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Abstract: In this work we present a correspondence between the steganographic systems and error correcting
codes. We propose a new steganographic protocol based on 3-error-correcting primitive BCH codes.
We show that this new protocol has much better parameters than protocols which we get from
Hamming codes or from the 2-error-correcting primitive BCH codes, for high levels of incorporation.
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1. Introduction

The etymology of steganography is composed of two Greek words: "Stego" which means secret and
"graphia" writing. Steganography is then the art of secret writing. More generally, we call steganography,
the art of hide information in a carrier, so that is hidden information from to furtive eyes of anyone other
than the sender and the recipient.

The field of information security grows and grows increasingly in recent spent decades. The de-
velopment of systems for the protection of information has taken great interest as a subject of scientific
research. Cryptographic protocols is the best acknowledged of such systems. However, new ideas emerged
with force in recent years. Steganography is an old area that thanks to recent progress begins to play an
important role as an alternative and more generally as a complement of cryptography. The advantage
of steganography over cryptography is that steganography protects information like cryptography and it
protects also communicating sources.

Error-correcting codes are important tools for the design of algorithms for steganography. They are
used to hide information in an image and also to extract hidden information from the modified image.
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This technique is a method of decoding by syndrome, using the theory of error correcting codes, especially
linear codes (see [2, 3]). Steganography has taken the concepts associated to error correcting codes and
to decoding by syndrome but the use has been reversed.

This work is organized as follows. Sections 2 and 3 present the correspondence between the error-
correcting codes and steganographic protocols. In section 4, we recall some properties of linear stegano-
graphic protocols. We build our approach in section 5.

2. Steganographic protocol

Definition 2.1. Let n,k and p are three positive integers such that k < n. A steganographic protocol
S over an alphabet A to hide messages of length k (secret words) in words of length n (cover words) by
modifying at most p coordinates(covering radius) is a pair of maps & = (e,r) satisfying:

o c: A" x AF 5 A",

o A" — AF,

o V(z,5) € A" x AF :r(e(z,s)) = s,

o V(z,5) € A" x AF 1 dy(x,e(x,5)) < p,

n,k and p are the parameters of the steganographic protocol &.

Maps e and r are respectively called embedding and extraction maps of the steganographic protocol
G&. Such a protocol is called a (n, k, p)-steganographic protocol &.

Example 2.2. Let s and x be the secret word to hide and the cover word respectively. We may suppose
that those two words are a sequences of symbols of a finite alphabet A. Let be s = (81,82, -+ ,8k) and
v = (1,29, ,2n), 505 € A* and v € A™.

Let consider the two following maps :

e A" x AF = A"

and
r: A" — AF
defined by
e((z1, 22, ,&n), (81,82, ,8k)) = (T1, T2, T3, "+, Tp—k, S1, 82, ** , Sk)
and
r(T1, 22,23, Tn) = (Tn—ks T(n—k)415" " > Tn)-

Then (e,r) is a (n, k, k)-steganographic protocol over A.
Definition 2.3. We call radius of a protocol (e,r) the number
p = maz{d(z,e(z,s)),s € A¥ x c A"}
Remark 2.4. A good protocol (n, k, p)-steganographic (e,r) must satisfies two main requirements:

1. The two maps e and r are effective,

2. (n,k,p) are good parameters such that:
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. % is the greatest possible,

e 2 s the smallest possible.

Definition 2.5. A good protocol steganographic (e,r) of length n is said to be proper if :
the embedding map e is such that:

e(z,s) is the nearest element to x belonging to r=1(s) = {y € A"/r(y) = s}
(with respect to the hamming distance over A™, where A denote the alphabet of the protocol).

Proposition 2.6. If a steganographic protocol (e, r) is proper then the covering radius p is given by:

p =maz{d(z,r"1(s))/s € A¥ and x € A"}.

Proof. Since the protocol is proper then :

Vo € A" and Vs € A¥ if e(z,s) = v then dy(z,v) = min{d(z,y)/y € r~1(s)} = d(z,r~1(s)).

