
Introduction
Optogenetic techniques are now gaining extremely pop-
ularity in neuroscience. The main reason for this is the
possibility of studying different group of neurons associ-
ated with different brain functions with optogenetics.
This may not only create new perspectives for neuro-
science research, but may also describe neural network
pathways that are important to create potential for the
realization of important discoveries. 

Another important application area of optogenetics is
regulating network excitability to provide treatment
strategies for degenerative brain diseases such as
Parkinson and Alzheimer's disease. Controlling neu-
ronal activation emerges as an important factor in the
treatment of Alzheimer’s, Parkinson and other neurode-
generative diseases. In the most general use of optoge-
netics, molecules with a transmembrane protein allow
the passage of ions through the cell membrane in certain
wavelengths. Cell type and direction of movement of the
ions in the membrane effect membrane potential of neu-
rons leading to activation (depolarization) and deactiva-

tion (hyperpolarization) and thus, allow control of neu-
rons. 

Neuronal Activation
Channelrhodopsin-2 (ChR2), a cation channel unnatu-
rally and selectively expressed by algae Chlamydomonas
reinhardtii, is an important application of opsin for
depolarization of mammalian neurons.[1] Sending blue
light (maximum absorption wavelength of 470 nm),
ChR2, Na, H, Ca 2+ and K provide a passive switch[2] for
action potential formation caused by depolarization of
cell membrane. By exposure to light on ChR2, neurons
show a rapid activation kinetics and light activated ion
channels are fused. This interruption closes channels
quickly and exposure the light by the individual action
potential channels (1E2 ms) allows the formation of
selective stimulation on specific neuron groups. Today,
the original sequences of ChR2 in the literature have
been revealed by various modifications and different
mutagenesis approaches.[3] The original sequence of
increasing expression of ChR2 development and those
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set forth in mammalian cells focus on improving the
photocurrent amplitude. 

Human codon optimization for improved expression
of ChR2-H134 is at 40 Hz and is combined with substi-
tution of histidine for arginine at codon 134. Although
the expression of ChR2 has led to an increase in pho-
tocurrent amplitude level and deactivation kinetics, fre-
quency of the light stimulation has a decelerating
effect.[4] Therefore, further studies have concentrated on
the improvement of high precision frequency stimula-
tion channelrhodopsin shows low inactivation under
continuous light stimulation (33%) while chief ChR2
shows 77%, and at 25 Hz frequency, consistency of the
action potential is evident.[5] Similarly, the 123 position
on the ChR2 allows threonine modification of glutamic
acid to obtain an advanced ChR2 variant (ChR2-E123T,
CHET); so for activation/deactivation, it is possible to
read a reliable and consistent action potential value
shown at the 200 Hz level.[6] ChR2 largely increases
availability of CHET, and a direct fall in action potential
formation has been observed. The small photocurrent
exhibit amplitude constitutes a significant limiting factor
for in vivo studies. CHET sequence of threonine 159
position in the cysteine molecules created by the modifi-
cation of ChR2 variants (chr2- ET / TC) is impaired in
combination with CHET with high current values.[7]

Monitoring the genomes of several microbial organ-
isms through genetic engineering has enabled the devel-
opment of tools for optogenetics at red spectral region
and thus channelrhodopsin different sensitive variants
have been discovered. It occurs over the depth of pene-
tration of the red light spectral region. Increased activity
of wavelengths enables to penetrate to the tissue, and it
is particularly preferred for in vivo studies. Red light-sen-
sitive channelrhodopsin global algae Volvox carteri has
also been isolated and named VCHR1.[8] Maximum exci-
tation wavelength was determined as 70nm red light
ChR2 (Z550 nm compared to 470 nm) for neuronal
expression. Photocurrent levels are low and in cultured
neurons, and to form this action potential, there is a need
for long-term exposure to light.[8] Another red light-sen-
sitive channelrhodopsin variant is MCHR1, Mesostig
viride isolated from algae.[9] MCHR1 shows similar max-
imum absorption values to VCHR1. Thus, HEK293
cells exhibit faster kinetics over 25 Hz light stimulation
and wider photocurrent values.[9] However, no expres-
sion was observed in neurons for MCHR1.[10]

