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ABSTRACT. Recently, the construction of 2D empirical wavelets based on partitioning the Fourier domain with the
watershed transform has been proposed. If such approach can build partitions of completely arbitrary shapes, for
some applications, it is desirable to keep a certain level of regularity in the geometry of the obtained partitions. In
this paper, we propose to build such partition using Voronoi diagrams. This solution allows us to keep a high level of
adaptability while guaranteeing a minimum level of geometric regularity in the detected partition.
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1. INTRODUCTION

Empirical wavelets have been proposed in [8] in the 1D case, and then extended to 2D in [7]
as an alternative to the empirical mode decomposition [9]. Its purpose is to build data-driven
wavelets, i.e. a family of wavelets which is designed based on the content of the original sig-
nal/image to analyze. The corresponding wavelet filter bank aims at extracting the harmonic
modes (i.e. amplitude modulated - frequency modulated components) plus some residue. This
is achieved by considering that the expected modes should have a compact support (or at least
are rapidly decreasing outside a compact support) in the Fourier domain. Therefore, the adapt-
ability is obtained by detecting the supports of each mode instead of following some prescribed
rule like classic wavelets. A wavelet filter is built for each support providing us the sought
wavelet filter bank. A theoretical analysis of such construction in the 1D case is available in
[2], considering arbitrary partitioning of the Fourier domain. If in 1D, partitions are made of
intervals, partitions in 2D can have more variability in terms of their geometry. For instance,
in [7], several types of geometries have been considered like rectangular boxes (analogous to
a tensor approach), concentric rings centered at the origin (to represent Littlewood-Paley type
operators), and polar wedges (to mimic the behavior of curvelets). A higher degree of flexibility
have been achieved in [1], where partitions of arbitrary shapes are detected thanks to a water-
shed transform. Such level of adaptability is desirable for many applications, however it can
lead to non-smooth geometries, affecting the degree of regularity of the wavelets themselves,
which is frequently a desirable property for particular analyses. In this paper, we propose an
alternative type of partitions based on Voronoi diagrams. This solution provides a trade-off
between a high level of adaptability while keeping some simple geometric constraint on the
partition to keep good properties of the obtained wavelets.
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The remaining of the paper is organized as follows. Section 2 gives a brief reminder about
empirical wavelets, in particular the 2D case. Section 3 describes the Voronoi based empirical
wavelets. Some experiments will be presented in Section 4 while conclusions will be given in
Section 5.

2. EMPIRICAL WAVELETS

Empirical wavelets have proven to be very efficient in different problems from science and
engineering, see for instance [3, 4, 5, 10, 11] to cite only a few. Their construction is originally
inspired by the Empirical Mode Decomposition [9]. It aims at writing a signal f as the sum of
harmonic modes fk (i.e. amplitude modulated-frequency modulated components) and some
residue r:

f(x) = r(x) +
N∑

k=1

fk(x).

The key assumption is that the Fourier transform, f̂k, of each mode has a compact support, or
is at least rapidly decaying outside of a compact support. Each wavelet filter, ψk, is then built
on top of each support. The expected modes are obtained by filtering the signal f by ψk, i.e.
f̂k(ξ) = f̂(ξ)ψ̂k(ξ), where ξ is the frequency, and then the inverse Fourier transform is applied
to get fk. Note that we will denote ψ0 the scaling function that extracts the residue r (i.e. f0 =
r). Empirical wavelets follow the same principle as classic wavelet except that the supports
of each wavelet filter in the Fourier domain are not given by a given rule (like the dyadic
decomposition) but are detected from the spectrum of f itself. In practice, given a function
f , we compute its magnitude spectrum, |f̂ |, then partition the Fourier domain to obtain the
supports of the expected harmonic modes. Equipped with this partition, we build the wavelet
filters and finally decompose f . This process describes the empirical wavelet transform. Note
that this transform is not linear since the support detection step is, in general, not linear.