Since that p := max{d(x,e(x,s))/s € Ak .z € A"} we have p = maz{d(z,r(s)),s € A¥and x €
AnY, O

2.1. The steganographic protocol Fj

The protocol F5 over the Galois field Fo permits to hide messages of length k (secret words) in
words (cover words) of length n = 2*¥ — 1 by changing more than one of them (i.e. protocol of type
(2% —1,k,1) ). Let < m >3 be the binary expression of m with k bits ( so we can consider that < m >
is in F% ). Conversely, for z € F§ let < z >;¢ be the integer which has z as binary expression, then

1< <z2>10 < 281, Finally, let e; be the it vector of the canonical basis of F%k’l ;€90 = 0. Let
consider

i) The map ~: F§k71 xFk - N
k_ .
(z,5) = Y(z,8) =< s+ Yo, @ <i>2>10.
ii) Maps e and r defined by :
.21 k 2k —1
e:F; 7" xFg =T, 7,
(z,8) = e(z,8) = 2 + €y(a,9):
L2l k
r:F, = —Fsg,
k
x—=r(z) = Z?zfl x; <1 >9.
Let show that (e,) is a steganographic protocol, or let show that r(e(x, s)) = s, for any s € F5 and
for any x € ngil.
Indeed,

k
L r(e(x,8) = r(x + €y(s,s)), Wwe put j = y(x,s) =< s+ Zfzfl x; <1 >9>19 then

2k —1
<j>2:5+2:z:i<i>2: (*)
i=1
— _ 2kt . . . . .
2. r(z+e;) =r(T1, @2, Tju1, 0 Tn) = D iy 4z T <1 >2 T4 < J >2, changing < j > by its
expression given in (x) we obtain : r(z+e;) = s so r(e(x,s)) = s. Therefore F'5 is a steganographic
protocol.
Remark 2.7.

e Insert a message s by F5 in a covering x consists to change the coordinate number vy(z, s).

e Extraction consists to add all products of each component to the value of the binary expression of

k
the index. i.e : r(x) = 212:;1 x; <14 >
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2.2. Example of application for Fj;

For n = 7, k = 3, how to insert s = 011 in « = 1100101. i.e. How to calculate e(011,1100101).
(1100101, 011) =< 011+ X7, 2; < i >2>10
=< 011 + (1.(001) + 1.(010) + 1.(101) + 1.(111)) >19=< 010 >19= 2.

Since s = 011 and « = 1100101 then to insert s in « consists in changing the position number 2 of x
from 1 to 0, i.e. e(z,s) = e(1100101,011) = 1000101 = v.

How to extract the message hidden s in the message v = 10001017

Le. How to calculate 7(1000101). By applying the second point of the previous remark we get that
r(v) = r(1000101) = (1.(001) + 1.(101) + 111) = 011 = s.

3. Codes defined by a steganographic protocol

Recall that a correcting code of length n on alphabet A is a subset of A", and the covering radius p
of a correcting code satisfies Vo = (x4, ...,x,) € A" :

dH(xv C) = mincECdH(xa C) = minc:(cl,.“,cn)ECHi LT 7& Cz}| S p-

We denote (n, | C'|), the parameters of a such code. When C is linear over F, of cardinality | C |= ¢*
with k is the dimension of the code, we use the notation [n, k], to say that the parameters of the linear
code C are (n,q"),.

Let T = (e,r) be a steganographic protocol. The protocol Y define a collection Fy of correcting
codes defined by:

Fy ={C,:=r"1(s),s € A}

To decode a word x € A™ according to the code Cs = r~1(s) of the collection Fy, we proceed in this way:
If p is the radius of T then there exists a word z’ satisfying:

d(z,2") < p and r(2') = s.

Then r(e(x, s)) = s which means that e(x, s) is a word decoding x relative to the code Cs.

3.1. Construction of steganographic protocols

To build a steganographic protocol of parameters (n, k, p) on an alphabet A, one way is to start by
building a surjective map r : A™ — A¥ which map r define a family F, := {C, = r~1(s) | s € A*}
of codes on A of length n. Then the embedding map e such that (e,r) is a steganographic protocol of
parameters (n, k, p) is defined by:

For s € A denote e(s,—) the decoding map, defined by the nearest word, associated to the code
Cs =r71(s). Then e(z,s) = 2’ € Cy, with dy (z,2') = dy(x, Cs) := min{dy (z,y),y € Cs}.

Example 3.1. To build a steganographic protocol of parameters (3,2,2) on Fo, start with given a sur-
jective function r : F3 — F3.

