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1. INTRODUCTION 

Depending on many factors, the therapeutic efficacy 
of medications varies. These considerations include 
drug release profiles, delivery mechanisms, and 
drug interactions within the body with the external 
environment. The release profile of drugs can be 
modified by the use of nano-and micro-size drug 
carriers in the formulation, such as biodegradable 

polymers, hydrogels, lipids, and even biological 
materials (eg, RNA and DNA) [1].

A lot of research has been published in recent years on 
the controlled release of important therapeutic drugs 
[2-5]. Researchers have developed many different 
methods to achieve the desired release of drugs and 
transport activity inside the body. Some of these 
methods include modifying the surface properties 
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ABSTRACT

Three-dimensional printing (3DP) is one of the most extensively researched 
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typically applied layer by layer. The 3DP method has many advantages 
over traditional manufacturing methods and ensures that personalized 
drug design is feasible. Individual dose adjustment provides significant 
benefits, particularly in some disadvantaged patient groups. Individual 
release characteristics may be required in these patient groups in addition 
to dose adjustment. 3DP technology also allows for the adjustment of 
release kinetics. All of these factors were also increasing interest in 3DP 
technology in the pharmaceutical industry. The goal of this review is to 
understand the pharmacological significance of 3DP technology as well 
as the parameters influencing the release profiles in tablets produced by 
using technique, and to establish a correlation between them. Within the 
scope of this review, 79 literature research studies were examined, and 
it was determined that there is limited data to determine whether there 
is a correlation between release kinetics and 3DP techniques. When the 
release profiles obtained by considering the polymer type used in these 
techniques are evaluated, immediate and rapid release was obtained in 
studies using PVA + PLA polymers and studies using PVP polymer, 
immediate release in studies using Kollidon® and Kollicoat® derivatives, 
and controlled, extended and sustained release was observed in studies 
using PCL polymer.
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of drug particles [6], attaching functional groups 
to the drug molecule to improve the interactions of 
drug particles with targeted cells or tissues [7], and 
extending the half-life of the drug in the body to trick 
the immune system by coating the drug with special 
polymers (e.g. polyethylene glycol or PEG). It 
remains an expensive and difficult method to change 
these drug molecules (i.e. size, shape, and surface 
characteristics) [1].

Three-dimensional (3D) printing consists of 
combining suitable materials to create a 3D object 
using a series of processes. Generally, this method 
is done layer by layer [8,9]. In another definition, 
3D printing (3DP) refers to any process in which, by 
fusing layers on top of the material, 3D objects are 
created in a two-dimensional environment. In this 
process, a computer is required because 3DP is based 
on a “Computer-Aided Design” [10-12]. 3DP is also 
known as ‘Additive Manufacturing’ (AM). The ISO/
ASTM standards describe the process of combining 
materials produced by layering using 3D model 
data in contrast to the formative and subtractive 
production methods [13,14].

The common point of all 3DP techniques called 
AM is their step-by-step or sequential processing. 
Compared to previous conventional methods, the 
manufacturing process based on 3DP techniques 
has significant advantages and disadvantages.  

In comparison to traditional methods, Table 1 
discusses some of the advantages and disadvantages 
of 3DP [8]. 

The purpose of this review is to understand the 
pharmacological significance of 3DP technology and 
one of the most common oral dosage forms obtained 
using these techniques, the parameters affecting 
release profiles in tablets.

2. 3D PRINTING TECHNOLOGY

3DP is one of the most studied methods of nano/
microscale biomaterial processing. 3DP helps to make 
a lot of changes to the application scale. Although 
3DP technology has shown considerable interest in 
tissue engineering, implants, and prosthetics, it is 
also very useful in the micro-manufacturing of drug 
particles. In addition to minimizing processing time, 
reducing costs, and being readily available, 3DP 
often provides high resolution at the stage of drug 
design [1,15].

New materials are evolving with the use of new 
applications, and 3DP methods are changing daily. 
With 3DP, it is possible to significantly minimize or 
fully eradicate the usage of various machines and 
facilities. In addition, it only allows custom designs by 
modifying the 3D model in the program, which during 
the prototyping process reduces the expense [8].

