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Abstract: Metric dimension is a generalization of affine dimension to arbitrary metric spaces (provided a re-
solving set exists). Let F be a family of connected graphs Gn : F = (Gn)n ≥ 1 depending on n as
follows: the order |V (G)| = ϕ(n) and lim

n→∞
ϕ(n) = ∞. If there exists a constant C > 0 such that

dim(Gn) ≤ C for every n ≥ 1 then we shall say that F has bounded metric dimension, otherwise
F has unbounded metric dimension. If all graphs in F have the same metric dimension, then F is
called a family of graphs with constant metric dimension.
In this paper, we study the metric dimension of some classes of convex polytopes which are
rotationally-symmetric. It is shown that these classes of convex polytoes have the constant met-
ric dimension and only three vertices chosen appropriately suffice to resolve all the vertices of these
classes of convex polytopes. It is natural to ask for the characterization of classes of convex polytopes
with constant metric dimension.
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1. Notation and preliminary results

Slater refereed to the metric dimension of a graph as its location number and motivated the study of
this invariant by its application to the placement of a minimum number of sonar/loran detecting devices
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in a network so that the position of every vertex in the network can be uniquely described in terms of its
distances to the devices in the set ([18],[19]). These concepts have also some applications in chemistry for
representing chemical compounds ([5],[12]) or to problems of pattern recognition and image processing,
some of which involve the use of hierarchical data structures [16].

If G is a connected graph, the distance d(u, v) between two vertices u, v ∈ V (G) is the length of
a shortest path between them. Let W = {w1, w2, . . . , wk} be an ordered set of vertices of G and let v
be a vertex of G. The representation r(v|W ) of v with respect to W is the k-tuple (d(v, w1), d(v, w2),
d(v, w3), . . . , d(v, wk)). W is called a resolving set [5] or locating set [18] if every vertex of G is uniquely
identified by its distances from the vertices of W , or equivalently, if distinct vertices of G have distinct
representations with respect to W . A resolving set of minimum cardinality is called a basis for G and
this cardinality is the metric dimension or location number of G, denoted by dim(G) [3]. The concepts
of resolving set and metric basis have previously appeared in the literature (see [3-6, 8-12, 15-21]).

For a given ordered set of vertices W = {w1, w2, . . . , wk} of a graph G, the ith component of r(v|W )
is 0 if and only if v = wi. Thus, to show thatW is a resolving set it suffices to verify that r(x|W ) 6= r(y|W )
for each pair of distinct vertices x, y ∈ V (G)\W .

A useful property in finding dim(G) is the following lemma:

Lemma 1.1. [20] Let W be a resolving set for a connected graph G and u, v ∈ V (G). If d(u,w) = d(v, w)
for all vertices w ∈ V (G) \ {u, v}, then {u, v} ∩W 6= ∅.

By denoting G + H the join of G and H a wheel Wn is defined as Wn = K1 + Cn, for n ≥ 3, a fan
is fn = K1 + Pn for n ≥ 1 and Jahangir graph J2n, (n ≥ 2) (also known as gear graph) is obtained
from the wheel W2n by alternately deleting n spokes. Buczkowski et al. [3] determined the dimension
of wheel Wn, Caceres et al. [8] the dimension of fan fn and Tomescu and Javaid [21] the dimension of
Jahangir graph J2n.

Theorem 1.2. ([3], [8], [21]) Let Wn be a wheel of order n ≥ 3, fn be fan of order n ≥ 1 and J2n be a
Jahangir graph. Then
(i) For n ≥ 7, dim(Wn) = b 2n+2

5 c;
(ii) For n ≥ 7, dim(fn) = b 2n+2

5 c;
(iii) For n ≥ 4, dim(J2n) = b 2n3 c.

The metric dimension of all these plane graphs depends upon the number of vertices in the graph.
On the other hand, we say that a family G of connected graphs is a family with constant metric dimension
if dim(G) is finite and does not depend upon the choice of G in G. In [5] it was shown that a graph has
metric dimension 1 if and only if it is a path, hence paths on n vertices constitute a family of graphs
with constant metric dimension. Similarly, cycles with n(≥ 3) vertices also constitute such a family of
graphs as their metric dimension is 2 and does not depend upon on the number of vertices n. Javaid et
al. proved in [11] that the plane graph antiprism An constitute a family of regular graphs with constant
metric dimension as dim(An) = 3 for every n ≥ 5. The prism and the antiprism are Archimedean convex
polytopes defined e.g. in [13]. The metric dimension of cartesian product of graphs has been discussed
in [4, 17].

The metric dimension of some classes of convex polytopes has been determined in [9] and [10] where
it was shown that these classes of convex polytopes have constant metric dimension 3 and following open
problems were raised in [9] and [10].
Open problem [9]: Is it the case that the graph of every convex polytope has constant metric dimension?
Open problem [10]: Let G′ be the graph of a convex polytope obtained from the graph of convex
polytope G by adding extra edges in G such that V (G′) = V (G). Is it the case that G′ and G will always
have the same metric dimension?

Note that the problem of determining whether dim(G) < k is an NP -complete problem [6]. Some
bounds for this invariant, in terms of the diameter of the graph, are given in [15] and it was shown
in [5, 15–17] that the metric dimension of trees can be determined efficiently. It appears unlikely that
significant progress can be made in determining the dimension of a graph unless it belongs to a class for
which the distances between vertices can be described in some systematic manner.
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Bača defined in [2] the graph of convex polytope Rn which is obtained as a combination of the graph
of a prism and the graph of an antiprism. The prism and antiprism have constant metric dimension [4, 11]
and it was proved in [9] that the graph of convex polytope Rn also has constant metric dimension. In this
paper, we extend this study to some classes of convex polytopes which are obtained by combination of
two different graph of convex polytopes. We prove that these classes of convex polytopes have constant
metric dimension and only three vertices appropriately chosen suffice to resolve all the vertices of these
classes of convex polytopes. In what follows all indices i which do not satisfy the given inequalities will
be taken modolu n.

