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ABSTRACT 

     Due to decarbonization and greenhouse gas (GHG) emission reduction attempts nowadays, liquefied natural gas (LNG) has 

become widely used as an alternative marine fuel. As Japan is the top global LNG importer and one of the largest crude oil importers, 

this study focuses on LNG and tanker shipping and their emissions in Japan, and import volumes. In this study, the emission 

estimation model is constructed based on the Holtrop-Mennen power prediction method. Using automatic identification system 

(AIS) data, fuel consumption and GHG emissions are estimated. Next, long term GHG emission is predicted using the Japan trade 

statistics. Combining the vessel movement data and trade statistics, GHG emission in Japan is projected to decline over years for 

tankers, and to remain stable for LNG carriers. The results could be considered in formulating environmental and trade policy. It is 

hoped the study will provide useful insights for zero emission projects and implementations in Japan. 

    Keywords: Automatic identification system, ship emission, greenhouse gases, LNG, Japan. 

 

ÖZ 

     Günümüzde karbonsuzlaştırma ve sera gazı (GHG) emisyonlarını azaltma girişimleri nedeniyle sıvılaştırılmış doğal gaz (LNG) 

alternatif bir denizcilik yakıtı olarak yaygın bir şekilde kullanılmaya başlanmıştır. Japonya en büyük küresel LNG ithalatçısı ve en 

büyük ham petrol ithalatçılarından biri olduğundan, bu çalışma LNG ve tanker taşımacılığı ile bunların Japonya'daki emisyonlarına 

ve ithalat hacimlerine odaklanmaktadır. Bu çalışmada, emisyon tahmin modeli Holtrop-Mennen güç tahmin yöntemine dayalı olarak 

oluşturulmuştur. Otomatik tanımlama sistemi (AIS) verileri kullanılarak yakıt tüketimi ve sera gazı emisyonları tahmin edilmiştir. 

Daha sonra, Japonya ticaret istatistikleri kullanılarak uzun vadeli sera gazı emisyonu tahmin edilmiştir. Gemi hareket verileri ve 

ticaret istatistikleri birleştirildiğinde, Japonya'daki sera gazı emisyonunun tankerler için yıllar içinde azalacağı ve LNG taşıyıcıları 

için sabit kalacağı öngörülmektedir. Sonuçlar çevre ve ticaret politikalarının oluşturulmasında dikkate alınabilir. Çalışmanın 

Japonya'daki sıfır emisyon projeleri ve uygulamaları için faydalı bilgiler sağlayacağı umulmaktadır. 

    Anahtar Kelimeler: Otomatik tanımlama sistemi, gemi emisyonu, sera gazları, LNG, Japonya. 
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1. INTRODUCTION 

Transportation including all modes as well as passenger and freight is the second largest CO2 

emitter, which accounts for 24% of the world CO2 emissions (International Energy Agency [IEA], 

2017). International shipping accounts for 2.89% of the global CO2 emissions in 2018 (International 

Maritime Organization [IMO], 2021). While shipping is the most efficient and eco-friendly modes 

of transport in terms of emissions per cargo carried and distance travelled, carbon and greenhouse 

gas (GHG) emissions are also expected to rise from international shipping (Benamara et al, 2019). 

In 2018, IMO adopted the initial strategy on GHG emission reduction from ships. The strategy set 

the target to reduce the current GHG emissions by at least 40% by 2030, 50% by 2050, and to phase 

out GHG by the end of the 21st century. UNCTAD (2021) assessed that the global shipping fleet 

has become more energy efficient although GHG emissions continue to increase (United Nations 

Conference on Trade and Development). 

To achieve the 2050 target and beyond, one of the pathways to GHG reduction will be the use of 

alternative fuels. Among them, liquefied natural gas (LNG) fuel is one of the options. The (MLIT) 

assumed that LNG fuels will continue to be the trend to emission pathways (MLIT, 2020) although 

LNG is not as effective as other alternatives such as hydrogen and ammonia. The IMO report (2020) 

showed that the LNG market sector will continue to grow. Therefore, this study primarily focuses 

on LNG shipping and their emissions. 