If v : T3 — F3 is such that:

0) = {000, 100}

1) = {010,001}

0) = {110, 100}

1) = {101,111},



M. Boulagouaz, M. Bouye / J. Algebra Comb. Discrete Appl. 4(2) (2017) 197-206

then CQ() = {000, 100},‘ 001 = {010,001} N ClO = {110, 100} N Cll = {1017 111}.

SO, Coo = 7"71(00) ; Co1 = 7”71(01) ; Co = 7’71(10) ; C1 = 7’71(11),
Therefore e(000,—) : F3 — F3 satisfies ¢(000,00) = 000, since d(000,z') = d(000,Cpo) = 0. More
generally:
e:F3 x F3 — T3
(x,8) = e(x,s) = d(z,Cy),

if s =10 and x = 101 then we have d(101,C1¢) = d(101,{110,100}) = 2 and «’ can be 110 or 011,
since d(110,101) = 2 and (011,101) = 2.

Proposition 3.2. The best steganographic protocol of parameters (n,k, p) and of extraction map r on
an alphabet A, is one that has as embedding map the map e defined by:

(Vo € A™)(Vs € A¥)[e(z,s) = 2’
with dg (z,2") = dy (z,r71(s))].

Lemma 3.3. A map r: A" — A* is an extraction map of a [n, k]-steganographic protocol if and only if
T 18 surjective.

Proof. Indeed if r : A" — AF is an extraction function of a [n, k]-steganographic protocol then for
all z € A™ we have 7 o e(x,.) = I« so r is surjective. If r : A" — A* is surjective then from the
subsection, Construction of steganographic protocols, there exists an embedding map e such that (e, )
is a steganographic protocol of parameters (n, k, p). O

For all t € IR and for all zy € A™ put B(zo,t) = {y € /du(zo,y) < t}.

Lemma 3.4. For all (n,k, p)-steganographic protocol (e,r) over an alphabet A and for all zo € A™ the
map r , the restriction of r to the ball B(xo, p), is surjective. or,
/B(a:g,p)

: k
T/ Blaop) - B(zg,p) = A

y—7(y),

18 a surjective map.

Proof. The map r/, Blro.p) is well defined.

Let consider s € A¥, since e is the embedding map of the (n, k, p)-steganographic protocol (e, ),
then d(zg,e(s,z9)) < p. Let y = e(zg, s) then d(zg,y) < p and r(y) = r(e(zg, s)) = s. That proves the
existence of y € B(xg, p) such that T/ Blaxo.p) (y) = s. O

It is know that the cardinal of a ball B(zg, p) of A™ is independent from it’s center xy and it is often
denoted by V(n, p) if ¢ is the cardinal of the alphabet A.

Corollary 3.5. For all (n,k, p)-steganographic protocol over an alphabet A with q elements we have :
k
g < Vy(n,p)

Proof. The mapr,, (0.0) is surjective and then we have
Card(]F’;) < Bp(n, p) = Vy(n, p).
Therefore

¢" < Vy(n,p).
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4. Linear steganographic protocol

Definition 4.1. A steganographic protocol X = (e,r) is called linear if the extraction map r is linear.

Consequence:
Co = ker(r) = r‘l(OFE) is a subspace vector of the F,-space vector IFy. So it is a linear code of length n

and its dimension is n — k. Cj is called the principal code associated to the steganographic protocol Y.
So

FPr={C,|s€Fi}=F/Co:={x+Co|zeF}.

Definition 4.2. We call an extraction matriz of a steganographic protocol a control matriz of its principal
code. Or, an extraction matriz of a steganographic protocol is a matriz associated to the extraction linear
map e of this protocol.

Proposition 4.3. For each linear steganographic protocol Y of parameters (n,k, p) correspond a linear
[n,n — k]-code C(= Cy) which has as a control matriz the control matriz of the extraction map of Y.

Proposition 4.4. For each linear code C' of, length n, dimension n—k and a control matriz H, correspond
an appropriate linear steganographic protocol which has, the mapping r associated to H as an extraction
map and (n,k, p) as parameters, where p denote the covering radius of this code C.