2. The graph of convex polytope Bn

The graph of convex polytope Bn (Fig. 1) consisting of 2n 4-sided faces, n 3-sided faces, n 5-sided
faces and a pair of n-sided faces is obtained by the combination of the graph of convex polytope Qn [2]
and graph of a prism Dn. We have

V (Bn) = {ai; bi; ci; di, ei : 1 ≤ i ≤ n}

and

E(Bn) = {aiai+1; bibi+1; didi+1; eiei+1 : 1 ≤ i ≤ n}
∪{aibi; bici; bi+1ci; cidi; diei : 1 ≤ i ≤ n}.

For our purpose, we call the cycle induced by {ai : 1 ≤ i ≤ n}, the inner cycle, cycle induced by
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Figure 1. The graph of convex polytope Bn

{bi : 1 ≤ i ≤ n}, the interior cycle, cycle induced by {di : 1 ≤ i ≤ n}, the exterior cycle, cycle induced by
{ei : 1 ≤ i ≤ n}, the outer cycle and set of vertices {ci : 1 ≤ i ≤ n}, the set of interior vertices.
The metric dimension of graph of convex polytope Qn and graph of a prism Dn have been studied in [9]
and [4]. In the next theorem, we show that the metric dimension of the graph of convex polytope Bn is
3. Note that the choice of appropriate basis vertices (also referred to as landmarks in [14]) is core of the
problem.

Theorem 2.1. For n ≥ 6, let the graph of convex polytopes be Bn; then dim(Bn) = 3.

Proof. We will prove the above equality by double inequalities. We consider the two cases.
Case(i) When n is even.
In this case, we can write n = 2k, k ≥ 3, k ∈ Z+. Let W = {a1, a2, ak+1} ⊂ V (Bn), we show that W
is a resolving set for Bn in this case. For this we give representations of any vertex of V (Bn)\W with

47



M. Imran et al. / J. Algebra Comb. Discrete Appl. 3(2) (2016) 45–59

respect to W .
Representations of the vertices on inner cycle are

r(ai|W ) =

{
(i− 1, i− 2, k − i + 1), 3 ≤ i ≤ k;
(2k − i + 1, 2k − i + 2, i− k − 1), k + 2 ≤ i ≤ 2k.

Representations of the vertices on interior cycle are

r(bi|W ) =

 (1, 2, k + 1), i = 1;
(i, i− 1, k − i + 2), 2 ≤ i ≤ k + 1;
(2k − i + 2, 2k − i + 3, i− k), k + 2 ≤ i ≤ 2k.

Representations of the set of interior vertices are

r(ci|W ) =


(2, 2, k + 1), i = 1;
(i + 1, i, k − i + 2), 2 ≤ i ≤ k;
(k + 1, k + 1, 2), i = k + 1;
(2k − i + 2, 2k − i + 3, i− k + 1), k + 2 ≤ i ≤ 2k.

Representations of the vertices on interior cycle are

r(di|W ) =


(3, 3, k + 2), i = 1;
(i + 2, i + 1, k − i + 3), 2 ≤ i ≤ k;
(k + 2, k + 2, 3), i = k + 1;
(2k − i + 3, 2k − i + 4, i− k + 2), k + 2 ≤ i ≤ 2k.

Representations of the vertices on outer cycle are

r(ei|W ) =


(4, 4, k + 3), i = 1;
(i + 3, i + 2, k − i + 4), 2 ≤ i ≤ k;
(k + 3, k + 3, 4), i = k + 1;
(2k − i + 4, 2k − i + 5, i− k + 3), k + 2 ≤ i ≤ 2k.