If in 1D, partitions of the Fourier domain are collections of intervals, in 2D, the partition cells
can have very different geometries. For instance, in [7], the authors have re-visited some exist-
ing constructions of classic wavelets, and have shown that building empirical versions of them
is equivalent to partition the 2D Fourier domain with 1) rectangular boxes those edges are par-
allel to the frequency axis, 2) concentric rings centered around the origin, 3) polar wedges. Each
of these types of partitions correspond respectively to tensor wavelets (Figure 1.a), Littlewood-
Paley wavelets (Figure 1.b), and curvelets (Figure 1.c). These partitions have strong geomet-
ric constraints since they are based on boxes, rings and angular sectors. A higher level of
adaptability has been reached in [1], where the authors proposed to use a watershed trans-
form [13, 14, 15] to find the lowest level lines in the Fourier domain that separate the expected
supports, see Figure 1.d. Such approach removes all geometric constraints on the shape of
the partition cells. However, if such flexibility is desirable for some applications, it also has
some drawbacks. More specifically, the curves corresponding to the cell edges may lack some
smoothness which will directly impact the level of regularity of the built wavelets, which can
be an issue in particular circumstances. To mitigate such issue, we propose in the next section
to use Voronoi partitions. This solution allows us to keep a comparable level of flexibility, since
we use the same seeds than in the watershed case to find the Voronoi cells; and the partition
geometry is smoother since the cells edges are made of linear segments.

3. EMPIRICAL VORONOID WAVELETS

In this section, we give the details on the construction of Empirical Voronoi Wavelets (EVW).
In a nutshell, the different steps are: 1) detect the position of meaningful harmonic modes
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FIGURE 1. Existing 2D partitions of the Fourier domain. These different types
of partitions correspond to a) tensor wavelets, b) Littlewood-Paley wavelets,
c) curvelet type, d) watershed wavelets.

within the magnitude spectrum, 2) create the Voronoi partition, 3) build the wavelet filters ac-
cordingly to each Voronoi cell. Finally, the transform is obtained by performing each individual
filtering. Hereafter, we provide details about these different steps.

3.1. Detection of harmonic mode positions. To detect the position of the meaningful har-
monic modes within the magnitude spectrum, |f̂ |, we use the same method as in [1]. It consists
in building a scale-space representation [6] of |f̂ |: S(ξ, σ) = (|f̂ | ∗gσ)(ξ), where gσ is a Gaussian
kernel with variance σ. For each value of σ (we take the convention that g0 = δ, the Dirac func-
tion), we detect the set of local maxima, denoted {ξσn}

Nσ
n=1, in S, whereNσ is the number of such

local maxima for σ. By increasing σ, the spectrum becomes smoother removing the small vari-
ations within it, hence Nσ is decreasing (this property comes from one axiom of the scale-space
theory that states that no extrema can appear while σ increases). We can then obtain a binary
scale-space representation that is zero everywhere except where local maxima were detected,
see Figure 2.a. The main idea is to notice that the maxima that do correspond to the expected
meaningful modes are the ones corresponding to the “longest” curves in that representation.
Therefore, if we denote ln = argmaxσ{ξσn exist} the length of the curve associated to ξ0n, we
can compute the histogram of {ln}N0

n=1. This histogram will be bimodal: one mode will mostly
count for the shortest curves while the second one for the longest ones. Then, we use Otsu’s
algorithm [12] to automatically find a threshold, T , that separates these two modes. The indices
of the sought longest curves are then given by Λ = {n | ln > T}, the position of the meaningful
modes {ξ0n}n∈Λ extracted from Figure 2.a are depicted in Figure 2.b.

3.2. Voronoi partitioning. The next step consists in using the set {ξ0n}n∈Λ, found previously,
as the seeds of a Voronoi partitioning algorithm [16]. Each position in the domain is tagged
with the label of the closest maxima position (we used the Euclidean distance). Note that, in
the numerical implementation, if a given position is at equal distance from two maxima, some
rule must be implemented to preserve the central symmetry that is expected when real images
are processed. The Voronoi partition corresponding to the set of meaningful maxima depicted
in Figure 2.b is given in Figure 2.c. To enforce a real transform, we pair together the Voronoi
cells that are symmetric with respect to the origin.