Table 1. Some advantages and disadvantages of 3DP vs Conventional Manufacturing
Advantages Disadvantages Ref.
There is no need for costly machinery for metal smelting 
plants and for milling pro-cesses

The capacity to generate at low num-bers and speeds [90]

The ability to create components in a short time with 
complicated and personalized unconventional structures

Lower surface gloss, accuracy and strength [91]

The less eco-friendly waste generation and recycling 
process is

The comparatively few materials that can be processed 
and reflect the kind of production products

[92]

Cost-effective for low volume and small batch production The broad restriction on structural di-mensions [93]
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Traditional tablet manufacturing process; current 
technologies require a variety of unit operations, such 
as mixing, milling, granulation, drying, compression. 
In addition, it is necessary to have some costly 
equipment/tools that require experienced personnel, 
take a long time and require invest money. All of 
these make commercially available oral dosage 
formulations to be costly for the consumer [16]. 
Apart from these, amid all of these investments, 
there are so many deficiencies in the production of 
customized medicines with technologies currently 
available [17,18]. 

By allowing individual drugs to be precisely designed, 
3DP technology will fill this void. Previous research 
experiments have shown that to personalize drugs, 
3DP can be used [19].

With 3DP technology, which is one of the 
pharmaceutical technologies through which specific 
changes can be made, it is unavoidable that doses 
of the medication’s active ingredients should be 
prepared individually. Dose personalization is not 
needed for a lot of drugs. But in some other patient 
groups, in children and particularly in therapies 
where medications with high toxicity and a limited 
therapeutic window are used, the individual dose 
adjustments can offer significant benefits [20]. In 
addition, the dosage requirements for neonatal, 
pediatric, and geriatric patients differ considerably 
from adult dose [21].  In addition, patients with organ 
dysfunction can need a dosage change to prevent 
drug toxicity. Although the techniques available in 
pharmaceutical manufacturing are useful for mass 
production, 3DP allows for customized, small-
scale production. The dosage quantity, geometry, 
and even the drug release profile can be easily met 
after customization using 3DP, in line with all these 
needs. It will also play a vital role in the practice of 
precision medicine [20,21].  

With the approval of Spritam® (levetiracetam), 
developed using 3DP technology in 2015, by 
the FDA (U.S. Food and Drug Administration), 
the use of this technology in the pharmaceutical 
industry was officially approved for the first time. 
Spritam®, an anti-epileptic drug developed by 
Aprecia Pharmaceuticals, is dispersed in the mouth 
with a very small amount of water in less than 10 
seconds, making it very easy to use in the population 
of disadvantaged patients (eg. pediatric patients, 
elderly patients) [19-22].

3. 3D PRINTING TECHNIQUES

Inside 3DP technology, there are different 
approaches. It is possible to group the 3DP methods 
under five major headings. These include: 

• Vat Polymerization, 
• Powder Bed Fusion, 
• Material Extrusion, 
• Material Jetting,
• Direct Energy Deposition. 

There are various techniques under each heading. 
The materials used are different and limited due to 
the various processes used in 3DP technology used 
for various purposes. Therefore, only some of them 
can be utilized in pharmaceutical production [21-
23]. In this title, only the techniques that can be used 
in pharmaceutical applications will be mentioned 
and detailed. 

3.1. Vat Polymerization

The final product of the vat polymerization technique; 
is obtained by initiating chain reactions in the 
starting product through various means (UV-light, 
radiation, electron beam, etc.). Stereolithography 
(SLA), Digital Light Processing (DLP), 2-Photon 
Polymerization (2-PP), and Continuous Liquid 
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Interface Production (CLIP) techniques will be 
discussed in this section, which comes under the 
category of vat polymerization and can be used for 
drug production [21-23].

3.1.1. Stereolithography (SLA)
One of 3DP’s key methods, developed in 1986, is 
SLA [12,24]. In this procedure, by sending UV-light 
(or electron beams) to a resin layer or a monomer 
solution, a chain reaction is initiated. By transforming 
UV-light into a radical form, the monomers used 
(mainly epoxy-based or acrylic-based) become 
active. These activated monomers are converted 
into polymers instantly [8,25]. The resin that is 
treated with UV light solidifies after polymerization. 
The remaining component is extracted from the 
environment using several processes when the 
printing process is completed [26].