We note that there are no two vertices having the same representations implying that dim(Bn) ≤ 3.
On the other hand, we show that dim(Bn) ≥ 3 by proving that there is no resolving set W such that
|W | = 2. Suppose on contrary that dim(Bn) = 2, then there are following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Without loss of generality we suppose that one resolving vertex
is a1. Suppose that the second resolving vertex is at (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(an|{a1, at}) = r(b1|{a1, at}) = (1, t) and for t = k + 1, r(a2|{a1, ak+1}) = r(an|{a1, ak+1}) = (1, k− 1),
a contradiction.
(2) Both vertices are in the interior cycle. Without loss of generality we suppose that one resolving
vertex is b1. Suppose that the second resolving vertex is bt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(bn|{b1, bt}) = r(cn|{b1, bt}) = (1, t) and for t = k + 1, r(b2|{b1, bk+1}) = r(bn|{b1, bk+1}) = (1, k − 1), a
contradiction.
(3) Both vertices are in the set of interior vertices. Without loss of generality we suppose that one
resolving vertex is c1. Suppose that the second resolving vertex is ct (2 ≤ t ≤ k+ 1). Then for 2 ≤ t ≤ k,
we have r(b1|{c1, ct}) = r(d1|{c1, ct}) = (1, t) and for t = k + 1, r(d2|{c1, ck+1}) = r(dn|{c1, ck+1}) =
(1, k − 1), a contradiction.
(4) Both vertices are in the exterior cycle. Without loss of generality we suppose that one resolving
vertex is d1. Suppose that the second resolving vertex is dt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(c1|{d1, dt}) = r(dn|{d1, dt}) = (1, t) and for t = k + 1, r(d2|{d1, dk+1}) = r(dn|{d1, dk+1}) = (1, k− 1),
a contradiction.
(5) Both vertices are in the outer cycle. Without loss of generality we suppose that one resolving vertex
is e1. Suppose that the second resolving vertex is et (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(d1|{e1, et}) = r(en|{e1, et}) = (1, t) and for t = k + 1, r(e2|{e1, ek+1}) = r(en|{e1, ek+1}) = (1, k − 1),
a contradiction.
(6) One vertex is in the inner cycle and other in the interior cycle. Without loss of generality we suppose
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that one resolving vertex is a1. Suppose that the second resolving vertex is bt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(a2|{a1, b1}) = r(an|{a1, b1}) = (1, 2) and when 2 ≤ t ≤ k + 1, r(a2|{a1, bk+1}) =
r(b1|{a1, bk+1}) = (1, t− 1), a contradiction.
(7) One vertex is in the inner cycle and other in the set of interior vertices. Without loss of generality
we suppose that one resolving vertex is a1. Suppose that the second resolving vertex is ct (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(bn|{a1, ct}) = r(cn|{a1, ct}) = (2, t + 1) and when t = k + 1,
r(a3|{a1, bk+1}) = r(cn|{a1, bk+1}) = (2, k), a contradiction.
(8) One vertex is in the inner cycle and other in the exterior cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(d2|{a1, d1}) = r(e1|{a1, d1}) = (4, 1). If 2 ≤ t ≤ k, r(a2|{a1, dt}) = r(b1|{a1, dt}) =
(1, t + 1) and when t = k + 1, r(an|{a1, dk+1}) = r(b1|{a1,
dk+1}) = (1, k + 1), a contradiction.
(9) One vertex is in the inner cycle and other in the outer cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(b2|{a1, e1}) = r(cn|{a1, e1}) = (2, 3) and when 2 ≤ t ≤ k + 1, r(b2|{a1, et}) =
r(c1|{a1, et}) = (2, t + 1), a contradiction.
(10) One vertex is in the interior cycle and other in the set of interior vertices. Without loss of generality
we suppose that one resolving vertex is b1. Suppose that the second resolving vertex is ct (1 ≤ t ≤ k+1).
Then for 1 ≤ t ≤ k − 1, we have r(bn|{b1, ct}) = r(cn|{b1, ct}) = (1, t + 1). For t = k, we have
r(c1|{b1, ck}) = r(bn|{b1, ck}) = (1, k) and when t = k + 1, r(b2|{b1, ck+1}) = r(cn|{b1, ck+1}) = (1, k), a
contradiction.
(11) One vertex is in the interior cycle and other in the exterior cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, dt}) = r(bn|{b1, dt}) = (1, t + 2). For t = k, we have
r(bn|{b1, dk}) = r(c1|{b1, dk}) = (1, k + 1) and when t = k + 1, r(b2|{b1, dk+1}) = r(cn|{b1, dk+1}) =
(1, k + 1), a contradiction.
(12) One vertex is in the interior cycle and other in the outer cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, et}) = r(bn|{b1, et}) = (1, t + 3). For t = k, we have
r(bn|{b1, ek}) = r(c1|{b1, ek}) = (1, k + 2) and when t = k + 1, r(b2|{b1, ek+1}) = r(cn|{b1, ek+1}) =
(1, k + 2), a contradiction.
(13) One vertex is in the set of interior vertices and other in the exterior cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is dt (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, r(a1|{c1, dt}) = r(bn|{c1, dt}) = (2, t + 2) and when t = k + 1, we have
r(d2|{c1, dk+1}) = r(dn|{c1, dk+1}) = (2, k), a contradiction.
(14) One vertex is in the set of interior vertices and other in the outer cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is et (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(a1|{c1, et}) = r(bn|{c1, et}) = (2, t + 3) and when t = k + 1,
r(e2|{c1, ek+1}) = r(en|{c1, ek+1}) = (3, k − 1), a contradiction.
(15) One vertex is in the set of exterior cycle and other in the outer cycle. Without loss of generality we
suppose that one resolving vertex is d1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k, we have r(c1|{d1, et}) = r(dn|{d1, et}) = (1, t + 1) and when t = k + 1, we have
r(e2|{d1, ek+1}) = r(en|{d1, ek+1}) = (2, k), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices for V (Bn) implying that
dim(Bn) = 3 in this case.
Case(ii) When n is odd.
In this case, we can write n = 2k + 1, k ≥ 3, k ∈ Z+. Again we show that W = {a1, a2, ak+1} ⊂ V (Bn)
is a resolving set for Bn in this case. For this we give representations of any vertex of V (Bn)\W with
respect to W .
Representations of the vertices on inner cycle are

r(ai|W ) =

 (i− 1, i− 2, k − i + 1), 3 ≤ i ≤ k;
(k, k, 1), i = k + 2
(2k − i + 2, 2k − i + 3, i− k − 1), k + 3 ≤ i ≤ 2k + 1.
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Representations of the vertices on interior cycle are

r(bi|W ) =


(1, 2, k), i = 1;
(i, i− 1, k − i + 2), 2 ≤ i ≤ k + 1;
(k + 1, k + 1, 2), i = k + 2;
(2k − i + 3, 2k − i + 4, i− k), k + 3 ≤ i ≤ 2k + 1.

Representations of set of interior vertices are

r(ci|W ) =


(2, 2, k + 1), i = 1;
(i + 1, i, k − i + 2), 2 ≤ i ≤ k;
(k + 2, k + 1, 2), i = k + 1;
(2k − i + 3, 2k − i + 4, i− k + 1), k + 2 ≤ i ≤ 2k + 1.