A report by IGU showed that Japan is the top LNG importer, importing 74.43 MT which accounts 

for 21% of the global LNG market (International Gas Union [IGU], 2021). LNG trade in the Asian 

market is projected to increase (IEA, 2019). As LNG is already practically applied as alternative 

marine fuels and as energy use, LNG import to Japan is expected to increase. In addition to LNG, 

Japan is one of the largest crude oil importing countries. Therefore, it is important to note and keep 

track of the import volumes and vessels in Japan waters and their GHG emissions. Hence, the Japan 

coastal region is chosen as a study domain. 

In this study, the authors would like to focus on emission status and the relation to crue oil and LNG 

trade in the Japan coastal region. We hope that the study will offer new insights and considerations 

in terms of environmental regulations and marine traffic policies to protect the local environment 

and society. 

 

2. Background on Automatic Identification System (AIS) 

Ships of over 300 gross tonnage engaged in international voyages and cargo vessels of over 500 

gross tonnage not engaged in international voyages are required to equip Class A AIS by IMO 

(2002). The purpose of AIS is to enhance safety of life at sea, safety and efficiency of navigation, 

and protection of the marine environment. Initially intended as a collision avoidance system for 

vessel identification, target tracking, and information exchange for situational awareness, it is 

designed for ships to automatically transmit vessel information to ships in vicinity and reporting to 

maritime authorities. 

Nowadays, AIS data provide valuable resources to authorities, academia and industry. AIS data are 

extensively applied in the following fields: maritime surveillance, environmental sustainability, 

energy efficiency, speed optimization, route planning and predictive analysis in ship performance 

and trajectory prediction. Munim et. al. (2020) noted that AIS data applied to investigate a wide 

range of research topics will contribute to big data and AI research domain in the maritime industry. 
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In terms of emission study using AIS data, Yao et al (2016) studied ship emission inventories from 

terrestrial AIS in the Yangtze River estuary. Li et al (2016) investigated uncertainties in ship 

emission inventory in the Pearl River Delta region. Kim et al (2021) estimated the global LNG fleet 

emission inventory spatially.  Woo and Im (2021) studied the gas emission inventory in Busan by 

bottom-up approach. Wang et al (2021) conducted the prediction on CO2 emissions by long short-

term memory (LSTM). In this study, ship emission estimation will be calculated based on the 

Holtrop-Mennen power prediction model by using satellite AIS data. 

As AIS data are movement data and do not contain cargo information, studies using AIS data focus 

on emission estimations from marine traffic. However, trade volumes can be estimated from AIS 

data. Yan et al (2020) analyzed the global marine oil trade based on AIS data. Applying AIS data, 

the study analyzed the traffic route, trade volume and trade network. Van der Loeff et al (2018) 

discussed the approach for commodity volume estimation from AIS data by linking cargo 

composition data, vessel journeys and specifications and vessel emissions from a bottom-up 

methodology. Trimmer and Godar (2019) suggested a study approach to carbon emissions and air 

pollution to commodity shipment and allocated emissions to commodities. 

 

3. DATA AND STUDY AREA 

3.1. Brief Data Description 

The AIS data used in this study were provided by exactEarth. The data are collected via satellites 

by the company so the data can be obtained throughout the oceans regardless of the vessel position 

and the weather conditions.The reported data consist of maritime mobile service identity number 

(MMSI), IMO number, vessel name, callsign, vessel type, vessel type cargo, vessel class, length, 

width, flag country, destination, estimated time of arrival (ETA), draught, longitude, latitude, speed 

over ground (SOG) in knots, course over ground (COG), rate of turn (ROT), heading, navigation 

status, timestamp of the last position and static AIS message, date and time of the last position and 

static AIS message, main vessel type and sub vessel type. The data were provided in the comma-

separated values (csv) format. Each data point is reported in Greenwich Mean Time (GMT). 