Proof. For each a € F}/ the map (translation):

7ot By — Fy

z—1(r)=z+a
is a bijection which conserve the Hamming distance (isometry). Indeed it is clear that 7, is bijective and
that d(z,y) = d(7.(x), 7a(y)) = d(x + a,y + a) since the code is linear d(z,y) = wt(z — y). From where
d(1a(x), 7a(y)) = wt(1a(x) — Ta(y)) = wt(z —y) = d(x,y). More r is onto (because its associated matrix is
a control matrix of a linear code) therefore Lemma 3.3 implies that there is a [n, k]-linear steganographic
protocol T which has an extraction map r such that Cy : Cy = C'. Tt is also true that for all s € ]F’; there
is ys € Fy such that Cs = ys + C therefore r(ys) = s.

p = max{d(z,C) | v € F} } = max{d(x,Cy) | v € F}
= maz{d(z +ys,Co +ys) | z € F}}
= maz{d(ry,(v),Cs) | x € Fy} = max{d(2’,Cs) | 2" € F}} = ps .

So p(T) = MAT sepi Ps = MATP = p. O

5. Construction of linear protocols

To construct a (n, k) - linear steganographic protocol T, just consider a matrix H of type (k x n)
and rank k. This matrix H is the extraction matrix of a protocol T and at the same time the extraction
matrix of the map of this protocol Y. It is also true that H is the control matrix of the code C'y associated
to the protocol T.

5.1. Decoding a linear code by syndrome

Let C be a [n,n — k|- linear code of control matrix H € Mjx,(F,) for each z € Fy, we define the
syndrome of z by the quantity S(z) = z x Ht. The decoding method by syndrome associated to the code
C consists to : if y is a received word and if I, is the word of smallest weight in y 4 C, then y is decoded

by x =y — 1.
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5.2.  Embedding algorithm associated to a linear steganographic protocol

Let 7 be the extraction map of a linear steganographic protocol Y and let Cy = r~1(0), be "the
principal linear code associated to T". To calculate e(z, s),(if x is a covering word and s is a message to
hide in z) if e denote the embedding map associated to the protocol T, one way is :

Needed : a coset decoding algorithm: input a syndrome u, output: a coset leader [,,.
Input : a cover z of size n and a message s of size k.
Output : 2’ =e(x, s), a steganographic cover of s with distortion d(z,z’) as small as possible.

e Compute u :=r(z) — s,

e set c:=x — I,

e e(x,8) =c.

Then e is the embedding map of the system Y. Indeed :
rle(z,s))=r(c)=r(x—1,) =r(x)—r(ly) =u+s—u=s

Remark 5.1. The linear codes which has a fast and effective decoding algorithm, can be used to construct
perform embedding algorithm. So these correcting codes are good tools to construct steganographic protocol.
The terminals of the parameters of these codes can be translated into terminal parameters of their protocols
steganographic associates. All control matrices associated with a linear code give steganographic protocols
of same parameters (n, k, p).

5.3. The average symbols modified by a protocol

Upon embedding a message by steganographic protocol T, the number of bits modified in a cover
word is bounded but not determined, by the covering radius p.

Definition 5.2. Let [T = (e,r)] be a (n, k)-protocol on an alphabet A of cardinal g with all secret words
s and cover words x have the same probability. We call average symbols modified by Y the umber a(Y)
given by the formula :

a(T) = q,% > Y de(x,))

sC Ak zc A™

Lemma 5.3. Let T = (e,r) be an appropriate (n, k)-steganographic protocol on Fy associate to the linear
code C' then :

o(T) = qin S d(, )

z€Fy

Proof. Since e(x,s) =y then d(x,y) = inf{d(x,c) | c € Cs}. Let l5 be a word of smallest weight in
Cs then y =z + 1 et e(x,s) = x + I5, so d(z,e(x,s)) = d(z,z + 1), and since d(z,z + 15) = d(x,ls + C)
then d(z,e(x,s)) = d(x — ls,C), from where Zwng d(z,ls+C) = Zwng dx —15,C) = Zze]Fg d(z,C).
Therefore

k
a(T) = qn1+k SN dz0) = q§+k 3 d(z,0) = qin Y d(z,0)

sEIF’; ZEF;” zE]F'q‘ zE]FZIL
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Lemma 5.4. Let T = (e, r) be a (n, k)-steganographic protocol on F, associated to a Linear code C. For
1 =0,1,--- ,n denote a; the number of representatives of the i weight classes compared to the code C'
then a(Y) = %30 iy

q
Proof. We have d(x,e(z,s)) = d(z,z +1s) = w(ls) so,
Zseﬂi‘g‘ Ea:eIE‘g d(.]?, B(I, S)) = Zse]F’qC Zze]Fg ’LU(lé) =q" Zseﬂ?’; UJ(ZS), or,
ﬁ EsEF’; ZzeIFg d(x7 6(.23, 3)) qik Eseﬂ?’; w(ls) = ﬁ(w(lﬁ)’ w(lsz)’ e 7w(l5qk )) 0

6. Comparative tables

In this section we present a new family of linear steganographic systems from the family of binary
codes, 3-error-correcting primitive BCH codes and we give a comparative study in tables, between the
new family, the family of systems presented by C. Manuera in [7] and one studied by A. Westfeld in [8].