Representations of the vertices on exterior cycle are

r(di|W ) =


(3, 3, k + 2), i = 1;
(i + 2, i + 1, k − i + 3), 2 ≤ i ≤ k;
(k + 3, k + 2, 3), i = k + 1;
(2k − i + 4, 2k − i + 5, i− k + 2), k + 2 ≤ i ≤ 2k + 1.

Representations of the vertices on outer cycle are

r(ei|W ) =


(4, 4, k + 3), i = 1;
(i + 3, i + 2, k − i + 4), 2 ≤ i ≤ k;
(k + 4, k + 3, 4), i = k + 1;
(2k − i + 5, 2k − i + 6, i− k + 3), k + 2 ≤ i ≤ 2k + 1.

Again we see that there are no two vertices having the same representations which implies that dim(Bn) ≤
3.
On the other hand, suppose that dim(Bn) = 2, then there are the same possibilities as in case (i) and
contradiction can be deduced analogously. This implies that dim(Bn) = 3 in this case, which completes
the proof.

3. The graph of convex polytope Cn

The graph of convex polytope Cn (Fig. 2) consisting of 3n 3-sided faces, n 4-sided faces, n 5-sided
faces and a pair of n-sided faces is obtained by the combination of the graph of convex polytope Qn [2]
and graph of an antiprism An [1]. We have

V (Cn) = {ai; bi; ci; di; ei : 1 ≤ i ≤ n}

and

E(Cn) = {aiai+1; bibi+1; didi+1; eiei+1 : 1 ≤ i ≤ n}
∪{aibi; bici; cidi; diei; bi+1ci; di+1ei : 1 ≤ i ≤ n}.

The graph of convex polytope Cn can also be obtained from the graph of convex polytope Bn by adding
new edges di+1ei and having the same vertex set. i.e. V (Cn) = V (Bn) and E(Cn) = E(Bn) ∪ {di+1ei :
1 ≤ i ≤ n}.
For our purpose, we call the cycle induced by {ai : 1 ≤ i ≤ n}, the inner cycle, cycle induced by
{bi : 1 ≤ i ≤ n}, the interior cycle, cycle induced by {di : 1 ≤ i ≤ n}, the exterior cycle, cycle induced by
{ei : 1 ≤ i ≤ n}, the outer cycle and set of vertices {ci : 1 ≤ i ≤ n}, the set of interior vertices.
The metric dimension of graph of convex polytope Qn and graph of an antiprism An have been studied
in [9] and [11]. In the next theorem, we show that the metric dimension of the graph of convex polytope
Cn is 3. Again, choice of appropriate landmarks is crucial.
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Figure 2. The graph of convex polytope Cn

Theorem 3.1. Let Cn denotes the graph of convex polytope; then dim(Cn) = 3 for every n ≥ 6.

Proof. We will prove the above equality by double inequalities. We consider the two cases.
Case(i) When n is even.
In this case, we can write n = 2k, k ≥ 3, k ∈ Z+. Let W = {a1, a2, ak+1} ⊂ V (Cn), we show that W is a
resolving set for Cn in this case. For this we give representations of any vertex of V (Cn)\W with respect
to W .
Representations of the vertices on inner cycle are

r(ai|W ) =

{
(i− 1, i− 2, k − i + 1), 3 ≤ i ≤ k;
(2k − i + 1, 2k − i + 2, i− k − 1), k + 2 ≤ i ≤ 2k.

Representations of the vertices on interior cycle are

r(bi|W ) =

 (1, 2, k + 1), i = 1;
(i, i− 1, k − i + 2), 2 ≤ i ≤ k + 1;
(2k − i + 2, 2k − i + 3, i− k), k + 2 ≤ i ≤ 2k.

Representations of the set of interior vertices are

r(ci|W ) =


(2, 2, k + 1), i = 1;
(i + 1, i, k − i + 2), 2 ≤ i ≤ k;
(k + 1, k + 1, 2), i = k + 1;
(2k − i + 2, 2k − i + 3, i− k + 1), k + 2 ≤ i ≤ 2k.

Representations of the vertices on exterior cycle are

r(di|W ) =


(3, 3, k + 2), i = 1;
(i + 2, i + 1, k − i + 3), 2 ≤ i ≤ k;
(k + 2, k + 2, 3), i = k + 1;
(2k − i + 3, 2k − i + 4, i− k + 2), k + 2 ≤ i ≤ 2k.