The data were collected worldwide for 6 months from 2016-01-01 UTC to 2016-06-30 UTC 

(Universal Time Coordinated). However, not all vessel types and ships were covered by exactEarth 

satellites as the obtained dataset includes only the following types: oil and chemical tankers, gas 

tankers, other tankers, tugboats, general cargo ships, offshore vessels, specialized cargo ships, bulk 

carriers, ro-ro cargo ships, passenger ships, container ships, and others. This dataset extensively 

focuses on tankers accounting for 98.6%, under which crude oil tankers, oil product tankers, 

chemical tankers and LNG carriers are sub-categorized. 

The trade data used in this study were obtained from the mineral resources and petroleum products 

statistics report of the Ministry of Economy, Trade and Industry of Japan (METI). The report 

provides crude oil, petroleum and LNG import and export statistics on a monthly basis and by area 

and country. In addition to imports and exports, the report consists of the product stock changes, 

processing and inventory, product value and their trade terms. In this study, monthly import volumes 

were extracted from import and export section of each products, and they were matched to the vessel 

types in the AIS data. 

 



Toros University FEASS Journal of Social Sciences  

Special Issue on 2nd International Symposium of Sustainable Logistics “Circular Economy” 

Toros Üniversitesi İİSBF Sosyal Bilimler Dergisi 2. Uluslararası Sürdürülebilir Lojistik “Dögüsel Ekonomi” Sempozyumu Özel Sayı 

 

 

110 

 

3.2. Study Area 

In this study, the Japan coastal area is chosen as the main study domain since the authors are mainly 

interested in estimating GHG emissions in Japan. The United Nations Convention on the Law of the 

Sea (UNCLOS) Part 2 of “Territorial Sea and Contiguous Zone”, in Section 2 “Limits of the 

Territorial Sea”, Article 3 “Breadth of the territorial sea”, states that every state has the right to 

establish the breadth of its territorial sea up to a limit not exceeding 12 nautical miles, measured 

from baselines determined in accordance with this Convention. Therefore, 12 nautical mile buffers 

are created along the Japan coastlines and AIS data for 6 months in the buffer zone are selected for 

analysis. 

4. CALCULATING GHG EMISSIONS 

4.2.  Data Preparation 

Before calculation is proceeded, AIS data need to be verified and made reliable. Bereta et al (2021) 

pointed out technical issues could exist in AIS data: absence of ship identification, human error 

inputs, reporting frequency, sensor malfunction, and timestamping. Therefore, data processing is 

mandatory. First, missing ship information in AIS data are either rejected or verified through public 

vessel tracking services. Then, unusual high speeds are checked, and the vessel positions are 

confirmed not to be over land. For the next step, transmission timestamp and their intervals are 

checked as they are not uniform. The data gap was addressed by Goldsworthy (2016) in the spatial-

temporal distribution of the ship emission prediction problem. Finally, data are made sure to achieve 

voyage by voyage emission calculation so that calculations of each vessel voyage do not overlap 

other voyages. As this study intends to focus on tanker vessel types, only such vessels are filtered 

in the final dataset. The number of vessels used in the study after buffering is described in the 

following table. 

Table 1. Number of vessels in the dataset 

Vessel type 
Number of vessels 

(before processing) 

Number of vessels 

(after processing) 

Oil and chemical tanker 6974 195 

Gas tanker 1318 150 

Tug 29  

Other tanker 28 1 

General cargo ship 23  

Offshore vessel 16  

Specialized cargo ship 5  

Bulk carrier 24  

Ro-Ro cargo ship 11  

Passenger ship 4  

Container ship 5  

Others 2  

Total 8439 346 
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Fig 1. Study domain and AIS data points 

4.3.  Vessel Emission Estimation Model 

Once data processing is completed, the vessel emission estimation model will be calculated using ship 

dimensions, ship resistance, predicted power and assumed parameters. The model is based on 

International Towing Tank Conference (ITTC) recommended procedures and the approximate power 

prediction method (Holtrop and Mennen, 1982). The Holtrop-Mennen method is the numerical 

prediction of propulsive power at the design stage of a ship based on ship dimensions. Holtrop (1984) 

again re-analyzed resistance and propulsion data, calculated using dimensions and other parameters. 