3.3. Empirical Voronoi Wavelet transform. The construction of the wavelet filters follow the
same procedure as in [1]. Given a Voronoi cell Ω, if we denote ∂Ω its edge, we define a distance
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FIGURE 2. a) existence of local maxima in the scale-space representation. Each
curve correspond to one originally detected maxima. The vertical axis corre-
sponds to the scale parameter σ. b) positions of maxima {ξ0n}n∈Λ correspond-
ing to the meaningful modes. c) the Voronoi partition associated with {ξ0n}n∈Λ.

Input : image f
Output: set of EVW filters {ψ̂Ωk

}, set of wavelet coefficients {fk}

1 f̂ ← F(f)
2 Detect position of harmonic modes {ξ0n}n∈Λ from |f̂ |
3 Create the Voronoi partition {Ωk}Nk=1 from the seeds {ξ0n}n∈Λ

4 for k = 1 to N do
5 Build ψ̂Ωk

using Eq.(3.3)
6 Extract wavelet coefficients fk = F−1(f̂ ψ̂Ωk

)

7 end
Algorithm 1: Empirical Voronoi Wavelet Transform

transform by

(3.1) DΩ(k, l) =

{
2π
N min(p,q)∈∂Ω

(
d(k, l, p, q)

)
if (k, l) ∈ Ω

−2π
N min(p,q)∈∂Ω

(
d(k, l, p, q)

)
if (k, l) /∈ Ω

,

where d(k, l, p, q) is the quasi-Euclidean distance:

(3.2) d(k, l, p, q) =

{
(
√
2− 1)|q − l|+ |p− k| if |p− k| ≥ |q − l|

(
√
2− 1)|p− k|+ |q − l| if |p− k| < |q − l|.

The corresponding empirical Voronoi wavelet filter, ψ̂Ω, is then defined in the Fourier domain
by

(3.3) ψ̂Ω(k, l) =


1 if DΩ(k, l) > τ

cos
(

π
2β
(

τ−DΩ(k,l)
2τ

))
if DΩ(k, l) ≤ |τ |

0 if DΩ(k, l) < −τ,

where τ defines the width of a transition area along ∂Ω and β(x) = x4(35− 84x+70x2− 20x3).
The Empirical Voronoi Wavelet transform (EVWT) is summarized in Algorithm 1 (we denote
F and F−1 the Fourier transform and its inverse, respectively).

It is straightforward to see that Proposition 1 in [1] remains valid in the present work since
a Voronoi partition can be seen as a particular case of the more general partition considered
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in [1]. Therefore, the set {ψΩk
} forms a frame. The direct consequence is the guaranty of the

existence of the inverse transform by constructing the dual frame {ψ̃Ωk
} via

̂̃
ψΩk

=
ψ̂Ωk∑N

k=0 |ψ̂Ωk
|2
.

The inverse transform is thus given by

f = F−1

(
N∑

k=0

f̂k
̂̃
ψΩk

)
.

4. EXPERIMENTS

The example of an empirical Voronoi wavelet transform is given in Figure 3. The input image
(on the top left of the figure) is a toy example made of piecewise objects (the oval and rectangle)
on which four harmonic modes are superimposed. Two pairs of harmonic modes have similar
frequencies but different orientations, i.e their corresponding positions in the Fourier domain
lie in specific rings with different angular positions. The top right image shows the Voronoi
partition plotted on top of the logarithm of the image magnitude spectrum. We can observe
that the method indeed associates some specific cells to the particular harmonic modes. Finally,
the wavelet coefficients, fk, are given in the remaining images. We emphasize that each image
has been re-normalized for visualization purposes most of them contain only information of
very small magnitude compared to the main modes (given by the boxed images). On the other
hand, the boxed images clearly show that some filters are indeed capable of extracting the
different harmonic modes as well as the objects.

5. CONCLUSION

In this paper, we have proposed an alternative on how to create partitions in the Fourier do-
main for the purpose of building 2D empirical wavelets. Our solution, using Voronoi diagrams,
provides a trade-off between having sub-domain with regular edges, and a high level of adapt-
ability like the one previously proposed in the construction of empirical watershed wavelets.
The corresponding Matlab code is publicly available at https://www.mathworks.com/
matlabcentral/fileexchange/42141-empirical-wavelet-transforms.
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FIGURE 3. Example of an empirical Voronoi wavelet transform. The top left
image is an synthetically generated input image, in particular it contains four
harmonic modes. The top right image depicted the detected Voronoi partition
superimposed on the logarithm of the magnitude spectrum of the input im-
age. The remaining images correspond to the outputs of the different empirical
Voronoi wavelet filters. Note that the images that look black do actually con-
tain some information of very small energy compared to the main harmonic
modes.

