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Öz 

Bu çalışmada, Hamilton operatörlerini kullanarak genelleştirilmiş kuaterniyon cebiri ile gerçel 
(kompleks) matris cebirleri arasındaki bağlantıyı kurduk. Genelleştirilmiş kuaterniyonların gerçel ve 
kompleks temeline karşılık gelen gerçel ve kompleks matrisler elde ettik. Ayrıca, gerçel ve kompleks 
matrislerin temel özelliklerini araştırdık. Genelleştirilmiş kuaterniyonlara karşılık gelen Pauli matrislerini 

elde ettik. Daha sonra, bu matrisler tarafından üretilen cebirin, genelleştirilmiş 𝐸𝛼𝛽
3

 uzayı tarafından 

üretilen Clifford cebiri 𝐶𝑙(𝐸𝛼𝛽
3 ) ile izomorf olduğunu gösterdik. Son olarak, genelleştirilmiş birim 

kuaterniyonlara karşılık gelen simplektik matrisler grubu, genelleştirilmiş birim matrisler grubu ve 
genelleştirilmiş ortogonal matrisler grubu arasındaki ilişkileri inceledik. 

 

Generalized Quaternions and Matrix Algebra 
Keywords 

Generalized 
quaternions; 

Hamilton operators; 
Pauli matices; 

Generalized unitary 
matrices; 

Generalized 

orthogonal matrices 

Abstract 

In this paper, we established the connection between generalized quaternion algebra and real 
(complex) matrix algebras by using Hamilton operators. We obtained real and complex matrices 
corresponding to real and complex basis of the generalized quaternions. Also, we investigated the basis 
features of real and complex matrices. We get Pauli matrices corresponding to generalized quaternions. 
Then, we have shown that the algebra produced by these matrices is isomorphic to the Clifford algebra 

𝐶𝑙(𝐸𝛼𝛽
3 ) produced by generalized space 𝐸𝛼𝛽

3 .Finally, we studied the relations among symplectic 

matrices group corresponding to generalized unit quaternions, generalized unitary matrices group, and 
generalized orthogonal matrices group. 
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1. Introduction and Preliminaries  

Clifford algebra is a unital associative algebra 
generated by a vector space with a quadratic form. 
This algebra examines the properties of the vector 
spaces by using dot product, cross product, 
geometric product. Thus, this algebra is a useful and 
standard tool in dealing with geometric and physical 
problems. Clifford algebra can be generalized to the 
real numbers, complex numbers, quaternions, 
hyper-complex number systems. Clifford algebra’s 
name comes from British mathematician W. K. 
Clifford (1876). The Clifford algebra generated by 
the vector space 𝑉 with a scalar product on it is 
uniquely defined. In addition to the linear and 
associative properties of the scalar product, the 

following property must be provided for the 𝑥 and 𝑦 
vectors in vector space 𝑉, 

𝑥𝑦 + 𝑦𝑥 = 2𝑥 ⋅ 𝑦 

where ’⋅’ is a scalar product on 𝑉. The subset of the 
even degree elements of 𝐶𝑙(𝑉) defines the even 
subalgebra and denoted by 𝐶𝑙+(𝑉). When 𝑑𝑖𝑚𝑉 =
𝑛 then, 𝑑𝑖𝑚𝐶𝑙(𝑉) = 2𝑛 and 𝑑𝑖𝑚𝐶𝑙+(𝑉) = 2𝑛−1 
(Aragan et al. 1997, Catoni et al. 2005). 

In this study, we defined Clifford algebra 
product on generalized space. Afterward, we have 

shown that even Clifford algebra of 𝐸𝛼𝛽
3  

corresponds to generalized quaternion algebra. 3-

dimensional non-degenerate vector space 𝐸𝛼𝛽
3  has a 

orthogonal basis {𝑒1, 𝑒2, 𝑒3}. The even Clifford 

algebra 𝐶𝑙+(𝐸𝛼𝛽
3 ) = 𝐶𝑙𝑝,𝑞; 𝑝 + 𝑞 = 3 of the vector 
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space has a orthogonal basis {1, 𝑒1 = 𝑖, 𝑒2 =

𝑗, 𝑒1𝑒2 = 𝑘}, where 𝑒1
 2 = −𝛼, 𝑒2

2 = −𝛽 and 𝑒1𝑒2 =

−𝑒2𝑒1 (Ata and Savcı, 2021). 

Generalized quaternions have emerged as a 
tool for studying quadratic forms. These 
quaternions are a natural generalization of 
Hamilton quaternions and split quaternions. 
Generalized quaternions can be either a 
Hamiltonian quaternion or a split quaternion, 
depending on the choice of numbers 𝛼 and 𝛽. 
Therefore, it has a more general algebraic structure. 
For more detailed information on Hamiltonin and 
split quaternions, see (Alagöz 2012,Cockle 1849, 
Hamilton 1853, 1866, Özdemir and Ergin 2006, 
Sangwine and Le Bihan 2010). Ata and the Savcı 

have shown that unit generalized quaternions 𝐻𝛼𝛽
3  

correspond to a rotation in generalized space 𝐸𝛼𝛽
3 . 

They stated that this motion gives the rotational 
motion in 3-dimensional Euclidean space 𝐸3 and in 

3-dimensional Lorenz space 𝐸1
3 for their special 

choices of 𝛼, 𝛽 ∈ ℝ (Ata and Savcı, 2021). Ata and 
Yıldırım have obtained a different polar 
representation of generalized quaternions. And, 
they showed that a rotational motion in generalized 
space can be obtained as the product of two 
rotations in the same space by using this notation 
(Ata and Yıldırım, 2018). See detail (Ata et al. 2012, 
Jafari and Yaylı 2015, Lam 2005 ) for more 
information about generalized space and their 
algebraic properties. 