The vessel emission estimation method is summarized in Figure 2. 
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Fig 2. Flowchart of vessel emission estimation model 

As AIS data contain length, breadth, and draught, necessary length calculations are carried out first. 

MAN Diesel & Turbo (2011) assumed average conversions to length of the waterline (LWL) and length 

between perpendiculars (LPP) from length overall (LOA) which are lengths recorded in AIS data. 

𝐿𝑃𝑃 =  𝐿𝑊𝐿 ∗ 0.97 = 𝐿𝑂𝐴 ∗ (0.97)2 (1) 

The displacement (▽) of each vessel can be derived from the following formula. 

▽ = 𝐶𝐵 ∗ 𝐿𝑃𝑃 ∗ 𝑏𝑟𝑒𝑎𝑑𝑡ℎ ∗ 𝑑𝑟𝑎𝑢𝑔ℎ𝑡 (2) 

Approximate block coefficients (CB) of tanker vessels by MAN Diesel & Turbo (2011) range from 

0.80-0.85 with average speed of 12-16 knots. 

ITTC recommends calculating total resistance of a ship as 

𝑅𝑇 = 0.5 ∗ 𝐶𝑇 ∗ 𝜌 ∗ 𝑆 ∗ 𝑉2 (3) 

Where RT represents total resistance, CT for total resistance coefficient, ρ for seawater density, S for 

wetted surface, V for ship speed. 

MAN Diesel & Turbo (2011) assumed residual resistance coefficient to be neglected in the calculations 

so the equation can be rewritten as 

𝐶𝑇 = 𝐶𝐹 + 𝐶𝐴 + 𝐶𝐴𝐴 + 𝐶𝑅 ≅ 𝐶𝐹 + 𝐶𝐴 + 𝐶𝐴𝐴 (4) 

 



Toros University FEASS Journal of Social Sciences  

Special Issue on 2nd International Symposium of Sustainable Logistics “Circular Economy” 

Toros Üniversitesi İİSBF Sosyal Bilimler Dergisi 2. Uluslararası Sürdürülebilir Lojistik “Dögüsel Ekonomi” Sempozyumu Özel Sayı 

 

 

113 

 

 

Where CF = frictional resistance coefficient, CA = incremental resistance coefficient, CAA = air 

resistance coefficient, CR = residual resistance coefficient. 

An approximate wetted surface estimation is given as follows (Kristensen and Lützen, 2013). Wetted 

surface calculation can be different depending on ship type as there are different formulations suited to 

each type of vessel. 

𝑆 = 1.025 ∗ ( 
∇

draught
+ 1.7 ∗ 𝐿𝑃𝑃 ∗ 𝑑𝑟𝑎𝑢𝑔ℎ𝑡) (5) 

CF can be calculated as follows. 

𝐶𝐹 =
0.075

(𝑙𝑜𝑔𝑅𝑛 − 2)2
 (6) 

CF and CA can be derived from the following equations. 

𝐶𝐴 =
0.5 ∗ 𝑙𝑜𝑔(∇) − 0.1 ∗ (𝑙𝑜𝑔(∇))

2

1000
 (7) 

Harvald (1983) advised the resistance value will be too low for large ships with displacement more than 

160000 T if the above equation is used. In such cases, it is advised to apply the following formula. 

𝐶𝐴 = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (−0.1; (0.5 ∗ 𝑙𝑜𝑔(∇) − 0.1 ∗ (𝑙𝑜𝑔(∇))
2

) /1000) (8) 

CAA is assumed as follows 

Table 2. Air resistance coefficients 

Ship Types CAA 

Small, Handysize, Handymax tankers 0.00007 

Panamax, Aframax, Suezmax tankers 0.00005 

VLCC 0.00004 

Source: Kristensen and Lützen (2013) 

Reynolds number can be calculated in the following equation, where ν stands for kinematic viscosity of 

seawater. Kinematic viscosity of seawater can be derived from a study on thermophysical properties of 

seawater by Nayar et al (2016). 