REFERENCES

[1] B. Hurat, Z. Alvarado and J. Gilles: The Empirical Watershed Wavelet, Journal of Imaging, 6 (12) (2020), 140.
[2] J. Gilles: Continuous empirical wavelets systems, Advances in Data Science and Adaptive Analysis, 12 (03n04) (2020),

2050006.



Empirical Voronoi wavelets 189

[3] K. Bui, J. Fauman, D. Kes, L.Torres Mandiola, A. Ciomaga, R. Salazar, A.L. Bertozzi, J. Gilles, D. P. Goronzy,
A. I. Guttentag and P. S. Weiss: Segmentation of Scanning Tunneling Microscopy Images Using Variational Methods
and Empirical Wavelets, Pattern Analysis and Applications, 23 (2020), 625–651.

[4] Y. Huang, F. Zhou and J. Gilles: Empirical curvelet based Fully Convolutional Network for supervised texture image
segmentation, Neurocomputing, 349 (2019), 31–43.

[5] Y. Huang, V. De Bortoli, F. Zhou and J. Gilles: Review of wavelet-based unsupervised texture segmentation, advantage
of adaptive wavelets, IET Image Processing Journal, 12 (9) (2018), 1626–1638.

[6] J. Gilles, K. Heal: A parameterless scale-space approach to find meaningful modes in histograms - Application to image
and spectrum segmentation, International Journal of Wavelets, Multiresolution and Information Processing, 12 (6)
(2014), 1450044-1–1450044-17.

[7] J. Gilles, G. Tran and S. Osher: 2D Empirical transforms. Wavelets, Ridgelets and Curvelets Revisited, SIAM Journal
on Imaging Sciences, 7 (1) (2014), 157–186.

[8] J. Gilles: Empirical Wavelet Transform, IEEE Transactions on Signal Processing, 61 (16) (2013), 3999–4010.
[9] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N-C. Yen, C. C. Tung and H. H. Liu: The

empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. Royal
Society London A., 454 (1998), 903–995.

[10] W. Liu, S. Cao and Y. Chen: Seismic TimeFrequency Analysis via Empirical Wavelet Transform, IEEE Geoscience and
Remote Sensing Letters, 13 (1) (2016), 28–32.

[11] X. Zhang, X. Li and Y. Feng: Image fusion based on simultaneous empirical wavelet transform, Multimedia Tools and
Applications, 76 (2017), 8175–8193.

[12] N. Otsu: A threshold selection method from gray-level histograms, IEEE Trans on Systems, Man and Cybernetics, 9 (1)
(1979), 62–66.

[13] S. Beucher, C. Lantuéjoul: Use of Watersheds in Contour Detection, International Workshop on Image Processing:
Real-time edge and motion detection-estimation, Rennes, France, 2.1–2.12.

[14] F. Meyer: Topographic distance and watershed lines, Signal Processing, 38 (1) (1994), 113-125.
[15] F. Meyer, S. Beucher: Morphological segmentation, Journal of Visual Communication and Image Representation, 1

(1) (1990), 21–46.
[16] F. Aurenhammer, R. Klein and D.-T. Lee: Voronoi Diagrams and Delaunay Triangulations, World Scientific, (2013).

JÉRÔME GILLES

SAN DIEGO STATE UNIVERSITY

DEPARTMENT OF MATHEMATICS & STATISTICS

5500 CAMPANILE DR, SAN DIEGO, CA 92182, USA
ORCID: 0000-0002-5626-8386
E-mail address: jgilles@sdsu.edu


	1. Introduction
	2. Empirical wavelets
	3. Empirical Voronoid wavelets
	3.1. Detection of harmonic mode positions
	3.2. Voronoi partitioning
	3.3. Empirical Voronoi Wavelet transform

	4. Experiments
	5. Conclusion
	6. Acknowledgement
	References