In this paper, real and complex matrix 
representations of a generalized quaternion are 
obtained with the help of Hamilton operators. The 
real and complex basis matrices corresponding to 
the real and complex basis vectors of the 
generalized quaternion algebra are obtained. 
Besides that the properties of these matrices are 
investigated. It is shown that second complex 
Hamilton matrices corresponding to a generalized 
unit quaternion are a generalized special unitary 2 ×
2 matrix. These matrices have been obtained in 
exponential form using generalized Pauli matrices. It 
has been shown that the algebra produced by the 
generalized Pauli matrices is isomorphic to Cilfford 

algebra 𝐶𝑙(𝐸𝛼𝛽
3 ) and the Lie algebra of group 

𝑆𝑈𝛼𝛽(2). 

In this sections, we present some properties 
of the generalized quaternions. 

Let 𝑢 = (𝑢1, 𝑢2, 𝑢3), 𝑣 = (𝑣1, 𝑣2, 𝑣3) be in 
ℝ3 and 𝛼, 𝛽 ∈ ℝ, then the generalized metric tensor 

product is defined by 𝑔(𝑢, 𝑣) = 𝛼𝑢1𝑣1 + 𝛽𝑢2𝑣2 +
𝛼𝛽𝑢3𝑣3. It could be written matrix formas as; 

𝑔(𝑢, 𝑣) = 𝑢𝑇 [

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

] 𝑣 = 𝑢𝑇𝐺𝑣. 

Generalized metric tensor 𝑔(𝑢, 𝑣) has different 
names depending on the choice of numbers 𝛼, 𝛽 ∈ 
ℝ; 𝑔(𝑢, 𝑣) is called generalized inner product when 
𝛼 > 0, 𝛽 > 0, 

𝑔(𝑢, 𝑣) is called the generalized semi-
Euclidean inner product when 𝛼 > 0, 𝛽 < 0, 

𝑔(𝑢, 𝑣) is called Euclidean inner product 
when  𝛼 = 𝛽 = 1, 

𝑔(𝑢, 𝑣) is called semi-Euclidean inner 
product when 𝛼 = 1, 𝛽 = −1, 

The vector space on ℝ3 equipped with the 
generalized inner product, is called 3-dimensional 

generalized space denoted by 𝐸𝛼𝛽
3  or 𝐸3(𝛼, 𝛽). 

If 𝛼 = 𝛽 = 1, then 𝐸3(1,1) = 𝐸3 3-
dimensional Euclidean space If 𝛼 = 1 and 𝛽 = −1, 

then 𝐸3(1, −1) = 𝐸1
3 3-dimensional semi-Euclidean 

space (Minkowski space). 

1.1 Generalized Quaternions 

A generalized quaternion is defined as 

𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 

where 𝑎0, 𝑎1, 𝑎2 and 𝑎3 are real numbers and 𝑖, 𝑗, 𝑘 
are quaternionic units which satisfy the equations 

𝑖2 = −𝛼, 𝑗2 = −𝛽, 𝑘2 = −𝛼𝛽
𝑖𝑗 = 𝑘 = −𝑗𝑖, 𝑗𝑘 = 𝛽𝑖 = −𝑘𝑗

 

and 

𝑘𝑖 = 𝛼𝑗 = −𝑖𝑘, 𝛼, 𝛽 ∈ ℝ. 

The set of all generalized quaternions are denoted 
by 𝐻𝛼𝛽. A generalized quaternion 𝑞 is a sum of a 

scalar and a vector, where scalar part, 𝑆𝑞 = 𝑎0, and 

vector part 𝐕𝑞 = 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 ∈ ℝ𝛼𝛽
3 . 

Therefore, 𝐻𝛼𝛽 forms 4-dimensional real space 

which contains the (real) axis ℝ, 𝐻𝛼𝛽 = ℝ ⊕ 𝐸𝛼𝛽
3 . 

Special cases: 

1) If 𝛼 = 𝛽 = 1, then 𝐻𝛼𝛽 is the algebra of 

real quaternions. 

2) If 𝛼 = 1, 𝛽 = −1, then 𝐻𝛼𝛽 is the algebra 

of split quaternions. 

3) If 𝛼 = 1, 𝛽 = 0, then 𝐻𝛼𝛽  is the algebra 

of semi quaternions. 
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4) If 𝛼 = −1, 𝛽 = 0, then 𝐻𝛼𝛽 is the algebra 

of split semi-quaternions. 

5) If 𝛼 = 0, 𝛽 = 0, then 𝐻𝛼𝛽 is the algebra 

of 1/4 quaternions (Jafari 2012). 

The addition rule for generalized 
quaternions, 𝐻𝛼𝛽, is: 

𝑝 + 𝑞 = (𝑎0 + 𝑏0) + (𝑎1 + 𝑏1)𝑖 + (𝑎2 + 𝑏2)𝑗
+ (𝑎3 + 𝑏3)𝑘 

for 𝑝 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 and 𝑞 = 𝑏0 + 𝑏1𝑖 +
𝑏2𝑗 + 𝑏3𝑘. 

This rule preserves the associativity and 
commutativity properties of addition, and provides 
a consistent behaviour for the subset of quaternions 
corresponding to real numbers, i.e 

𝑆𝑝+𝑞 = 𝑆𝑝 + 𝑆𝑞 = 𝑎0 + 𝑏0. 

The product of a scalar and a generalized quaternion 
is defined in a straight forward manner. If 𝑐 is a 
scalar and 𝑞 ∈ 𝐻𝛼𝛽, 

𝑐𝑞 = 𝑐𝑆𝑞 + 𝑐𝐕𝑞 = (𝑐𝑎0)1 + (𝑐𝑎1)𝑖 + (𝑐𝑎2)𝑗 + (𝑐𝑎3)𝑘. 