Neuronal silencing

The first microbial opsin that inhibits neuronal activity with
light-activated chloride pump is pharaonis halorhodopsin

(NpHR) naturally expressed by Halobacterium I
natronomonas.[11] When exposed to yellow light (570 nm
maximum activation), NpHR is actively pumped into cells
by neuronal membrane hyperpolarized chlorine ions,
thereby suppressing action potential.[12] However, high
amounts of NpHR can lead to formation of aggregates
upon expression of endoplasmic reticulum and this causes
cellular toxicity.[13] In this context, it enhances cellular
expression to limit the formation of aggregates.

Unlike ChR2, for high expression levels of NpHR, a
serious genetic modification is needed to access wide pho-
tocurrent and effective membrane hyperpolarization. A
peptide signal from the beta subunit of NpHR made the
first mutation process in the interior of the carbon termi-
nal rectifier potassium channel. ER-export signal and
nitrogen terminal in nicotine-acetylcholine receptor from
Kir2.1 have been added for enhanced NpHR (eNpHR).
eNpHR exhibits aggregate formation as well as demon-
strating better expression in neural culture. On the other
hand, photocurrent amplitude is increased two times
more. eNpHR in cell membrane is important in order to
increase the orientation and migration.[14] The sensitivity
also increased at the same time interval against infrared
stimulation. Measurable membrane hyperpolarization or
effective inhibition of the action potential of eNpHR is
highly attractive in the need for in vivo studies of the brain. 

There are other groups of molecules that may inhib-
it neural activity by opening proton pumps under the
influence of light. Those pumps actively pump chloride
into the cell, although halorhodopsin pumps protons out
of the cell membrane by hyperpolarization of this pro-
tein. Archaeorhodopsin-3 (Arch) was discovered in a
halobacterium Halorub sodomense with a maximum
absorption of 575 nm. Codon-optimized Arch is
expressed both in vivo and in vitro in neuronal cell mem-
brane hyperpolarization and may silence neural activi-
ty.[15] Finally, two other rhodopsin Leptoshpaeri maculans
and Halobacterium B from salinarum (both improved ver-
sions, eB), allow neural silencing by protons in response
to blue and green light.[15]

With ChR2 or its improved variants, host cells den-
drites affected a satisfactory number of inhibitory
interneurons. In addition, a satisfactory inhibitory effect
on the expression of dendritic stable step-function opsin
(SSFO) interneurons has become possible for the
excitability of interneurons and for raising their physio-
logical excitatory synaptic response to input donation.
Consequently, SSFO expression in the local neural net-
work with a single excitation light pulse intervals inhib-
ited and normalized on balance.[16]
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Optogenetic tools will also help to find the most
effective strategy to target the most appropriate neuronal
population from the pharmacological and genetic point
of view. It will allow understanding details of the mech-
anisms to be studied. Finally, these two different strate-
gies (of pyramidal cell activation and silencing of specif-
ic subsets of interneurons) influence the distribution of
amyloid plaques, and this effect can be increased by
using these technics altogether. Pyramidal cells express-
ing halorhodopsin can be obtained by using proton
pumps. 

In a hypothetical scenario, inhibitory effects of the
yellow light for the cells of the neural network are prob-
ably hyperexcitable by silencing, while the simultaneous
manner of interneurons synergism or upgrading is also
activated. However, the effect of each opsin combination
must be carefully examined and evaluated to avoid con-
fusion in the interpretation of results.