3.1.2. Digital Light Processing (DLP)
This technique is carried out using a photopolymer 
such as SLA. The difference between these two 
methods is that the sources of radiation used 
are distinct. It is a quicker method than the SLA 
technology [8,27].

3.1.3. 2-Photon Polymerization (2-PP)
2-PP is also referred to as Multiphoton Polymerization. 
Higher resolution than the SLA system. It is a process 
that works by polymerizing photo-sensitive material 
due to the absorption of photons at or above 780-820 
nm wavelength and enables micro-and nano-sized 
printing [8,10,28].

3.1.4. Continuous Liquid Interface Production 
(CLIP)
It was developed as a new technology for 3DP in 
2015. 3D printed models constructed in 2-dimensions 

are made possible by sending UV-light to liquid resin 
in the transparent window region. This method based 
on the photopolymerization process has allowed 
printing speed and resolution to be improved [29].

3.2. Powder Bed Fusion 

The product is obtained after operations on the 
powder mass, which consists of solid-micro-sized 
particles on a plane, in the Powder Bed Fusion 
technique. This section will go over the Selective 
Laser Sintering (SLS) technique, which is part of 
the Powder bed fusion technique and can be used for 
drug production [21,23].

3.2.1. Selective Laser Sintering (SLS)
The most widely used industrial 3DP method is SLS 
[30,31]. When putting together micro-sized particles 
in a powder bed to create the finished product, SLS 
is applied using laser light. In this method [32-
35], several different materials, including metals 
and different thermoplastic materials, are used. In 
particular, the method enables products with complex 
geometries to be created [30].

3.3. Material Extrusion

The starting product in the Material Extrusion 
technique can be semi-solid or solid. This starting 
product is extruded to produce the final product. This 
section will go over Fused Deposition Modeling 
(FDM) and the Pneumatic Extraction / Syringe 
Extrusion (PE / SE) technique, which can also be 
used for Material drug production [21,23].

3.3.1. Fused Deposition Modelling (FDM)
The FDM process is based on the thermoplastic 
polymer’s layer-by-layer fusion and solidification 
by heating to make it semi-solid [12,36,37]. Some 
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of the advantages are the speed, low cost, and easy 
processing required by the system [38].

3.3.2. Pneumatic Extrusion / Syringe Extrusion 
(PE / SE)
For the printing of different semi-solid formulations, 
such as hydrogels and pastes, the PE / SE method has 
been developed. A temperature control unit on the 
syringe system may also control the temperature of 
the printing material. The temperature regulation of 
the printing material helps to regulate the material’s 
viscosity and to maintain the material in a semi-solid 
state that enables the material to be 3D printed [39].

3.4. Material Jetting

In the material jetting technique, it is obtained after 
the starting product is cured after spraying directly 
on the surface or after the bonding agent is sprayed 
on the starting product. Under the main heading of 
Material Jetting technique, this section will discuss 
the Material Jetting (MJ) and Binder Jetting (BJ) 
techniques [21,23].

3.4.1. Material Jetting (MJ)
Among 3DP technologies, MJ allows hard and 
soft polymer products to be processed in a single 
process in different colors, with different materials 
[40]. The material jet allows the modification of 
the material properties [41]. The photosensitive 
polymer resin coating is sprayed on the surface by 
the material jet printer, which releases UV-light into 
the environment, resulting in the final product [42].

3.4.2. Binder Jetting (BJ)
BJ, one of the 3DP techniques, is based on the concept 
of spraying a binder solution onto a powder bed [43-
45]. The binder solution used in this process must 
have certain properties. As the average molecular 

weight and polymer concentration of the solution 
increase, the viscosity of the binding solution 
increases, and the substance cannot be printed [46].

4. RELEASE KINETICS AND INFLUENCING 
PARAMETERS

There are a lot of parameters that affect the kinetics 
of release. Changing the shape of the particles of the 
drug first impacts the particles’ surface area, causing 
many changes in their properties [47,48]. If the 
particle’s surface area increases, the particles’ size 
decreases. Reducing the size of the particle increases 
the particle’s surface area and solubility, respectively. 
It can also be used to improve drug solubility as a 
safe method [48-51]. Considering the effect on the 
solubility of the change in particle size, it can be 
predicted that the change in particle surface area will 
also have a significant impact on solubility [1].