The multiplication rule for generalized quaternions 
is defined as 

𝑝𝑞 = 𝑆𝑝𝑆𝑞 − 𝑔(𝐕𝑝, 𝐕𝑞) + 𝑆𝑝𝐕𝑞 + 𝑆𝑞𝐕𝑞 + 𝐕𝑝 ∧ 𝐕𝑞 

which could also be expressed as 

𝑝𝑞 = (

𝑎0 −𝛼𝑎1 −𝛽𝑎2 −𝛼𝛽𝑎3

𝑎1 𝑎0 −𝛽𝑎3 𝛽𝑎2

𝑎2 𝛼𝑎3 𝑎0 −𝛼𝑎1

𝑎3 −𝑎2 𝑎1 𝑎0

) (

𝑏0

𝑏1

𝑏2

𝑏3

). 

Obviously, quaternion multiplication is associative 
and distributive with respect to addition and 
subtraction, but the commutative law does not hold 
in general (Grop et al. 2003). 

𝐻𝛼𝛽 with addition and multiplication has all 

the properties of a number field except 
commutativity of the multiplication. It is therefore 
called the skew field of generalized quaternions. 

Some properties of generalized quaternions 
were given below; 

1) The Hamilton conjugate of 𝑞 = 𝑎0 +
𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 = 𝑆𝑞 + 𝐕𝑞 is  

𝑞 = 𝑎0 − (𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘) = 𝑆𝑞 − 𝐕𝑞 

2)  The norm of 𝑞 is defined as 𝑁𝑞 = |𝑞𝑞| =

|𝑞𝑞| = |𝑎0
2 + 𝛼𝑎1

2 + 𝛽𝑎2
2 + 𝛼𝛽𝑎3

2|. If 𝑁𝑞 = 1, then 

𝑞 is called unit generalized quaternion, for 𝑁𝑞 ≠ 0, 

𝑞0 =
𝑞

𝑁𝑞
 is unit generalized quaternion. 

If 𝑁𝑞 = |𝑎0
2 + 𝛼𝑎1

2 + 𝛽𝑎2
2 + 𝛼𝛽𝑎3

2| = 1, 

then 𝑞 is called as unit generalized quaternion. 

3) The inverse of generalized quaternion 𝑞 

is defined as 𝑞−1 =
𝑞

𝑁𝑞
, 𝑁𝑞 ≠ 0. 

If 𝐼𝑞 > 0, 𝐼𝑞 < 0, and 𝐼𝑞 = 0 for < 𝑞, 𝑞 >=

𝐼𝑞 , then 𝑞 is called spacelike, timelike, and lightlike 

quaternion, respectively. 

If generalized quaternion 𝑞 is lightlike 
quaternion (𝑁𝑞 = 0), then, 𝑞 is not inversible. 

4) The scalar product of two generalized 
quaternions, 𝑝 = 𝑆𝑝 + 𝐕𝑝 and 𝑞 = 𝑆𝑞 + 𝐕𝑞, is 

defined as; 

< 𝑝, 𝑞 > = 𝑆𝑝𝑆𝑞 + 𝑔(𝐕𝑝, 𝐕𝑞)

= 𝑆𝑝𝑞
 

The above expression defines a metric in 𝐸𝛼𝛽
4 . From 

know on, for the calculation below, according to the 

selection of 𝛼 and 𝛽, 𝐻𝛼𝛽
4  generalized quaternion 

space were taken identical to generalized Euclidean 
and semi-Euclidean space, where  

𝐸𝛼𝛽
4 = {𝑞 = (𝑎0, 𝑎1, 𝑎2, 𝑎3) ∈ ℝ4: < 𝑞, 𝑞 >

= 𝑎0
2 + 𝛼𝑎1

2 + 𝛽𝑎2
2 + 𝛼𝛽𝑎3

2, 𝛼, 𝛽
∈ ℝ} 

Generalized quaternions with scalar part zero are 
called pure quaternions and denoted by 𝐻𝛼𝛽

∘ . The 

set 𝐻𝛼𝛽
∘  is a subalgebra of 𝐻𝛼𝛽 and it is identical to 

3-dimensional generalized real linear Euclidean 

space ℝ𝛼𝛽
3 . 

5) Polar form: Let 𝛼, 𝛽 > 0, then every 
generalized quaternion 𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 
can be written in the form 

𝑞 = 𝑟(cos𝜃 + �⃖� sin𝜃), 0 ≤ 𝜃 ≤ 2𝜋 

with 

𝑟 = √𝑁𝑞 = √𝑎0
2 + 𝛼𝑎1

2 + 𝛽𝑎2
2 + 𝛼𝛽𝑎3

2, 

and 

cos𝜃 =
𝑎0

𝑟
, sin𝜃 =

√𝛼𝑎1
2 + 𝛽𝑎2

2 + 𝛼𝛽𝑎3
2

𝑟
. 

The unit vector �⃖�  is given by 

u =
𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘

√𝛼𝑎1
2 + 𝛽𝑎2

2 + 𝛼𝛽𝑎3
2

 

where 𝛼𝑎1
2 + 𝛽𝑎2

2 + 𝛼𝛽𝑎3
2 ≠ 0. 

Let 𝛼 > 0, 𝛽 < 0, then 
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 𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 is generalized 
quaternion, in polar coordinates, 𝑞 is given by  

𝑞 = 𝑟(cosh𝜑 + usinh𝜑), (the generalized 
quaternion is called timelike generalized quaternion 
with spacelike vectorial part), where < 𝑞, 𝑞 >< 0, 

𝑔(𝐕𝑝, 𝐕𝑞) > 0,    cosh𝜑 =
𝑎0

𝑟
 and  

sinh𝜑 =
√𝛼𝑎1

2+𝛽𝑎2
2+𝛼𝛽𝑎3

2

𝑟
, 𝜑 ∈ ℝ  

(Ata and Yıldırım 2018). 

1.2 Hamilton Operators in Generalized Quaternion 

We will study, the real and complex 
Hamilton operators and their properties, 
corresponding to generalized quaternions, via 
matrices. 