Representations of the vertices on outer cycle are

r(ei|W ) =


(4, 4, k + 2), i = 1;
(i + 3, i + 2, k − i + 3), 2 ≤ i ≤ k − 1;
(k + 3, k + 2, 4), i = k;
(2k − i + 3, 2k − i + 4, i− k + 3), k + 1 ≤ i ≤ 2k − 1;
(4, 4, k + 3), i = 2k.
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We note that there are no two vertices having the same representations implying that dim(Cn) ≤ 3.
On the other hand, we show that dim(Cn) ≥ 3 by proving that there is no resolving set W such that
|W | = 2. Suppose on contrary that dim(Cn) = 2, then there are following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Without loss of generality we suppose that one resolving vertex
is a1. Suppose that the second resolving vertex is at (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(an|{a1, at}) = r(b1|{a1, at}) = (1, t) and for t = k + 1, r(a2|{a1, ak+1}) = r(an|{a1, ak+1}) = (1, k− 1),
a contradiction.
(2) Both vertices are in the interior cycle. Without loss of generality we suppose that one resolving
vertex is b1. Suppose that the second resolving vertex is bt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(bn|{b1, bt}) = r(cn|{b1, bt}) = (1, t) and for t = k + 1, r(b2|{b1, bk+1}) = r(bn|{b1, bk+1}) = (1, k − 1), a
contradiction.
(3) Both vertices are in the set of interior vertices. Without loss of generality we suppose that one
resolving vertex is c1. Suppose that the second resolving vertex is ct (2 ≤ t ≤ k+ 1). Then for 2 ≤ t ≤ k,
we have r(b1|{c1, ct}) = r(d1|{c1, ct}) = (1, t) and for t = k + 1, r(d2|{c1, ck+1}) = r(dn|{c1, ck+1}) =
(1, k − 1), a contradiction.
(4) Both vertices are in the exterior cycle. Without loss of generality we suppose that one resolving
vertex is d1. Suppose that the second resolving vertex is dt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(c1|{d1, dt}) = r(dn|{d1, dt}) = (1, t) and for t = k + 1, r(d2|{d1, dk+1}) = r(dn|{d1, dk+1}) = (1, k− 1),
a contradiction.
(5) Both vertices are in the outer cycle. Without loss of generality we suppose that one resolving vertex
is e1. Suppose that the second resolving vertex is et (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(d1|{e1, et}) = r(en|{e1, et}) = (1, t) and for t = k + 1, r(e2|{e1, ek+1}) = r(en|{e1, ek+1}) = (1, k − 1),
a contradiction.
(6) One vertex is in the inner cycle and other in the interior cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is bt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(a2|{a1, b1}) = r(an|{a1, b1}) = (1, 2) and when 2 ≤ t ≤ k + 1, r(a2|{a1, bt}) =
r(b1|{a1, bt}) = (1, t− 1), a contradiction.
(7) One vertex is in the inner cycle and other in the set of interior vertices. Without loss of generality
we suppose that one resolving vertex is a1. Suppose that the second resolving vertex is ct (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(bn|{a1, ct}) = r(cn|{a1, ct}) = (2, t + 1) and when t = k + 1,
r(a3|{a1, bk+1}) = r(cn|{a1, bk+1}) = (2, k), a contradiction.
(8) One vertex is in the inner cycle and other in the exterior cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(d2|{a1, d1}) = r(e1|{a1, d1}) = (4, 1). If 2 ≤ t ≤ k, r(a2|{a1, dt}) = r(b1|{a1, dt}) =
(1, t + 1) and when t = k + 1, r(an|{a1, dk+1}) = r(b1|{a1,
dk+1}) = (1, k + 1), a contradiction.
(9) One vertex is in the inner cycle and other in the outer cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(b2|{a1, et}) = r(cn|{a1, et}) = (2, 3) and when 2 ≤ t ≤ k + 1, r(b2|{a1, et}) =
r(c1|{a1, et}) = (2, t + 1), a contradiction.
(10) One vertex is in the interior cycle and other in the set of interior vertices. Without loss of generality
we suppose that one resolving vertex is b1. Suppose that the second resolving vertex is ct (1 ≤ t ≤ k+1).
Then for 1 ≤ t ≤ k − 1, we have r(bn|{b1, ct}) = r(cn|{b1, ct}) = (1, t + 1). For t = k, we have
r(c1|{b1, ck}) = r(bn|{b1, ck}) = (1, k) and when t = k + 1, r(b2|{b1, ck+1}) = r(cn|{b1, ck+1}) = (1, k), a
contradiction.
(11) One vertex is in the interior cycle and other in the exterior cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, dt}) = r(bn|{b1, dt}) = (1, t + 2). For t = k, we have
r(bn|{b1, dk}) = r(c1|{b1, dk}) = (1, k + 1) and when t = k + 1, r(b2|{b1, dk+1}) = r(cn|{b1, dk+1}) =
(1, k + 1), a contradiction.
(12) One vertex is in the interior cycle and other in the outer cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, et}) = r(bn|{b1, et}) = (1, t + 3). For t = k, we have
r(bn|{b1, ek}) = r(c1|{b1, ek}) = (1, k + 2) and when t = k + 1, r(b2|{b1, ek+1}) = r(cn|{b1, ek+1}) =
(1, k + 1), a contradiction.
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(13) One vertex is in the set of interior vertices and other in the exterior cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is dt (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(a1|{c1, dt}) = r(bn|{c1, dt}) = (2, t + 2), and when t = k + 1,
r(d2|{c1, dk+1}) = r(dn|{c1, dk+1}) = (2, k), a contradiction.
(14) One vertex is in the set of interior vertices and other in the outer cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is et (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(a1|{c1, et}) = r(bn|{c1, et}) = (2, t + 3) and when t = k + 1,
r(cn|{c1, ek+1}) = r(e1|{c1, ek+1}) = (2, k), a contradiction.
(15) One vertex is in the set of exterior cycle and other in the outer cycle. Without loss of generality
we suppose that one resolving vertex is d1. Suppose that the second resolving vertex is et (1 ≤ t ≤
k + 1). Then for 1 ≤ t ≤ k, we have r(c1|{d1, et}) = r(dn|{d1, et}) = (1, t + 1) and when t = k + 1,
r(dn|{d1, ek+1}) = r(en|{d1, ek+1}) = (1, k − 1), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices for V (Cn) implying that
dim(Cn) = 3 in this case.
Case(ii) When n is odd.
In this case, we can write n = 2k + 1, k ≥ 3, k ∈ Z+. Let W = {a1, a2, ak+1} ⊂ V (Cn), we show that
W is a resolving set for Cn in this case. For this we give representations of any vertex of V (Cn)\W with
respect to W .
Representations of the vertices on inner cycle are

r(ai|W ) =

 (i− 1, i− 2, k − i + 1), 3 ≤ i ≤ k;
(k, k, 1), i = k + 2;
(2k − i + 2, 2k − i + 3, i− k − 1), k + 3 ≤ i ≤ 2k + 1.