The drug release profile can also be affected by 
modifying the 3D shape/structure of the drug 
particle. A change in the shape of the particle, as 
mentioned earlier, may cause a change in the surface 
area that changes the solubility of the drug and as a 
consequence, changes the kinetics of the release of 
the drug [52]. As a consequence, a major factor that 
affects the surface area, drug release kinetics, and 
therefore its interaction with tissue and cell, is the 
shift in the particle shape/structure of drugs [1].

Kinetic models used in drug release research have 
an important role to play in assessing drug release 
mechanisms. A variety of clinical models have 
been adopted to specifically define and address the 
mechanism for the release of drugs for various drugs 
[53-55]. These clinical models and equations are 
shown in Table 2.
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5. RELEASE KINETICS ON 3D PRINTED 
ORAL DOSAGE FORMS

In the studies performed, many different 
3DP technologies have been used to produce 
pharmaceutical dosage forms [56-60]. Using these 
3DP methods, parameters such as size, geometry, 
and surface area of the dosage form may be altered 
[61-63]. These interventions have made it easy 
to improve the release properties of the drug.  
In addition, studies have increased the solubility of 
active pharmaceutical ingredients with low solubility 
properties using 3DP technology [64-66]. Interest 

in the use of 3DP techniques in the pharmaceutical 
industry is increasing every day due to their unique 
capabilities [67,68].

Because tablets, which are the most commonly used 
solid dosage type in the pharmaceutical industry, 
are easy to use by the consumer, patient compliance 
is high and their production is cheaper than other 
dosage forms, it is observed that the studies were 
mainly based on tablets [19,69,70].

The comparison of oral dosage forms obtained 
using 3DP technology for various parameters in this 
compilation analysis is shown in Table 3.

Table 2.   
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Table 3. Comparison in terms of various parameters of oral dosage forms developed using 3DP Technologies
Active Pharmaceutical 
Ingredient

Dosage Form
Release 
Profile

Release Kinetic 
Model

3DP Technique Polymer Ref.

4-Aminosalicylic acid
Tablet

Immediate 
release

N/A FDM
Kollidon® 12 PF

[80]
Ramipril Kollidon® VA 64
4-Aminosalicylic acid

Tablet
Modified 
release

N/A FDM PVA filament [94]
5-Aminosalicylic acid

5-Fluorouracil Patch

Prolonged 
release

N/A Syringe extrusion
PLGA

[95]
Controlled 

release PCL

Amitriptyline HCl Tablet
Immediate 

release
N/A Binder jetting PVP [19]

Ascorbic acid Hydrogel
Controlled 

Release
N/A SLA

Poly(ethylene glycol) 
dimethacrylate

[96]

Aspirin
Tablet

Sustained 
Release

N/A SLA
PCL

[97]
Paracetamol PEGDA
Aspirin

Tablet

Immediate 
release

N/A Syringe extrusion HPMC [58]
Atenolol
Hydrochlorothiazide
Pravastatin Sustained 

releaseRamipril

Bicalutamide Tablet

Combined 
release 

(Immediate 
release and 
Controlled 

release)

N/A FDM

Kollicoat® IR

[81]
PLA

PLA filament

PVA filament

Budesonide Tablet

Controlled 
release

N/A FDM PVA filament [98]
Modified 
release

Caffeine Tablet N/A Higuchi Binder jetting HPC [20]

Caffeine 
Caplet 

(DuoCaplet)

Delayed 
release

N/A FDM PVA filament [15]
Paracetamol

Controlled 
release

Calcein
Tablet

Controlled 
release

N/A FDM
PVA

[99]
Fluorescein PLA Filament

Captopril Tablet
Rapidly 

dispersing
N/A Binder jetting Mannitol [87]

Captopril
Tablet

Sustained 
release

First-order
Syringe extrusion

Cellulose acetate
[71]Glipizide

Korsmeyer–Pappas HPMC
Nifedipin

Carbamazepine Scaffold
Sustained 

release
Zero order FDM ABS filament [100]

Carvedilol Tablet Rapid release N/A Material jetting
PEGDA

[78]
PVP
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Table 3. Continued
Active Pharmaceutical 
Ingredient

Dosage Form
Release 
Profile

Release Kinetic 
Model

3DP Technique Polymer Ref.

