
𝐵 ≠ 𝐶. Above all, we might easily hope that the 
created distance measure may resolve the 
circumstances when the conventional distance 
measurements lead to counterintuitive results. As a 
result, the established distance measure is the most 
logical one. 
 
4. Applications 
4. Uygulamalar 
 
Pattern recognition is a well-known application 
area in the field of medicine, and its numerous uses 
are supplied based on neutrosophic data (Broumi 
and Smarandache, 2015; Mondal et al., 2018; 
Shahzadi et al., 2017; Ye, 2015; Ye and Fu, 2016). 
We provide a different approach to address the 
issue of medical diagnosis in light of the recently 
created distance measure. Then, we can create a 
useful pattern recognition method for SNSs as 
follows: 
 

Let 𝑋 = {𝑥ଵ, 𝑥ଶ, . . . , 𝑥௡} be a discourse universe. 
Suppose that there exist 𝑚 patterns which are 
characterized by the form of SNSs, denoted by 

𝐾௝ = ቄ〈𝑥௜, 𝑇௄ೕ
(𝑥௜), 𝐼௄ೕ

(𝑥௜), 𝐹௄ೕ
(𝑥௜)〉 : 𝑥௜ ∈

𝑋ቅ    (𝑗 = 1,2, … , 𝑚) in 𝑋 and assume there is a 

sample pattern presented by an SNS 𝑆 =
{〈𝑥௜, 𝑇ௌ(𝑥௜), 𝐼ௌ(𝑥௜), 𝐹ௌ(𝑥௜)〉: 𝑥௜ ∈ 𝑋}. The 
recognition technical is as follows: 
 
Step 1. Obtain the distance measure 𝐷൫𝐾௝, 𝑃൯ 
between 𝐾௝ (𝑗 = 1,2, … , 𝑚) and 𝑃. 
Step 2. Determine the minimum one 𝐷൫𝐾௝଴, 𝑃൯ 
from  𝐷൫𝐾௝, 𝑃൯ (𝑗  =  1, 2, … , 𝑚 ), that is, 
𝐷൫𝐾௝଴, 𝑃൯ = min

ଵஸ௝ஸ௠
൛𝐷൫𝐾௝, 𝑃൯ൟ. Thus, the sample 

pattern 𝑃 belongs to the category of pattern 𝐾௝బ
.     

 

Example 3. (Medical diagnosis) Let us consider 
the medical diagnosis problem adapted from (Ye, 
2015). Assume that a set of diagnoses is  
 
𝐾 =

൜
𝐾ଵ (viral fever), 𝐾ଶ (malaria),

𝐾ଷ (typhoid), 𝐾ସ (gastritis), 𝐾ହ (stenocardia)
ൠ  

 
and a set of symptoms is 
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𝑆

= ൜
𝑠ଵ (fever), 𝑠ଶ (headache), 𝑠ଷ (stomach pain),

𝑠ସ (cough), 𝑠ହ (chest pain)
ൠ. 

 
The characteristics of the disorders under 
consideration are shown in Table 2, together with 
the neutrosophic symptom levels (represented by 
SNSs) for each. The truth-membership, 
indeterminacy-membership, and falsity-
membership values are used to describe the 
neutrosophic symptom values as a triple of 
numbers. 

 
Suppose that we have a sample from patient P in 
the field of medical diagnosis who has all 
symptoms, which are characterized by the SNS 
data: 
 

P(patient) =

൜
〈𝑠ଵ, 0.8,0.2,0.1〉, 〈𝑠ଶ, 0.6,0.3,0.1〉, 〈𝑠ଷ, 0.2,0.1,0.8〉,

〈𝑠ସ, 0.6,0.5,0.1〉, 〈𝑠ହ, 0.1,0.4,0.6〉
ൠ.  

 

 
 
Table 2. Characteristics of the illnesses that SNSs represent 
Tablo 2. BNK'ler tarafından temsil edilen hastalıkların karakteristik değerleri. 
 

 𝑠ଵ (fever) 𝑠ଶ (headache) 𝑠ଷ (stomach p.) 𝑠ସ (cough) 𝑠ହ (chest pain) 
𝐾ଵ  〈𝑠ଵ, 0.4,0.6,0.0〉 〈𝑠ଶ, 0.3,0.5,0.5〉 〈𝑠ଷ, 0.1,0.3,0.7〉 〈𝑠ସ, 0.4,0.3,0.3〉 〈𝑠ହ, 0.1,0.2,0.7〉 
𝐾ଶ  〈𝑠ଵ, 0.7,0.3,0.0〉 〈𝑠ଶ, 0.2,0.2,0.6〉 〈𝑠ଷ, 0.0,0.1,0.9〉 〈𝑠ସ, 0.7,0.3,0.0〉 〈𝑠ହ, 0.1,0.1,0.8〉 
𝐾ଷ  〈𝑠ଵ, 0.3,0.4,0.3〉 〈𝑠ଶ, 0.6,0.3,0.1〉 〈𝑠ଷ, 0.2,0.1,0.7〉 〈𝑠ସ, 0.2,0.2,0.6〉 〈𝑠ହ, 0.0,0.0,0.9〉 
𝐾ସ  〈𝑠ଵ, 0.1,0.2,0.7〉 〈𝑠ଶ, 0.2,0.4,0.4〉 〈𝑠ଷ, 0.8,0.2,0.0〉 〈𝑠ସ, 0.2,0.1,0.7〉 〈𝑠ହ, 0.2,0.1,0.7〉 
𝐾ହ  〈𝑠ଵ, 0.1,0.1,0.8〉 〈𝑠ଶ, 0.0,0.2,0.8〉 〈𝑠ଷ, 0.2,0.0,0.8〉 〈𝑠ସ, 0.2,0.0,0.8〉 〈𝑠ହ, 0.8,0.1,0.1〉 

 
 
We now use the algorithm to address the 
aforementioned diagnosis problem. 