Representations of the vertices on interior cycle are

r(bi|W ) =


(1, 2, k + 1), i = 1;
(i, i− 1, k − i + 2), 2 ≤ i ≤ k + 1;
(k + 1, k + 1, 2), i = k + 2;
(2k − i + 3, 2k − i + 4, i− k), k + 3 ≤ i ≤ 2k + 1.

Representations of the set of interior vertices are

r(ci|W ) =


(2, 2, k + 1), i = 1;
(i + 1, i, k − i + 2), 2 ≤ i ≤ k;
(k + 2, k + 1, 2), i = k + 1;
(2k − i + 3, 2k − i + 4, i− k + 1), k + 2 ≤ i ≤ 2k + 1.

Representations of the vertices on exterior cycle are

r(di|W ) =


(3, 3, k + 2), i = 1;
(i + 2, i + 1, k − i + 3), 2 ≤ i ≤ k;
(k + 3, k + 2, 3), i = k + 1;
(2k − i + 4, 2k − i + 5, i− k + 2), k + 2 ≤ i ≤ 2k + 1.

Representations of the vertices on outer cycle are

r(ei|W ) =



(4, 4, k + 2), i = 1;
(i + 3, i + 2, k − i + 3), 2 ≤ i ≤ k − 1;
(k + 3, k + 2, 4), i = k;
(k + 3, k + 3, 4), i = k + 1;
(2k − i + 4, 2k − i + 5, i− k + 3), k + 2 ≤ i ≤ 2k;
(4, 4, k + 3), i = 2k + 1.

Again we see that there are no two vertices having the same representations which implies that dim(Cn) ≤
3 in this case.
On the other hand, suppose that dim(Cn) = 2, then there are the same subcases as in case (i) and
contradiction can be obtained analogously. This implies that dim(Cn) = 3 in this case, which completes
the proof.
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Note that the result in above theorem gives the positive answer to the open problem raised in [10]
in this case.

4. The graph of convex polytope En

The graph of convex polytope En is obtained as a combination of graph of convex polytope Tn [10]
and graph of an antiprism An [1]. The graph of convex polytope En can also be obtained from the graph
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Figure 3. The graph of convex polytope En

of convex polytope Cn by adding new edges ai+1bi and having the same vertex set. i.e. V (En) = V (Cn)
and E(En) = E(Cn) ∪ {ai+1bi : 1 ≤ i ≤ n}.
For our purpose, we call the cycle induced by {ai : 1 ≤ i ≤ n}, the inner cycle, cycle induced by
{bi : 1 ≤ i ≤ n}, the interior cycle, cycle induced by {di : 1 ≤ i ≤ n}, the exterior cycle, cycle induced by
{ei : 1 ≤ i ≤ n}, the outer cycle and set of vertices {ci : 1 ≤ i ≤ n}, the set of interior vertices.

The metric dimension of graph of convex polytope Tn and graph of a prism Dn have been studied
in [10] and [4]. In the next theorem, we show that the metric dimension of the graph of convex polytope
En is 3. Once again, the choice of appropriate landmarks is crucial.

Theorem 4.1. Let En denotes the graph of convex polytope; then dim(En) = 3 for every n ≥ 6.

Proof. We will prove the above equality by double inequalities. We consider the two cases.
Case(i) When n is even.
In this case, we can write n = 2k, k ≥ 3, k ∈ Z+. Let W = {a1, a3, ak+1} ⊂ V (En), we show that W
is a resolving set for En in this case. For this we give representations of any vertex of V (En)\W with
respect to W .
Representations of the vertices on inner cycle are

r(ai|W ) =


(1, 1, k − 1), i = 2;
(i− 1, i− 3, k − i + 1), 4 ≤ i ≤ k;
(k − 1, k − 1, 1), i = k + 2;
(2k − i + 1, 2k − i + 3, i− k − 1), k + 3 ≤ i ≤ 2k.
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Representations of the vertices on interior cycle are

r(bi|W ) =



(1, 2, k), i = 1;
(2, 1, k − 1), i = 2;
(i, i− 2, k − i + 1), 3 ≤ i ≤ k;
(k, k − 1, 1), i = k + 1;
(k − 1, k, 2), i = k + 2;
(2k − i + 1, 2k − i + 3, i− k), k + 3 ≤ i ≤ 2k.

Representations of the vertices on exterior cycle are

r(ci|W ) =



(2, 2, k), i = 1;
(3, 2, k − 1), i = 2;
(i + 1, i− 1, k − i + 1), 3 ≤ i ≤ k − 1;
(k + 1, k − 1, 2), i = k;
(k, k, 2), i = k + 1;
(2k − i + 1, 2k − i + 3, i− k + 1), k + 2 ≤ i ≤ 2k − 1;
(2, 3, k + 1), i = 2k.

and

r(di|W ) =



(3, 3, k + 1), i = 1;
(4, 3, k), i = 2;
(i + 2, i, k − i + 1), 3 ≤ i ≤ k − 1;
(k + 2, k, 3), i = k;
(k + 1, k + 1, 3), i = k + 1;
(2k − i + 2, 2k − i + 4, i− k + 2), k + 2 ≤ i ≤ 2k − 1;
(3, 3, k + 2), i = 2k.

Representations of the vertices on outer cycle are

r(ei|W ) =



(4, 4, k + 1), i = 1;
(5, 4, k), i = 2;
(i + 3, i + 1, k − i + 2), 3 ≤ i ≤ k − 2;
(k + 2, k, 4), i = k − 1;
(k + 2, k + 1, 4), i = k;
(k + 1, k + 2, 4), i = k + 1;
(2k − i + 2, 2k − i + 4, i− k + 3), k + 2 ≤ i ≤ 2k − 2;
(4, 5, k + 2), i = 2k − 1;
(4, 4, k + 2), i = 2k.