Let 𝐻+ and 𝐻− be linear transformations, 

𝐻+: 𝐻𝛼𝛽 → 𝐻𝛼𝛽 and 𝐻−: 𝐻𝛼𝛽 → 𝐻𝛼𝛽

𝑞 → 𝐻+(𝑞) 𝑞 → 𝐻−(𝑞)
 

are endomorphisms. 

Left and right notations of 𝐻𝛼𝛽 algebra can 

be given equation (1) and equation (2), respectively; 

𝐻+(𝑞): 𝐻𝛼𝛽 → 𝐻𝛼𝛽

𝑥 → 𝐻+(𝑞)(𝑥) = 𝑞𝑥
                                 (1) 

and 

𝐻−(𝑞): 𝐻𝛼𝛽 → 𝐻𝛼𝛽

𝑥 → 𝐻−(𝑞)(𝑥) = 𝑥𝑞
                                   (2) 

Those maps are called as Hamilton operators 

As known, each finite dimensional 
associative 𝐴 algebra over the 𝐾 field, isomorphic to 
subalgebra of 𝑀𝑛(𝐾) algebra. Thus, one can find 
accurate representation of the 𝐴 algebra of the 
𝑀𝑛(𝐾) algebra. 

For the 𝐻𝛼𝛽 generalized quaternion algebra 

𝐻+(𝑞) and 𝐻−(𝑞) transformations are 
isomorphisms, 

𝐻+: 𝐻𝛼𝛽 → 𝑀4(ℝ),  

𝐻+(𝑞) = (

𝑎0 −𝛼𝑎1 −𝛽𝑎2 −𝛼𝛽𝑎3

𝑎1 𝑎0 −𝛽𝑎3 𝛽𝑎2

𝑎2 𝛼𝑎3 𝑎0 −𝛼𝑎1

𝑎3 −𝑎2 𝑎1 𝑎0

) 

and 

𝐻−: 𝐻𝛼𝛽 → 𝑀4(ℝ),  

𝐻−(𝑞) = (

𝑎0 −𝛼𝑎1 −𝛽𝑎2 −𝛼𝛽𝑎3

𝑎1 𝑎0 𝛽𝑎3 −𝛽𝑎2

𝑎2 −𝛼𝑎3 𝑎0 𝛼𝑎1

𝑎3 𝑎2 −𝑎1 𝑎0

) 

where 𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 ∈ 𝐻𝛼𝛽 . 𝐻+(𝑞) 

and 𝐻−(𝑞) matrices are called real Hamiltonian 
matrices of generalized quaternions. The product of 
the generalized quaternions (𝑝 and 𝑞) can be shown 
as matrices product; 

𝑞𝑝 = 𝐻+(𝑞)𝑝  and  𝑞𝑝 = 𝐻−(𝑝)𝑞 

Matrices derived by Hamilton matrices 𝐻+(𝑞) and 
𝐻−(𝑞) are generalized pseudo-orthogonal matrices 
which satisfy the following properties, 

i) (𝐻+(𝑞))𝑇𝜀(𝐻+(𝑞)) = 𝑁(𝑞)𝜀, 

ii) (𝐻−(𝑞))𝑇𝜀(𝐻−(𝑞)) = 𝑁(𝑞)𝜀, 

iii) 𝐻+(𝑞) and 𝐻−(𝑞) are generalized 
orthonormal matrices if and only if 𝑞 is a generalized 
unit quaternions, 

𝑞𝑝 = 𝐻+(𝑞)𝑝 and 𝑝𝑞 = 𝐻−(𝑝)𝑞  

(Jafari and Yaylı 2015). 

1.3 Fundamental Real Matrices of the Generalized 
Quaternions 

The scope of this section is to find out how 
many real fundamental matrices that generalized 
quaternions have . 

Let 𝐼4 be a 4 × 4 identity matrix and 
𝐻1, 𝐽1, 𝐾1 be 4 × 4 real matrices. Hence, the first 
fundamental matrix of 𝑞 can be given as  

𝐻+(𝑞) = 𝑎0𝐼4 + 𝑎1𝐻1 + 𝑎2𝐽1 + 𝑎3𝐾1                       (3) 

Where          𝐻1 = (

0 −𝛼 0 0
1 0 0 0
0 0 0 −𝛼
0 0 1 0

),  

𝐽1 = (

0 0 −𝛽 0
0 0 0 𝛽
1 0 0 0
0 −1 0 0

), 

𝐾1 = (

0 0 0 −𝛼𝛽
0 0 −𝛽 0
0 𝛼 0 0
1 0 0 0

). 

The second fundamental matrix; 

𝐻−(𝑞) = 𝑎0𝐼4 + 𝑎1𝐻2 + 𝑎2𝐽2 + 𝑎3𝐾2                      (4) 
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Where         𝐻2 = (

0 −𝛼 0 0
1 0 0 0
0 0 0 𝛼
0 0 −1 0

),  

𝐽2 = (

0 0 −𝛽 0
0 0 0 −𝛽
1 0 0 0
0 1 0 0

), 

𝐾2 = (

0 0 0 −𝛼𝛽
0 0 𝛽 0
0 −𝛼 0 0
1 0 0 0

). 

A matrix 𝑆 = (

0 𝛼𝑠1 𝛽𝑠2 𝛼𝛽𝑠3

−𝑠1 0 −𝛽𝑠4 𝛽𝑠5

−𝑠2 𝛼𝑠4 0 −𝛼𝑠6

−𝑠3 −𝑠5 𝑠6 0

) called a  

generalized skew-symmetric matrix if 𝑆𝑇𝜀 = −𝜀𝑆, 
where 

𝜀 = (

1 0 0 0
0 𝛼 0 0
0 0 𝛽 0
0 0 0 𝛼𝛽

), 𝛼, 𝛽 ∈ ℝ 

(Jafari and Yaylı 2015). 