Carvedilol Tablet
Extended 

release

Hopfenberg

FDM

Affinisol™ HPMC HME 
15LV

[72]
Eudragit® E PO

HPCKorsmeyer-Peppas
HPMC

Peppas-Sahlin Kollidon® SR

Catechin
Muco-

Adhesive Oral 
Films

Controlled 
release

N/A Syringe extrusion HPMC [101]

Cefazolin Scaffold
Sustained 

release
N/A FDM

PCL
[82]

Gelatin methacrylate

Cidofovir
Bioadhesive 

film

Modified 
release

N/A Binder jetting
PEG-PCL

[83]
Paclitaxel

Controlled 
release

PCL

Ciprofloxacin HCl Tablet N/A Zero order FDM PVA [75]
Copper sulphate (II) 
pentahydrate Wound 

dressings (nose 
and ear)

Controlled 
release

N/A FDM PCL [84]
Silver nitrate
Zinc oxide

Curcumin Tablet
Controlled 

release
N/A FDM PVA filament [102]

Deflazacort Tablet
Prolonged 

release
N/A FDM

PCL
[103]Eudragit® RL 100

Eudragit® RS 100

Dexamethasone Scaffold
Controlled 

release
N/A FDM

PCL
[104]

Poloxamine (Tetronic®)

Dexamethasone-21-
phosphate disodium salt

Scaffold
Prolonged 

release
N/A Syringe extrusion

PLGA
[105]

PVA

Dipyridamole Tablet
Sustained 

release
N/A Syringe extrusion HPMC [106]

Domperidone
Suppository N/A N/A FDM

PVA filament
[107]

Ibuprofen
PEG 400
PEG 6000

Dronedarone HCl Tablet
Controlled 

release
Hixson-Crowell FDM

PEG
[73]

PVA filament
Efavirenz

Tablet
Controlled 

release
N/A Syringe extrusion

Hydroxyethylcellulose 
ethoxylate

[108]
Emtricitabine
Tenofovir disoproxil 
fumarate

Fenofibrate Tablet

Controlled 
release

N/A Syringe extrusion Beeswax [109]
Tuneable 
release

Fibroblast growth factor-2 Scaffold
Sustained 

release
N/A FDM Calcium Silicate/PCL [110]

Fluorescein Tablet N/A N/A FDM PVA filament [111]
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Table 3. Continued
Active Pharmaceutical 
Ingredient

Dosage Form
Release 
Profile

Release Kinetic 
Model

3DP Technique Polymer Ref.

Gentamicin sulfate Endovascular 
catheter

Sustained 
release

N/A FDM PLA [112]
Methotrexate

Ginkgolide Tablet
Controlled 

release
N/A Syringe extrusion HPMC [113]

Glimepiride
Tablet

Sustained 
release

N/A FDM
PVA

[114]
Metformin Eudragit® RL

Glipizide Tablet
Controlled 

release
Korsmeyer–Peppas FDM PVA filament [76]

Guaifenesin Tablet
Sustained 

release
N/A Syringe extrusion

HPMC
[68]

Poly(acrylic acid)

Haloperidol Tablet
Immediate 

release
N/A FDM

Kollidon® VA 64

[61]
Kollicoat® IR

Affinisol™HPMC HME 
15 cP

HPMCAS

Hydrochlorothiazide Tablet
Immediate 

release
N/A FDM Eudragit® E [63]

Ibuprofen
Tablet

Delayed 
release

N/A SLA
PEGDA

[115]
Riboflavin PEG 300

Ibuprofen Fast-dissolving 
oral films

Extended 
release

N/A FDM
PEO

[116]
PVA

Paracetamol PEG

Indomethacin Tablet N/A N/A FDM
PEG

[117]
HPMCAS

Indomethacin Implant
Controlled 

release
N/A FDM PCL [118]

Indomethacin Implant N/A Higuchi FDM Ethylene vinyl acetate [119]

Insulin Microneedle Rapid release N/A
SLA

Mannitol
[88]Xylitol

Binder jetting Resin

Isoniazid
Implant

Extended 
release

N/A FDM
PLA Filament

[120]PEO
Rifampicin B PVA filament

Lamivudine Capsule
Delayed 
release

N/A FDM PVA [121]