We note that there are no two vertices having the same representations implying that dim(En) ≤ 3.
On the other hand, we show that dim(En) ≥ 3. Suppose on contrary that dim(En) = 2, then there are
following possibilities to be discussed.
(1) Both vertices are in the inner cycle. Without loss of generality we suppose that one resolving vertex
is a1. Suppose that the second resolving vertex is at (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(an|{a1, at}) = r(bn|{a1, at}) = (1, t) and for t = k + 1, r(a2|{a1, ak+1}) = r(an|{a1, ak+1}) = (1, k− 1),
a contradiction.
(2) Both vertices are in the interior cycle. Without loss of generality we suppose that one resolving
vertex is b1. Suppose that the second resolving vertex is bt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(a1|{b1, bt}) = r(bn|{b1, bt}) = (1, t) and for t = k + 1, r(b2|{b1, bk+1}) = r(bn|{b1, bk+1}) = (1, k − 1), a
contradiction.
(3) Both vertices are in the set of interior vertices. Without loss of generality we suppose that one
resolving vertex is c1. Suppose that the second resolving vertex is ct (2 ≤ t ≤ k+ 1). Then for 2 ≤ t ≤ k,
we have r(an|{c1, ct}) = r(bn|{c1, ct}) = (2, t+ 1) and for t = k + 1, r(a1|{c1, ck+1}) = r(b1|{c1, ck+1}) =
(1, k), a contradiction.
(4) Both vertices are in the exterior cycle. Without loss of generality we suppose that one resolving
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vertex is d1. Suppose that the second resolving vertex is dt (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(c1|{d1, dt}) = r(dn|{d1, dt}) = (1, t) and for t = k + 1, r(d2|{d1, dk+1}) = r(dn|{d1, dk+1}) = (1, k− 1),
a contradiction.
(5) Both vertices are in the outer cycle. Without loss of generality we suppose that one resolving vertex
is e1. Suppose that the second resolving vertex is et (2 ≤ t ≤ k + 1). Then for 2 ≤ t ≤ k, we have
r(d1|{e1, et}) = r(en|{e1, et}) = (1, t) and for t = k + 1, r(e2|{e1, ek+1}) = r(en|{e1, ek+1}) = (1, k − 1),
a contradiction.
(6) One vertex is in the inner cycle and other in the interior cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is bt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(a2|{a1, b1}) = r(bn|{a1, b1}) = (1, 1) and when 2 ≤ t ≤ k + 1, r(a2|{a1, bk+1}) =
r(b1|{a1, bk+1}) = (1, t− 1), a contradiction.
(7) One vertex is in the inner cycle and other in the set of interior vertices. Without loss of generality we
suppose that one resolving vertex is a1. Suppose that the second resolving vertex is ct (1 ≤ t ≤ k + 1).
Then for t = 1, we have r(a2|{a1, c1}) = r(bn|{a1, c1}) = (1, 2) and when 2 ≤ t ≤ k+1, r(a2|{a1, bk+1}) =
r(b1|{a1, bk+1}) = (1, t), a contradiction.
(8) One vertex is in the inner cycle and other in the exterior cycle. Without loss of generality we suppose
that one resolving vertex is a1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1). Then
for t = 1, we have r(d2|{a1, d1}) = r(e1|{a1, d1}) = (4, 1). If 2 ≤ t ≤ k, r(a2|{a1, dt}) = r(b1|{a1, dt}) =
(1, t + 1) and when t = k + 1, r(an|{a1, dk+1}) = r(bn|{a1,
dk+1}) = (1, k), a contradiction.
(9) One vertex is in the inner cycle and other in the outer cycle. Without loss of generality we suppose that
one resolving vertex is a1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k+ 1). Then for t = 1,
we have r(a2|{a1, e1}) = r(bn|{a1, e1}) = (1, 4). For 2 ≤ t ≤ k, r(a2|{a1, et}) = r(b1|{a1, et}) = (1, t + 2)
and when t = k + 1, r(d2|{a1, ek+1}) = r(e1|{a1, ek+1}) = (1, k), a contradiction.
(10) One vertex is in the interior cycle and other in the set of interior vertices. Without loss of generality
we suppose that one resolving vertex is b1. Suppose that the second resolving vertex is ct (1 ≤ t ≤ k+1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, ct}) = r(bn|{b1, ct}) = (1, t + 1). For t = k, we have
r(a2|{b1, ck}) = r(bn|{b1, ck}) = (1, k) and when t = k + 1, r(a1|{b1, ck+1}) = r(cn|{b1, ck+1}) = (1, k), a
contradiction.
(11) One vertex is in the interior cycle and other in the exterior cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, dt}) = r(bn|{b1, dt}) = (1, t + 2). For t = k, we have
r(a2|{b1, dk}) = r(bn|{b1, dk}) = (1, k + 1) and when t = k + 1, r(a1|{b1, dk+1}) = r(cn|{b1, dk+1}) =
(1, k + 1), a contradiction.
(12) One vertex is in the interior cycle and other in the outer cycle. Without loss of generality we
suppose that one resolving vertex is b1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{b1, et}) = r(bn|{b1, et}) = (1, t + 3). For t = k, we have
r(an|{b1, ek}) = r(cn|{b1, ek}) = (1, k + 2) and when t = k + 1, r(a2|{b1, ek+1}) = r(c1|{b1, ek+1}) =
(1, k + 2), a contradiction.
(13) One vertex is in the set of interior vertices and other in the exterior cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is dt (1 ≤ t ≤ k+1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{c1, dt}) = r(bn|{c1, dt}) = (2, t + 2). For t = k, we have
r(dn|{c1, dk}) = r(en|{c1, dk}) = (2, k) and when t = k + 1, r(d2|{c1, dk+1}) = r(dn|{c1, dk+1}) =
(1, k − 1), a contradiction.
(14) One vertex is in the set of interior vertices and other in the outer cycle. Without loss of generality
we suppose that one resolving vertex is c1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k−1).
Then for 1 ≤ t ≤ k − 1, we have r(a1|{c1, et}) = r(bn|{c1, et}) = (2, t + 3). For t = k, we have
r(dn|{c1, ek}) = r(en|{c1, ek}) = (2, k) and when t = k+1, r(dn|{c1, ek+1}) = r(en|{c1, ek+1}) = (2, k−1),
a contradiction.
(15) One vertex is in the set of exterior cycle and other in the outer cycle. Without loss of generality we
suppose that one resolving vertex is d1. Suppose that the second resolving vertex is et (1 ≤ t ≤ k + 1).
Then for 1 ≤ t ≤ k − 1, we have r(c1|{d1, et}) = r(dn|{d1, et}) = (1, t + 1). For t = k, we have
r(dn|{d1, ek}) = r(en|{d1, ek}) = (1, k) and when t = k + 1, r(dn|{d1, ek+1}) = r(en|{d1, ek+1}) =
(1, k − 1), a contradiction.
Hence, from above it follows that there is no resolving set with two vertices for V (En) implying that
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dim(En) = 3 in this case.
Case(ii) When n is odd.
In this case, we can write n = 2k + 1, k ≥ 3, k ∈ Z+. Let W = {a1, a3, ak+1} ⊂ V (En), again we show
that W is a resolving set for En in this case. For this we give representations of any vertex of V (En)\W
with respect to W .
Representations of the vertices on inner cycle are