 

2.  Some Properties of Real Hamilton Matrices in 
Generalized Quaternions 

The set of all the 𝐻𝛼𝛽 generalized 

quaternions is a form of 4-dimensional real vector 
space which contains the real axis ℝ and 3-

dimensional real linear space 𝐸𝛼𝛽
3 , so that, 𝐻𝛼𝛽 =

ℝ ⊕ 𝐸𝛼𝛽
3 . So, 𝑞 ∈ ℝ𝐸𝛼𝛽

4  (where 𝐸𝛼𝛽
4  is generalized 

4-dimensional real vector space) vector and 𝑞 
generalized quaternion can be match, which is 
denoted as ”≅”. Here 

𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘 ≅ 𝑞 = (

𝑎0

𝑎1

𝑎2

𝑎3

) 

2.1  Generator Fundamental Real Matrices of 
Generalized Quaternion 

In this part, we obtained different 
fundamental matrices using the triplet (𝐻1, 𝐽1, 𝐾1) 
with their negations. Firstly, we generated ordered 
triples which satisfy condition 3. We found that 
there were totally two possible choices for the first 
element of the triplet. Then, deleting the chosen 
matrix and its negation, we had four choices for the 
second element of the triplet, leaving the third 
element to be determined by the product of the first 

and second elements. Thus, we got a totally 8 
choices for the first system. By the same way, we got 
a totally 8 choices for the second system 
((𝐻2, 𝐽2, 𝐾2). Then, we had 16 ordered triples for 
each system. Hence, we obtain 16 different 
fundamental matrices using the ordered triples 
which satisfy condition 3 or 4. 

For the convenience in working, we will 

express fundamental matrices 𝐻+𝑖(𝑞) and 𝐻−𝑖(𝑞), 
0 ≤ 𝑖 ≤ 7 obtained from ordered triples 
(𝐻𝑠, 𝐽𝑠, 𝐾𝑠), (𝐻𝑠, −𝐽𝑠, −𝐾𝑠), (𝐻𝑠, −𝐽𝑠, 𝐾𝑠), 
(𝐻𝑠, 𝐽𝑠, −𝐾𝑠), (−𝐻𝑠, 𝐽𝑠, −𝐾𝑠), (−𝐻𝑠, −𝐽𝑠, 𝐾𝑠), 
(−𝐻𝑠, 𝐽𝑠, 𝐾𝑠), (−𝐻𝑠, −𝐽𝑠, −𝐾𝑠), respectively, for 
s=1,2. 

2.2  Basic Properties of The Fundamental Real 
Matrices 

For a given generalized quaternion 𝑞 =
𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘, we can write the conjugate 
of q as below, 

𝑞 ≅ 𝐪 = (

𝑎0

−𝑎1

−𝑎2

−𝑎3

) = 𝐶𝑞, 𝐶 = (

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

) . 

and 

𝑆𝑞 ≅ 𝑎0𝑒1, 𝑒1 = (

1
0
0
0

) , 𝐕𝑞 ≅ 𝑞∗ = (

0
𝑎1

𝑎2

𝑎3

) . 

Let 𝑞 and 𝑝 be the generalized quaternions and 𝑎, 𝑏 

∈ ℝ, then the following identities hold: 𝐻±𝑖 

represents 𝐻+𝑖 and 𝐻−𝑖 together. 

1. 𝑞 = 𝑝 ⇔ 𝐻±𝑖(𝑞) = 𝐻±𝑖(𝑝),  0 ≤ 𝑖 ≤ 7, 

2. 𝐻±𝑖(𝑝 + 𝑞) = 𝐻±𝑖(𝑝) + 𝐻±𝑖(𝑞),  

𝐻±𝑖(𝑝𝑞) = 𝐻±𝑖(𝑝)𝐻±𝑖(𝑞),  

3. 𝐻+𝑖(𝑞)𝐻−𝑖(𝑝) = 𝐻−𝑖(𝑝)𝐻+𝑖(𝑞), 

4. 𝐻+𝑖(𝑝)𝐻+𝑖(𝑞) = 𝐻+𝑖((𝐻+𝑖(𝑞))(𝑝)), 

𝐻±𝑖(𝑎𝑝 + 𝑏𝑞) = 𝑎𝐻±𝑖(𝑝) + 𝑏𝐻±𝑖(𝑞),  

5. (𝐻+𝑖(𝑞))𝑇 = 𝐶(𝐻−𝑖(𝑞))𝑇𝐶, 

6. 𝑡𝑟(𝐻±𝑖(𝑞)) = 4𝑆𝑞, 𝑑𝑒𝑡(𝐻±𝑖(𝑞)) =

‖𝑞‖2.  

The 3th identity can be proved by simple 
matrix computation. Naturally, these identities are 
closely related to basic properties of generalized 
quaternion algebra. For example, the identity 

𝐻±𝑖(𝑎𝑝 + 𝑏𝑞) = 𝑎𝐻±𝑖(𝑝) + 𝑏𝐻±𝑖(𝑞) 
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is connected to the linearity of left (or right) 
multiplication. Similarly, the identity 

𝐻+𝑖(𝑝)𝐻+𝑖(𝑞) = 𝐻+𝑖((𝐻+𝑖(𝑞))(𝑝)) 

is related to the associative law for generalized 
quaternion multiplication. Furthermore, applying 
the matrix approach leads to a convenient and 
concise way of writing proofs. We can illustrate this 
point by considering three well-known identities 
|𝑞𝑞| = ‖𝑞‖2, ‖𝑞𝑝‖2 = ‖𝑞‖2‖𝑝‖2 and 𝑞𝑝 = 𝑝𝑞. 

|𝑞𝑞| ≅ |𝐻+0(𝑞)(𝑞)| = |𝐻−0(𝑞)(𝑝)| = |𝑞|2𝑒1,

≅ ‖𝑞‖2 = ‖𝑎0
2 + 𝛼𝑎1

2 + 𝛽𝑎2
2 + 𝛼𝛽𝑎3

2‖

‖𝑞𝑝‖2 ≅ ||𝐻+0(𝑞)(𝑝)||
2

= ‖𝑞‖2‖𝑝‖2

2
 

and 

𝑞𝑝 ≅ 𝐶(𝐻+0(𝑞)(𝑝)) = (𝐶𝐻+0(𝑞))(𝑝)
= 𝐻−0(𝑞)(𝑝) = 𝑝𝑞. 