Levofloxacin Implant
Burst release

N/A Binder jetting PLA [122]
Pulsed release

Levofloxacin
Scaffold

Prolonged 
release

N/A Syringe extrusion
Gelatin-Glutaraldehyde

[123]
Rifampin Sustained 

releaseVancomycin PVA
Metformin HCl Tablet N/A N/A FDM PVA filament [124]

Metformin HCl Capsule
Tunable 
release

N/A FDM
PLA Filament

[125]
PVA filament

Metronidazole Tablet N/A Zero order FDM PVA [126]

Nitrofurantoin Implant
Controlled 

release
N/A FDM PLA [127]
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Table 3. Continued
Active Pharmaceutical 
Ingredient

Dosage Form
Release 
Profile

Release Kinetic 
Model

3DP Technique Polymer Ref.

Ofloxacin

Implant
Sustained 

release
N/A Binder jetting

Dicalcium phosphate 
anhydrous (monetite, 

CaHPO4)
[128]Tetracycline Hydroxyapatite

Vancomycin
Dicalcium phosphate 
dihydrate (brushite, 
CaHPO4·2H2O)),

Pantoprazole sodium Tablet
Immediate 

release
N/A FDM

PEG 6000

[79]

Kollidon® VA 64
Kollicoat® IR
PEO 100,000

PVP
Poloxamer 407

PEG 20000

Paracetamol Tablet
Controlled 

release
Zero order

FDM HPC [74]
First-order

Paracetamol Tablet
Controlled 

release
N/A FDM PVA filament [62]

Paracetamol Tablet
Controlled 

release
N/A FDM HPMC [129]

Paracetamol Tablet
Controlled 

release
N/A FDM

EC

[130]
Eudragit® L 100

HPC
HPMC

Soluplus®

Paracetamol Tablet
Controlled 

release
N/A FDM HPMCAS [131]

Paracetamol Tablet

Immediate 
release

N/A SLS

Kollicoat® IR

[132]
Eudragit® L 100

Modified 
release

EC

Prednisolone Tablet
Extended 

release
N/A FDM PVA filament [17]

Prednisolone Implant
Controlled 

release
N/A Syringe extrusion Polydimethylsiloxane [133]

Progesterone
Biodegradable 

projectile
Extended 

release
N/A FDM PLA [134]

Progesterone Implant
Controlled 

release
N/A FDM

PCL
[85]

PLA

Propranolol HCl
Orodispersible 
drug delivery 

systems

Immediate 
release

N/A Binder jetting HPC [135]

Propranolol HCl 
(Indicardin®, 40 mg)

Tablet
Controlled 

release
N/A FDM

Cellulose acetate
[89]D-Mannitol

PEG 6000
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6. RESULTS

This review research examined 79 publications 
in total. When the studies using the release kinetic 
models in Table 4 were examined, there was no 
correlation between the polymer type or print 
technique and the release kinetic model. Only 
15.19% of the 79 studies included release kinetics 
studies. The kinetics of the active substance’s release 
from the dosage form was not determined in the 
studies under review, which is believed to be one of 
the reasons why no correlation could be found.

When the results of the investigations are considered 
together, no conclusion can be drawn that single 
release kinetics was obtained in studies using 
Eudragit® derivatives, PEG, PEGDA, or Cellulose-
derived polymers [20,71-74]. However, in research 
studies PVA and PLA polymers, immediate or rapid 
release was obtained [73,75-77]. In studies involving 
PVP polymer, it was found that immediate and rapid 
release was obtained [19,56,78,79]. Other than 
Kollidon® SR, the immediate release was observed 
in studies using Kollidon® and Kollicoat® derivatives 
[61,72,79-81]. PCL polymer, which provides longer 

Table 3. Continued
Active Pharmaceutical 
Ingredient

Dosage Form
Release 
Profile

Release Kinetic 
Model

3DP Technique Polymer Ref.