𝑅𝑛 =
𝑉 ∗ 𝐿𝑊𝐿

𝜈
 (9) 

Once total resistance is known, power can be predicted in the below equation (Kristensen and Lützen, 

2013). This required power is calculated with vessel’s total resistance, sailing at the speed V at calm sea 

conditions. 

𝑃 = 𝑅𝑇 ∗ 𝑉 ∗ (1 +
𝑠𝑒𝑎 𝑎𝑙𝑙𝑜𝑤𝑎𝑛𝑐𝑒

100
 ) (10) 

Harvald (1983) suggested sea allowance in power prediction. Sea margin (m), also known as sea 

allowance, refers to allowances on installed power for roughness, fouling and weather. Depending on 

ship sizes and hull forms, sea allowance will be different. Small ships will have higher sea allowance 

while slender hulls will have less service allowance. The suggested sea allowances dependent on 

shipping routes suggested by Harvald (1983) are taken as approximate parameters in the calculation. 
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Table 3. Sea allowance of major shipping routes 

Routes Sea allowance 

North Atlantic, route, westbound 25 – 35 % 

North Atlantic, eastbound 20 – 25 % 

Europe – Australia 20 – 25 % 

Europe - Eastern Asia 20 – 25 % 

The Pacific routes 20 – 30 % 

Source: Kristensen and Lützen (2013) 

Considering resistance, ship speed, sea margin, transmission power (ηD) and quasi-propulsion 

coefficient (ηT), the installed engine power can be calculated using the following equation (Molland et 

al, 2011). 

𝑃𝐸 =
𝑅𝑇 ∗ 𝑉

η𝐷 ∗ η𝑇
+ 𝑚 (11) 

Once estimated power is known, fuel consumption of each vessel can be calculated. Specific fuel oil 

consumption (SFOC) depends on each ship type as well as marine engines installed onboard. MAN 

Diesel & Turbo (2011) calculated SFOC for various types of vessels. In this study, only LNG carriers 

and tankers will be used. 

Table 4. SFOC by ship type 

Ship type SFOC in g/kWh 

LNG carrier 215 

Tanker 210 

Source: MAN Diesel & Turbo (2011) 

In determining SFOC, engine age also plays a key role. SFOC baselines are proposed for 

slow/medium/high speed marine diesel engines as shown in the below table. 

Table 5. SFOC by engine age and type 

Engine age SSD MSD HSD 

Before 1983 205 215 225 

1984-2000 185 195 205 

Post 2001 175 185 195 

Source: IMO GHG Study Report (2021) 

Fuel consumption is given by the following equation, where SFOC is in g/kWh and time difference in 

hours (∆T) 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 (𝐹𝐶) = 𝑃𝐸 ∗  𝑆𝐹𝑂𝐶 ∗  ∆𝑇 (12) 

Vessel emission value can be derived from emission factors of each pollutant. 

𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 =  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ∗  𝐹𝐶 (13) 

Depending on fuel types, the emission factor of the pollutant will vary and their values were introduced 

in IMO GHG Reports (2014 and 2021). 
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Table 6. Emission factors 

Pollutant 
Emission Factor  

(g/g fuel) 

Carbon dioxide (CO2) 3.114 

Nitrogen oxides (NOX) 0.0903 

Sulphur oxides (SOX) 0.025 

Particulate matter (PM) 0.00728 

Carbon monoxide (CO) 0.00277 

Methane (CH4) 0.00006 

Nitrous oxide (N2O) 0.00015 

Non-methane volatile organic compounds (NMVOC) 0.00308 

Source: IMO GHG Reports (2014). 

 

5. RESULTS 

5.2.  Fuel Consumption and GHG Emissions 

Based on the AIS data and the power prediction method, fuel consumption and GHG emissions in the 

Japan coastal waters for the first six months of 2016 can be calculated. Fuel consumption is calculated 

to be 150,041.02 tons. 

 

Fig 3. Daily fuel consumption in Japan coastal waters 

Using the emission factors of each pollutant, the emission inventory can be estimated. The 

calculated results are shown in the following table and their daily amounts in the below figure. In 

the emission inventory, CO2 pollutes the most, 96% of the total emission. 