Now, we define the linear transformation 
representing multiplication of fundamental 
matrices in 𝐻𝛼𝛽. Let 𝑞 be a generalized quaternion, 

then 𝛾+𝑖(𝑞): 𝐻𝛼𝛽 → 𝐻𝛼𝛽 and 𝛾−𝑖(𝑞): 𝐻𝛼𝛽 → 𝐻𝛼𝛽 

are defined as follows: 

𝛾+𝑖(𝑞)(𝑥) = 𝐻+𝑖(𝑞)(𝑥),
𝛾−𝑖(𝑞)(𝑥) = 𝐻−𝑖(𝑞)(𝑥),
𝑥 ∈ 𝐻𝛼𝛽 . 

Let 𝑞 be a unit generalized quaternion; 

|𝛾+𝑖(𝑞)(𝑥)| = |𝐻+𝑖(𝑞)(𝑥)| = |𝐻+𝑖(𝑞)||𝑥| = |𝑥|, 

and  

|𝛾−𝑖(𝑞)(𝑥)| = |𝐻+𝑖(𝑞)(𝑥)| = |𝐻+𝑖(𝑞)||𝑥| = |𝑥|,  

where 𝛾+𝑖(𝑞) and 𝛾−𝑖(𝑞) are generalized 
orthogonal transformations of 𝐻𝛼𝛽 . Thus, for unit 

generalized quaternions 𝑞 and 𝑝, the mapping 
𝐶𝑝,𝑞: 𝐻𝛼𝛽 → 𝐻𝛼𝛽 is defined by 

𝐶𝑝,𝑞 = 𝛾+𝑖(𝑞) ∘ 𝛾−𝑖(𝑝) = 𝛾−𝑖(𝑝) ∘ 𝛾+𝑖(𝑞) 

Similarly, the complex Hamilton operators 
corresponding to generalized quaternions are 
calculated as follows 

𝑞 = 𝑎0 + 𝑎1𝑖 + 𝑎2𝑗 + 𝑎3𝑘

= (𝑎0 + 𝑎1𝑖) + (𝑎2 + 𝑎3𝑖)𝑗
 

𝑞 = 𝑧 + 𝑤𝑗, where 𝑧 = 𝑎0 + 𝑎1𝑖, 𝑤 = 𝑎2𝑗 + 𝑎3𝑘, 
and 𝑧, 𝑤 ∈ ℂ. Hence, the generalized quaternion 𝑞 
is conceivable pair of complex number, i.e. 𝐻𝛼𝛽 ≅

ℂ2. The complex standard base of the generalized 
quaternion algebra is {1, 𝑗}, 

𝐻ℂ
+(𝑞)(1) = 𝑞 ⋅ 1 = 𝑧 + 𝑤𝑗,

𝐻ℂ
+(𝑞)(𝑗) = 𝑞 ⋅ 𝑗 = (𝑧 + 𝑤𝑗) ⋅ 𝑗 = 𝑧𝑗 + 𝑤𝑗2

= −𝛽𝑤 + 𝑧𝑗

 

from the above two equations; 

𝐻ℂ
+(𝑞) = (

𝑧 𝑤
−𝛽𝑤 𝑧 ) , 𝛼 = 1, 𝛽 ∈ ℝ 

Fundamental complex matrices of generalized 
quaternions; 

𝐻ℂ
+(𝑞) = 𝑧𝐼2 + 𝑤𝐻1; 

where 𝐼2 = (
1 0
0 1

), 𝐻1 = (
0 −𝛽
1 0

) and  

𝐻1
2 = −𝛽𝐼2. 

Similarly, second fundamental complex 
matrices; 

𝐻ℂ
−(𝑞)(1) = 1 ⋅ 𝑞 = 𝑧 + 𝑤𝑗,

𝐻ℂ
−(𝑞)(𝑗) = 𝑗 ⋅ 𝑞 = 𝑗 ⋅ (𝑧 + 𝑤𝑗) = 𝑗𝑧 + 𝑗𝑤𝑗

= 𝑧𝑗 + 𝑤𝑗2

= 𝑧𝑗 − 𝛽𝑤

= −𝛽𝑤 + 𝑧𝑗

 

from the above equations; 

𝐻ℂ
−(𝑞) = (

𝑧 𝑤
−𝛽𝑤 𝑧 ) 

Using the 𝐻𝛼𝛽 ≅ ℂ2 relation, mentioned above, 𝑝 

and 𝑞 quaternion product of generalized 
quaternions 𝑝, 𝑞 (right product of 𝑝 with 𝑞) 
according to matrix product 𝐻ℂ

−(𝑞) ⋅ 𝑝, such as, for 
𝑞 = 𝑧1 + 𝑤1𝑗 and 𝑝 = 𝑧2 + 𝑤2𝑗, 

𝑞𝑝 = (𝑧1 + 𝑤1𝑗)(𝑧2 + 𝑤2𝑗)

= (𝑧1𝑧2 − 𝛽𝑤1𝑤2) + (𝑤1𝑧2 + 𝑧1𝑤2)𝑗

= (𝑧1𝑧2 − 𝛽𝑤1𝑤2, 𝑧1𝑤2 + 𝑤1𝑧2)

 

and, for 𝐻ℂ
−(𝑞) = [

𝑧1 𝑤1

−𝛽𝑤1 𝑧1
], 𝑝 = 𝑧2 + 𝑤2𝑗 =

[
𝑧2

𝑤2
], then 

𝑞𝑝 = 𝐻ℂ
−(𝑝) ⋅ 𝑞 = [

𝑧2 𝑤2

−𝛽𝑤2 𝑧2
] [

𝑧1

𝑤1
]

= [
𝑧1𝑧2 +  𝑤1𝑤2

−𝛽𝑤2𝑧1 + 𝑤1𝑧2
] 

In this respect, quaternion multiplication can be 
presented with second Hamilton complex matrices. 