Rasagiline mesylate

Orodispersible 
films Prolonged 

release
N/A Binder jetting

HPMC
[136]

Transparency 
films

Crospovidone

rhBMP2 (recombined 
human bone 
morphogenetic protein-2)

Scaffold

Controlled 
release

N/A Syringe extrusion Chitosan [137]Non-
controlled 

release

Riboflavin Tablet
Controlled 

release
N/A FDM

PLA Filament
[138]PVA

PCL

Rodhamine B
Hydrogel 
Patches

Controlled 
release

N/A Syringe extrusion
Alginic acid sodium salt

[139]
Starch

Ropinirole HCl Tablet N/A Korsmeyer-Peppas Material jetting PEGDA [59]

Salicylic acid
Patches (nose-

shape)
N/A N/A

FDM
PLA filament

[86]
PCL Filament

SLA
PEGDA

PEG

Theophylline Tablet
Sustained 

release
Korsmeyer-Peppas FDM

Eudragit® FS 30 D
[77]HPMC

PLA filament

Theophylline Tablet
Extended 

release
N/A Syringe extrusion HPMC [140]

Thiamine HCl Tablet Rapid release N/A Binder jetting PVP [56]
Vancomycin Bone graft N/A N/A Syringe extrusion Sodium alginate [141]

Warfarin Tablet
Immediate 

release
N/A FDM Eudragit® E PO [142]

*N/A: Not Available
**ABS: Acrylonitrile butadiene styrene, EC: Ethylcellulose, HPC: Hydroxypropyl cellulose, HPMC: Hydroxypropyl methylcellulose, 
HPMCAS: Hydroxypropyl methylcellulose acetate succinate, PCL: Poly-𝜀-caprolactone, PEG: Polyethylene glycol, PEGDA: 
Poly(ethylene glycol) diacrylate, PEO: Poly(ethylene oxide), PLA: Polylactic acid, PVA: Polyvinyl alcohol, PVP: Polyvinyl pyrrolidone
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drug release, has been used to achieve prolonged 
release, controlled release, and sustained release 
[82-86]. Except for one study, the rapid release was 
obtained in mannitol studies [87,88]. Mannitol was 
used in combination with cellulose acetate and PEG 
in the study, which resulted in controlled release 
rather than a rapid release [89].

7. CONCLUSION

This study demonstrates the methods, active 
pharmaceutical agents, polymers, pharmaceutical 
dosage formulations, and release kinetics used in 
79 studies and trials. This research, which we have 
done, illustrates clearly the benefits of using 3DP 
techniques in the pharmaceutical industry. It would 
be very convenient to use it in the development 

of personalized drugs in the future, considering 
the advantages of 3DP technologies, such as the 
ability to modify the dose, to alter the geometry of 
the dosage shape, to adjust the surface area, to be 
cheaper and simpler than traditional methods. This 
is a very convenient technology, especially for 
vulnerable patients, such as the elderly and children, 
for the production of drugs at sensitive doses. The 
parameters needed for production will be better 
understood and more controllable as the research 
performed with 3DP technologies increases. Future 
studies should also establish and define GMP (Good 
Manufacturing Practice) and QbD (Quality by 
Design) procedures. The predicted outcome in the 
future would be that 3DP technology will be used by 
the pharmaceutical industry and that more approved 
products will be developed on the market using 3DP 
technology.

Table 4. Release kinetic models calculated in studies
3DP Technique Release Kinetic Model Polymer Ref.
Binder jetting Higuchi HPC [20]

FDM

Zero order ABS filament [100]

Hopfenberg
Affinisol™ HPMC HME 15LV

[72]
Eudragit® E PO

Korsmeyer-Peppas
HPC

HPMC
Peppas-Sahlin Kollidon® SR

Zero order PVA [75]

Hixson-Crowell
PEG

[73]
PVA filament

Korsmeyer-Peppas PVA filament [76]
Higuchi Ethylene vinyl acetate [119]

Zero order PVA [126]
Zero order

HPC [74]
First-order

Korsmeyer-Peppas
Eudragit® FS 30 D

[77]HPMC
PLA filament

Material jetting Korsmeyer-Peppas PEGDA [59]

Syringe extrusion
First-order Cellulose acetate

[71]
Korsmeyer-Pappas HPMC

*ABS: Acrylonitrile butadiene styrene, HPC: Hydroxypropyl cellulose, HPMC: Hydroxypropyl methylcellulose, PEG: Polyethylene 
glycol, PEGDA: Poly(ethylene glycol) diacrylate, PVA: Polyvinyl alcohol.
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