r(ai|W ) =


(1, 1, k − 1), i = 2;
(i− 1, i− 3, k − i + 1), 4 ≤ i ≤ k;
(k, k − 1, 1), i = k + 2;
(k − 1, k, 2), i = k + 3;
(2k − i + 2, 2k − i + 4, i− k − 1), k + 4 ≤ i ≤ 2k + 1.

Representations of the vertices on interior cycle are

r(bi|W ) =


(1, 2, k), i = 1;
(2, 1, k − 1), i = 2;
(i, i− 2, k − i + 1), 3 ≤ i ≤ k;
(k + 1, k − 1, 1), i = k + 1;
(2k − i + 2, 2k − i + 4, i− k), k + 2 ≤ i ≤ 2k + 1.

Representations of the set of interior vertices are

r(ci|W ) =



(2, 2, k), i = 1;
(3, 2, k − 1), i = 2;
(i + 1, i− 1, k − i + 1), 3 ≤ i ≤ k − 1;
(k + 1, k − 1, 2), i = k;
(k + 1, k, 2), i = k + 1;
(k, k + 1, 3), i = k + 2;
(2k − i + 2, 2k − i + 4, i− k + 1), k + 3 ≤ i ≤ 2k;
(2, 3, k + 1), i = 2k + 1.

Representations of the vertices on exterior cycle are

r(di|W ) =



(3, 3, k + 1), i = 1;
(4, 3, k), i = 2;
(i + 2, i, k − i + 2), 3 ≤ i ≤ k − 1;
(k + 2, k, 3), i = k;
(k + 2, k + 1, 3), i = k + 1;
(k + 1, k + 2, 4), i = k + 2;
(2k − i + 3, 2k − i + 5, i− k + 2), k + 3 ≤ i ≤ 2k;
(3, 4, k + 2), i = 2k + 1.

Representations of the vertices on outer cycle are

r(ei|W ) =



(4, 4, k + 1), i = 1;
(5, 4, k), i = 2;
(i + 3, i + 1, k − i + 2), 3 ≤ i ≤ k − 1;
(k + 3, k + 1, 4), i = k;
(k + 2, k + 2, 4), i = k + 1;
(2k − i + 3, 2k − i + 5, i− k + 3), k + 2 ≤ i ≤ 2k − 1;
(4, 5, k + 3), i = 2k;
(4, 4, k + 2), i = 2k + 1.

Again we see that there are no two vertices having the same representations which implies that dim(En) ≤
3 in this case.
On the other hand, suppose that dim(En) = 2, then there are the same subcases as in case (i) and
contradiction can be obtained analogously. This implies that dim(En) = 3 in this case, which completes
the proof.

This result also supports the open problem raised in [10] positively.
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5. Concluding remarks

In this paper, we have studied the metric dimension of some classes of convex polytopes which are
obtained by the combination of two different graph of convex polytopes. We see that the metric dimension
of these classes of convex polytopes is finite and does not depend upon the number of vertices in these
graphs and only three vertices appropriately chosen suffice to resolve all the vertices of these classes of
convex polytopes. It is natural to ask for the characterization of classes of convex polytopes with constant
metric dimension. We also note that the results proved in Theorem 3 and 4 give the answer to the open
problem raised in [10] positively.

Note that in [16] Melter and Tomescu gave an example of infinite regular plane graph (namely the
digital plane endowed with city-block distance) having no finite metric basis. We close this section by
raising a question as an open problem that naturally arises from the text.

Open problem: Let G be the graph of a convex polytope which is obtained by the combination of
graph of two different convex polytopes G1 and G2 both having constant metric dimension. Is it the case
that G will always have the constant metric dimension?
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