If one take 𝑞 = 𝑧 + 𝑤𝑗, 𝑧, 𝑤 ∈ ℂ as a 
generalized unit quaternion, then second 
fundamental Hamiltonian complex matrix 𝐻ℂ

−(𝑞) =

[
𝑧 𝑤
−𝛽𝑤 𝑧 ] is equivalent (𝑁𝑞)

2
= |𝑧|2 + 𝛽|𝑤|2 =

1, where 𝛽 ≠ 0. In this case, matrix 𝐻ℂ
−(𝑞) is a 

generalized special unitary matrix, i.e. 
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(𝐻ℂ
−(𝑞))

𝑇
𝜖𝐻ℂ

−(𝑞) = 𝜖 and 𝑑𝑒𝑡(𝐻ℂ
−(𝑞)) = 1, 

𝜖 = [
𝛽 0
0 1

] 

where 𝜖 is 2 × 2 diagonal matrix, obtained using 
generalized inner product and base {1, 𝑗}. Those 
matrices generate 𝑆𝑈𝛼𝛽(2) which is a group of 

generalized special unitary 2 × 2 matrices. 

If we take 𝛽 < 0, then 𝑆𝑈𝛼𝛽(2) is a group of 

generalized special unitary hyperbolic matrices. 

Consequently, it is an isomorphism of the group 𝑆𝛼𝛽
3  

onto the group 𝑆𝑈𝛼𝛽(2). Using the matrix 𝐻ℂ
−(𝑞), 

we can obtain matrices corresponding to unit 
quaternions {1, 𝑖, 𝑗, 𝑘} as follows: 

1 = [
1 0
0 1

] ,      𝑖 = [
𝑖 0
0 −𝑖

] = 𝑖 [
1 0
0 −1

] ,

𝑗 = [
0 1
−𝛽𝑖 0

] = 𝑖 [
0 −

𝑖

𝛼
𝛽

𝛼
𝑖 0

] ,      𝑘 = [
0 1
−𝛽𝑖 0

] = 𝑖 [
0 1
𝛽 0

] .

 

Let 

𝜎0 = [
1 0
0 1

] , 𝜎1 = [
0 1
𝛽 0

] ,  

𝜎2 = [
0 −

𝑖

𝛼
𝛽

𝛼
𝑖 0

] , 𝜎3 = [
1 0
0 −1

]  

Then 

𝐻ℂ
−(𝑞) = [

𝑧 𝑤
−𝛽𝑤 𝑧 ] = [

𝑎0 + 𝑎1𝑖 𝑎2 + 𝑎3𝑖

−𝛽(𝑎2 − 𝑎3𝑖) 𝑎0 − 𝑎1𝑖
]

= 𝑎0 [
1 0
0 1

] + 𝑎1 [
𝑖 0
0 −𝑖

] + 𝑎2 [
0 1
−𝛽 0

] + 𝑎3 [
0 1
𝛽𝑖 0

]

= 𝑎0𝜎0 + 𝑎1𝑖 [
1 0
0 −1

] + 𝑎2𝑖 [
0 −

𝑖

𝛼
𝛽

𝛼
𝑖 0

] + 𝑎3𝑖 [
0 1
𝛽 0

]

= 𝑎0𝜎0 + 𝑖(𝑎3𝜎1 + 𝑎2𝜎2 + 𝑎1𝜎3),

 

 

where   the matrices {𝜎1, 𝜎2, 𝜎3} are generalized 
Paula matrices. These matrices are generalized 
Hamilton matrices and have zero traces. if we chose 
𝑎0 = 𝑒0, 𝑎3 = 𝑒1, 𝑎2 = 𝑒2 and 𝑎1 = 𝑒3 then we can 
write 𝐻ℂ

−(𝑞) = 𝑎0𝑒0 + 𝑖(𝑒1𝜎1 + 𝑎2𝜎2 + 𝑎3𝜎3) 
where 𝑒0, 𝑒1, 𝑒2 and 𝑒3 are called Euler parameters 
corresponding to the rotation specified by 𝐻ℂ

−(𝑞). 
Since det(𝐻ℂ

−(𝑞))= 1 so we can 

𝐻ℂ
−(𝑞) = cos𝜃𝜎0 + 𝑖sin𝜃(𝛽𝜎3 + 𝛾𝜎2 + 𝛿𝜎1), 

where (𝛽, 𝛾, 𝛿) =
1

sin𝜃
(𝑎3, 𝑎2, 𝑎1). If we use the 

known exponential function for matrices 𝐴 =
𝛽𝜎3 + 𝛾𝜎2 + 𝛿𝜎1 we get 

𝐻ℂ
−(𝑞) = cos𝜃𝜎0 + 𝑖sin𝜃𝐴 = 𝑒𝑖𝜃𝐴. 

Since the matrix 𝐴 is a generalized Hamilton 
matrices and has zero traces, matrix 𝑖𝐴 is a 
generalized skew symmetric Hamilton matrix and 
has zero traces. 