Opsin targeting and transmission of light

To consider optogenetics as a possible treatment strate-
gy for Alzheimer’s disease, some technical requirements
are important. For example, the vector must be delivered
safely to the specified anatomical areas. This suitable
DNA vector, the promoter and the DNA sequence of
the target cell population need to be selected to ensure
stable and continuous expression. Appropriate light
source should be positioned outside the cell population.
In addition to these, electrodes to record the activity and
stimulation created through the light source must be
matched to the targeted site or microchip.[16,17]

Vector manipulation 

There are many available options for sending the vector
experimentally in animals. At this point, the transgenic
animal (mouse) is a good approach to use. With trans-
genic animals,[18,19] ChR2, cell specific excretion of these
drugs[21–23] and also suitable for NpHR and ArCh.[24–26]

However, in interneurons, the promoters or calcium
binding protein is less active in specific cells while par-
valbumin expression gene promoters[27] is needed for
opsin for potentially effective neural control. Promoter
enhancer sequence may be added at this point to
Cre/loxP expression strategy.[28,29] Additionally, inducible
Cre-expressing arrays are also available.[30] As a result,
transmission of viral vector-based transgene transfection
is a very important step and will be used widely in clini-
cal practice in the future. In fact, viral vectors based on
adeno-associated virus (AAV) have been examined for
safety and efficiency in Parkinson’s disease studies, and
positive results have been obtained.[31]

Optical stimuli (light): For the activation of the
laser light source in animal models, different light
sources such as arc light source are used.[32] When ani-
mals are implanted, miniaturized dimensions are need-
ed.[33] LED light source collimated light in fibers can be
implanted accurately to focus on a specific zone under
the skin, through a hole in the skull to the brain, similar
to metal electrodes used in deep brain stimulation. Due
to the limited penetration of light on brain tissue in
which cells express the transgene opsin, it is necessary to
determine the strength of the light from the light source
to be transferred between the fibers. Integration of the
tissue is necessary for minimal power. All of these
assumptions lead to specific approaches in calculations
and experiments in vitro. On the other hand, in vivo ani-
mal experiments and calculations showed several differ-
ences in human trials.[34–36] Wave-length increased light
scattering reduced the red-sensitive opsin (eg C1V1) as a
more accurate alternative to in vivo application.[37–40]

Sending light followed by the activation of opsin can be
proposed as a technical improvement in human studies.
Selective targeting of specific populations of the neurons
in human trials have been revealed. Although the
inhibitory neurons are targeting selective expression of
opsin, special subsets of interneurons and the expression
of human promoters are not available.[41] Expression of
cell death or damage were monitored by weekly tests to
examine its effects on immunization.[40,41] However, tissue
damage is observed in the area of the implantation
optrode.[37]

In most of the earlier studies, optogenetic experi-
ments were carried out in rodents. Optimized transgene
settings and scale settings in transmitted light for human
studies are required in this context. Target area of treat-
ment in terms of optogenetics strategies for Alzheimer's
disease, needs to be less invasive and include enough cor-
tical surface, but this approach still has certain chal-
lenges, such as the need to send light from multiple
points.[42]

Conclusion
Optogenetic approach is extremely appealing to provide
solutions to potential Alzheimer's and other neurode-
generative disorders, is extremely attractive. Already in
the experimental stage in terms of developing new
strategies, there are many problems are available to be
solved and there is a need for long-term controlled trials.
In this context, animal studies are required as an alterna-
tive platform. Open issues to be studied include first,
gene transmission, and then alternative strategies can be
reviewed in the light transmission, the feedback control



system and so on. Apart from secondary technical issues,
the complexity of the neural network is stated as the
biggest difficulty to provide predictability. This point
requires detailed and systematic experimental studies for
a number of specific neuronal populations in brain net-
works and interactions. Potential ionic imbalance in the
brain tissue is another important issue for optogenetics
studies. All these pitfalls of optogenetic techniques in the
treatment of neurodegenerative diseases have led to an
increase in studies, and this technique has the potential
to contribute for important treatment strategies in neu-
rodegenerative diseases.
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