Step1. Using Eq.(3), we calculate the distance 
measures 𝐷൫𝐾௝, 𝑃൯ between 𝐾௝ (𝑗 = 1,2, … , 𝑚) and 
𝑃. The obtain results are given in Table 3. 

 
Table 3. Distance measure values for SNS information 
Tablo 3. BNK bilgileri için mesafe ölçüm değerleri 
 

 𝐾ଵ (viral 
fever) 

𝐾ଶ (malaria) 𝐾ଷ (typhoid) 𝐾ସ (gastritis) 𝐾ହ (stenocardia) 

𝐷(𝐾௜, 𝑃) 0.241 𝟎. 𝟐𝟎𝟓 0.208 0.394 0.408 
𝐷(𝐾௜, 𝑃) (Ye, 2015) 0.687 0.681 0.692 0.726 0.745 
𝐷(𝐾௜, 𝑃) (Ye, 2015) 0.704 0.702 0.719 0.796 0.813 

 
 
We are able to provide the patient P with the 
appropriate diagnosis by taking into account the 
distance measure presented in Eq. (3). The highest 
distance measure suggests the correct diagnosis, 
according to the theory of minimum distance 
degree. Table 4 contains the acquired results. By 
examining the facts in Table 4, we may conclude 
that the patient P has 𝐾ଶ (malaria). The end result 
is same with Ye's approach (2015) yielded. 
 
4.1. Comparison and discussion of results 
4.1. Sonuçların tartışılması ve karşılaştırması 
 
We demonstrate a general comparison study using 
the provided example to show benefits of the 

developed distance measure over the current 
distance measures. 
 
According to Table 4, all of results under different 
distance measures is same for the related pattern 
recognition problem. As it was already indicated 
above, there are significant limitations to the 
current distance measures in particular situations, 
and they sometimes cannot account for ludicrous or 
illogical facts. As a result, the developed distance 
measure of SNSs is better than the current distance 
measures of SNSs in that it solves the counter-
intuitive cases of the existing distance measures 
under the simplified neutrosophic information. 
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Table 4. The outcomes of additional distance measurements now in use for the pattern identification issue 
addressed in Example 1 
Tablo 4. Örnek 1'de tartışılan örüntü tanıma problemi için mevcut diğer mesafe ölçümlerinden elde edilen 
sonuçlar 
 

Distance 
Measure 

𝐾ଵ  
(viral fever) 

𝐾ଶ 
(malaria) 

𝐾ଷ 
(typhoid) 

𝐾ସ 
(gastritis) 

𝐾ହ 
(stenocardia) 

Results 

𝐷ு 0.280 𝟎. 𝟐𝟔𝟎 0.300 0.560 0.580 𝐾ଶ- malaria 
𝐷ேு 0.207 𝟎. 𝟏𝟔𝟕 0.200 0.367 0.407 𝐾ଶ- malaria 
𝐷ோ 0.238 𝟎. 𝟐𝟏𝟒 0.271 0.440 0.489 𝐾ଶ- malaria 
𝐷஼௢௦ଵ 0.687 𝟎. 𝟔𝟖𝟏 0.692 0.726 0.745 𝐾ଶ- malaria 
𝐷஼௢௦ଶ 0.702 𝟎. 𝟕𝟎𝟏 0.719 0.796 0.813 𝐾ଶ- malaria 
𝐷்௔௡ଵ 0.055 𝟎. 𝟎𝟒𝟒 0.054 0.100 0.112 𝐾ଶ- malaria 
𝐷்௔௡ଶ 0.075 𝟎. 𝟎𝟕𝟎 0.082 0.161 0.169 𝐾ଶ- malaria 
𝐷஼௢௧ଵ 0.277 𝟎. 𝟐𝟐𝟕 0.256 0.449 0.479 𝐾ଶ- malaria 
𝐷஼௢௧ଶ 0.055 𝟎. 𝟎𝟑𝟑 0.362 0.631 0.637 𝐾ଶ- malaria 
𝐷௅ଵ 0.159 𝟎. 𝟏𝟐𝟕 0.157 0.297 0.337 𝐾ଶ- malaria 
𝐷௅ଶ  (𝜆 = 0.5) 0.347 𝟎. 𝟐𝟔𝟗 0.365 0.779 0.981 𝐾ଶ- malaria 
 
 
In addition, in Figure 1, we can easily see that the sample has the diagnosis of malaria according to all the 
discussed distance measures. 
 
 

 
 

Figure 1. The results of Example 1 according to the distance measures 
Şekil 1. Örnek 1’in mesafe ölçülerine göre sonuçları 

 
 
5. Conclusion 
5. Sonuç 
 
A fundamental factor in establishing the link 
between things is the distance measure. Numerous 
distance measures have been put out in the 
neutrosophic literature from various viewpoints. 
However, the majority of them have a few 
situations that defy logic. This study was created a 
brand-new SNS distance measure that addresses 
the circumstances where it is counter-intuitive. The 
usefulness and benefits of our suggested distance 

measure were evaluated through comparison with 
other existing distance measures. Then, using it to 
resolve a decision-making issues in a streamlined 
neutrosophic environment, we applied it to real-
world application including medical diagnosis. By 
examining the data, we can see that the developed 
distance measure can be used to manage simplified 
neutrosophic information as well as provide 
decision-makers. The new SNS distance 
measurement can be used in subsequent research in 
fields including cluster approaches, image 
processing, and decision-making. 
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