 

 

 



Toros University FEASS Journal of Social Sciences  

Special Issue on 2nd International Symposium of Sustainable Logistics “Circular Economy” 

Toros Üniversitesi İİSBF Sosyal Bilimler Dergisi 2. Uluslararası Sürdürülebilir Lojistik “Dögüsel Ekonomi” Sempozyumu Özel Sayı 

 

 

116 

 

 

Table 7. Emission inventory for 6 months 

Emission Pollutant Amount (metric tons) 

CO2 467,227.76 

NOx 13,548.70 

SOx 3,751.02 

PM 1,092.29 

CO 415.61 

CH4 9.00 

N2O 22.50 

NMVOC 462.12 

 

Fig 4. Daily emissions in Japan coastal waters 

5.3.  Long Term GHG Emission Prediction 

The Ministry of Economy, Trade and Industry of Japan (METI) compiles the trade statistics of monthly 

LNG, crude oil and fuel products import amount. The mode of transport to import energy sources such 

as fuel, oil and LNG is via tanker ships. In addition, 32 LNG receiving terminals (19% of the global 

share) are in Japan (IGU, 2021). Therefore, energy import volumes and ship emission volumes are 

important factors to consider for long term prediction. The prediction can be applied in policy making 

for energy resource import and environmental protection. 

Referring to the 2016 METI statistics from January to June, total LNG import is 38,543,894 tons and 

the average is 6,423,982 tons a month. For fuel and oil products, the import volume is 15,184,603 

kiloliters (kl), averaging 2,530,767 kl per month. 
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Table 8. Monthly imports and emissions (2016 January to 2016 Jun) 

Import Emission 

Oil & fuel LNG CO2 NOx SOx PM CO CH4 N2O NMVOC 

kl MTon MTon 

3419728 6571013 17469.38 506.5784 140.2487 40.84043 15.53956 0.336597 0.841492 17.27864 

2595435 7022133 62450.04 1810.931 501.3651 145.9975 55.55125 1.203276 3.008191 61.76818 

2324958 7830571 83793.52 2429.851 672.7161 195.8949 74.53695 1.614519 4.036297 82.87863 

2474860 6113092 76471.08 2217.514 613.9296 178.7763 68.0234 1.473431 3.683578 75.63613 

2430470 5337500 79509.95 2305.635 638.3265 185.8807 70.72658 1.531984 3.829959 78.64183 

1939152 5669585 147533.8 4278.196 1184.44 344.9088 131.2359 2.842655 7.106637 145.923 

 

Referring to Table 8 and Figure 3, import volumes tend to decrease in June 2016 whereas emission 

volumes tend to be higher than previous months. Ship emissions tend to increase steadily from January 

2016 and remain mostly stable from March to May 2016.  

Using the METI statistics, vessel GHG emission results and vessel arrivals in Japan, long term GHG 

emission is predicted. The trend shows that energy resources are imported in high quantities in the 

beginning and ending of each year and start decreasing around March every year. However, LNG 

imports drop sharply from March 2020 to 4224784 tons in May 2020 while the average per month is 

6276284.667 tons. This is illustrated in Figure 5. 

 

Fig 5. Energy import to Japan (2016 ~ 2020). 

 Source: METI. 
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In addition to trade statistics from the Japan METI agency, UN Comtrade database is also used. The 

database aggregates global trade statistics annually and monthly by product and trading partner. Among 

the UN Comtrade databases, the AIS-based database is applied in this study. It estimates the global 

seaborne trade in real time by collecting AIS data. The data is updated on a weekly basis. The trade data 

derived from AIS data include the number of port calls, metric tons of cargo, deadweight tonnage by 

specifying the reporting country, vessel type, trade flows: import or export, and the period. 