A. Westfeldt in [8], studied the family of linear steganographic systems Fj, associated to the family
of Hamming binary linear error correcting codes. To a code C' of this family of codes, the dimension
is 2 —m — 1 and a such code is of parameters [2™ — 1,2™ —m — 1,1]. The parameters of a linear
steganographic system of this family are of the form (2" — 1,2m, 3). From where the following table:

Table 1. The parameters of F5 [8], p=1,t=1.

code |m| n k/:n—k’p % 2 (n,k/,p)
Hamming| 4 | 15 4 1]0.266]0.066| (15,4,1)
Hamming| 5 | 31 5 1/0.161]0.032| (31,5,1)
Hamming| 6 | 63 6 1]0.095|0.015] (63,6,1)
Hamming| 7 |127 7 1]0.055[0.007|(127,7,1)
Hamming| 8 [255 8 1]0.031]0.003|(255,8,1)

C. Munuera in [7], presents the family of binary linear error correcting primitive BCH codes, con-
sisting of the quasi perfect codes which are 2-correcting and of length n = 2™ — 1. Because these codes
are quasi-perfect then their radius of coverage is 3. For a code C' of this family of codes, its dimension is
2™ —2m — 1 and a such code is of parameters [2" — 1,2™ — 2m — 1, 5]. Thus each code C' of this family
of codes, is associated with a linear steganographic protocol of parameters (2™ — 1,2m,3). From where
the following table:

Table 2. BCH codes [7], p =3, t = 2.

code |m| n k‘/zn—kp % £ (n,kk‘/,p)
BCH| 4| 15 8 3/0.533| 0.2 | (15,8,3)
BCH|5 | 31 10 310.322]0.096| (31,10,3)
BCH| 6| 63 12 310.190|0.047| (63,12,3)
BCH| 7 |127 14 3] 0.11 |0.023|(127,14,3)
BCH| 8 |255 16 310.062|0.011(255,16,3)

The family of binary linear error correcting codes we offer to study is that of the 3- error-correcting
primitive BCH codes. Each code of this family is of length n = 2™ — 1 for a non-zero integer m, the
covering radius of a such code is 5 ( [1], [4] and [5]). Also for a such code C' the number of the elements
of F3/C' is equal to:
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- 23 if m > 5 and then C has [2™ — 1,2™ — 1 — 3m, 3] as parameters.
- 27" if m = 4 and then has [15, 5, 3] as parameters,
( Mac Williams and Sloane [[6], p.262].

Thus for each code C' of this family is associated to a linear steganographic protocol of parameters:
- (2™ -1,3m,5), if m > 5.
- (15,10, 3), if m = 4.

From where the following table:

Table 3. BCH primitive codes, p =5, t = 3.

code|m| n [k =n—k p %’ £ (n,k',,p)
BCH| 4| 15 10 5/0.6666|0.333| (15,10,5)
BCH| 5| 31 16 5| 0.516 |0.161| (31,16,5)
BCH| 6| 63 45 5| 0.714 |0.079| (63,45,5)
BCH| 7|127 106 5| 0.834 |0.039{(127,106,5)
BCH| 8255 231 5| 0.905 |0.119{(255,231,5)

7. Conclusion

In this work, we presented a correspondence between the steganographic systems and error-correcting
codes, and we have explained that this correspondence is one to one between linear steganographic systems
and linear error correcting codes. We gave some relationships between the parameters and concepts
associated to linear steganographic systems, and those of the linear error correcting codes to which they
correspond (control matrix covering radius, ...). As the error correcting codes are quite well known, we
showed that this correspondence can be used to build good steganographic protocols and to study their
properties. We also presented a new steganography based on primitive 3-error correcting BCH codes.
Our new protocol, shows that we are able to improve some previous results and suggest new sets of
parameters for binary linear steganographic systems. In particulary for steganographic systems of high
incorporation rate.
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