In order to predict GHG emissions from LNG carriers and tankers in Japan coastal waters, fuel 

consumption is estimated first by the following variables: fuel oil and products import volumes, LNG 

import volumes, port calls, and deadweight tonnage from the dataset. The number of port calls and 

deadweight tonnage derived from the Comtrade database and those derived from the exactEarth AIS 

dataset are compiled and checked on the differing values. Port calls refer to the number of times a vessel 

calls at a port to carry out cargo loading and discharging operations. Deadweight tonnage refers to a 

vessel's weight carrying capacity, not including the empty weight of the ship. Then emission factors are 

applied to predict the total emission volumes for each type of vessel separately as in the equation (13). 

 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝐿𝑁𝐺 = α1 ∗ 𝐿𝑁𝐺 𝑖𝑚𝑝𝑜𝑟𝑡 + α2 ∗ 𝑝𝑜𝑟𝑡 𝑐𝑎𝑙𝑙 + α3 ∗ 𝑑𝑒𝑎𝑑𝑤𝑒𝑖𝑔ℎ𝑡 (14) 

𝐹𝑢𝑒𝑙 𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 𝑡𝑎𝑛𝑘𝑒𝑟 = β1 ∗ oil import + β2 ∗ port call + β3 ∗ deadweight (15) 

 

Fig 6. Projected emissions from LNG carriers 

 

Fig 7. Projected emissions from tankers 
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In Figures 6 and 7, the blue line represents the estimated emissions from the AIS data for six months 

while the red line represents projected emissions based on the METI trade statistics and UN Comtrade 

database. In this study, estimations were made to compare emission volumes for 6 months and long term 

predictions based on the trend of 6 months were carried out. The 6-month comparison result discovered 

that high differences occur in the first month of study, where emissions estimated from trade data were 

4 times higher for tankers and 3 times higher for LNG carriers than emissions calculated from AIS data; 

emissions from AIS data were found to gradually increase in the remaining 5 months of comparison. 

During January 2016 to June 2016, total emissions estimated from the trade were found to be higher 

than from AIS data (24% for tankers and 28% for LNG carriers). Similar trends were discovered in both 

AIS and trade data. In the long term perediction, although the import trend and the volumes remain 

relatively stable from 2016 to 2020, overall GHG emissions tend to gradually decline from 2016. The 

decline is mostly found in tankers as the vessels increase in size and utilize more space since the 

deadweight gets larger and fewer port calls are made. However, LNG carriers’ emissions remain almost 

the same and projected to increase. 

6. CONCLUSION 

In this study, two main objectives are focused: GHG emission estimations from tankers and LNG 

carriers and trade statistics. Emission from 8 air pollutants (CO2, NOx, SOx, PM, CO, CH4, N2O and 

NMVOC) is calculated for the first half of 2016. 

Based on ITTC procedures and the Holtrop-Mennen numerical power prediction method, vessel 

emission estimation model estimates the GHG emissions of LNG and tanker ships in Japan coastal 

waters from the AIS data. As tracking data do not cover all ships, calculated emissions will not cover 

the actual emissions. In the dataset, engine types and their information are not available. Therefore, 

calculations are done with value assumption. If more information is available, better accuracy in fuel 

consumption and emissions can be estimated. With the calculation results from the current AIS data, it 

is assumed that emissions are particularly higher after the peak season, particularly during the third 

quarter of each year. This can be due to the higher vessel movements once energy resources are 

imported. Therefore, air pollution impacts on the local environment and urban and port areas should be 

investigated. It can help the government and stakeholders identify environmental and health issues to 

improve the local society. 

Next, the long term GHG emission is predicted based on the trade data. The prediction results show the 

gradual decrease in GHG over years. However, this prediction is based on the available six-month vessel 

movement data. In addition, prediction in this study is based only on statistics from two sources: Japan 

METI and UN Comtrade. Further study should be focused to develop a better emission forecast model 

using more trade data. In this study, emission estimation from trade data is studied based on vessel port 

calling activity and cargo weight carried. From this study, vessel emissions can be estimated if the 

country’s trade volumes are known. The authors recognize that the prediction model can be improved 

and re-evaluated provided that more historical AIS data are available. Further research should be 

conducted on more accurate data-driven approaches to estimate ship emissions from each trade and 

commodity so that environmental friendly trade policy can be further researched and implemented to 

benefit the local society. 
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