The group 𝑆𝑈𝛼𝛽(2) is the Lie group of 

generalized unitary matrices which determinant is 
1. The Lie algebra of 𝑆𝑈𝛼𝛽(2) is a 3 −dimesional 

generalized real algebra spanned by the set 
{𝑖𝜎1, 𝑖𝜎2, 𝑖𝜎3} and denoted by 

 𝑠𝑢𝛼𝛽(2) = 𝑠𝑝𝑎𝑛{𝑖𝜎1, 𝑖𝜎2, 𝑖𝜎3}. As a result, the 

above exponential formula is obtained from the 
exponential transformation defined from Lie group 
𝑆𝑈𝛼𝛽(2) to Lie algebra 𝑠𝑢𝛼𝛽(2). Generalized vector 

space 𝐸𝛼𝛽
3  is a Lie algebra with the cross product 

defined on itself. Thus, 

exp = 𝐸𝛼𝛽
3 → 𝑆𝑈𝛼𝛽(2)

𝜃�⃖� → exp(𝜃�⃖�) = (cos𝜃, sin𝜃�⃖�)

 

the transformation is isomorphism where �⃖� is a unit 

vector in space 𝐸𝛼𝛽
3  and 𝜃 ∈ ℝ. The algebra 

produced by generalized Paulo matrices {𝜎1, 𝜎2, 𝜎3} 

is isomorphic to the 𝐶𝑙(𝐸𝛼𝛽
3  ) Clifford algebra of 𝐸𝛼𝛽

3  

and the algebra produced by matrices {𝑖𝜎1, 𝑖𝜎2, 𝑖𝜎3} 
is isomorphic to the algebra of generalized 
quaternions 𝐻𝛼𝛽 

In the following section, we showed matrix 

representation of the generalized 3-sphere 𝑆𝛼𝛽
3 . 

Also, its relations with other matrix groups are 
given. 

 

3.  Matrices Representation of The Generalized 

Unit 3-Sphere 𝑺𝜶𝜷
𝟑  

Let 𝑆𝛼𝛽
3  denotes the unit generalized 

quaternions set in 𝐻𝛼𝛽 , generalized quaternions 

space. Hence, 

𝑆𝛼𝛽
3 = {(𝑥0, 𝑥1, 𝑥2, 𝑥3)

∈ ℝ4|𝑥0
2 + 𝛼𝑥1

2 + 𝛽𝑥2
2 + 𝛼𝛽𝑥3

2|

= 1, 𝛼, 𝛽 ∈ ℝ} ⊂ 𝐸𝛼𝛽
4 . 

The set has a group structure with generalized 
quaternions product. 

Symplectic group over the generalized 
quaternion matrices is defined with the following 
set; 



 Generalized Quaternions and Matrix Algebra, Ata and Savci 

 

 

645 

𝑆𝑝 𝛼𝛽
(𝑛) = {

𝐴 ∈ 𝑀𝑛(𝐻𝛼𝛽)| < 𝐴𝑥, 𝐴𝑦 >=

< 𝑥, 𝑦 >, ∀𝑥, 𝑦 ∈ 𝐻𝛼𝛽
𝑛 }, 

if we choose 𝑛 = 1, then; 

𝑆𝑝𝛼𝛽(1) = {𝑞 ∈ 𝐻𝛼𝛽|𝑁(𝑞) = 1}, 

namely, the set becomes group of all unit length 
generalized quaternions. Therefore, if 𝑆𝑝 𝛼𝛽

(1) =

𝑆𝛼𝛽
3  then 𝑆𝑝 𝛼𝛽

(1) is unit sphere in 𝐸𝛼𝛽
4  generalized 

space. 

In Section 3, we defined an isomorphism 
between a group of generalized unit quaternions 

𝑆𝛼𝛽
3  and a group of generalized special unitary 

matrices 𝑆𝑈𝛼𝛽(2). Now using the following 

proposition, we will establish a correspondence 
between a group of generalized unit quaternions 

𝑆𝛼𝛽
3  and a group of generalized special orthogonal 

matrices 𝑆𝑂𝛼𝛽(3). A group of generalized 

orthogonal matrices 𝑂𝛼𝛽(3) can be given as follow;  

𝑂𝛼𝛽(3) =

{
 
 

 
 

𝐴 ∈ 𝑀3(ℝ)|𝐴𝑇𝜀𝐴 = |𝐴|𝜀,

𝜀 = (

𝛼 0 0
0 𝛽 0
0 0 𝛼𝛽

)

𝛼, 𝛽 ∈ ℝ, 𝛼 ≠ 0 or 𝛽 ≠ 0}
 
 

 
 

. 

If we take 𝛼 > 0 and 𝛽 < 0, then the group is to be 
generalized semi-orthogonal group. 𝑆𝑂𝛼𝛽(3) is a 

group of generalized special orthogonal matrices, 
which is a subgroup of generalized orthogonal 
matrices group. 𝑆𝑂𝛼𝛽(3) can be given as follows; 

𝑆𝑂𝛼𝛽(3) = {𝐴 ∈ 𝑂𝛼𝛽(3)|det𝐴 = |𝐴| = 1}. 

Teorem 4.1: 𝜌: 𝑆𝛼𝛽
3 → 𝑆𝑂𝛼𝛽(3), 𝜌(𝑞) =

𝑟𝑞𝑟−1, 𝑟 ∈ 𝐻𝛼𝛽 is a surjective homomorphism and 

𝐾𝑒𝑟𝜌 = {−1,1}.  

Proof. The set of 𝐻𝛼𝛽 the generalized 

quaternions composes a group under the 

quaternion multiplication. 𝑆𝛼𝛽
3  and 𝑆𝑂𝛼𝛽(3) sets 

are subgroups of 𝐻𝛼𝛽. For any 𝑝, 𝑞 ∈ 𝐻𝛼𝛽,  

𝜌(𝑝𝑞) = 𝑟𝑝𝑞𝑟−1 = 𝑟𝑝(𝑟−1𝑟)𝑞𝑟−1

= (𝑟𝑝𝑟−1)(𝑟𝑞𝑟−1) = 𝜌(𝑝)𝜌(𝑞) 

so, 𝜌 defines a group homomorphism. 

If 𝑟 ≠ 0 then |𝜌(𝑞)| = |𝑟𝑞𝑟−1| = |𝑞|, then 
𝜌 mapping is a linear isometry, 

if 𝑟 = 𝑆𝑟 (i.e. 𝑟 ∈ ℝ) then 𝜌(𝑞) = 𝑟𝑞𝑟−1 = 𝑞, 

if 𝑟 = 𝑉𝑟 (i.e. 𝑟 ∈ 𝑠𝑝𝑎𝑛{𝑖, 𝑗, 𝑘} =Im 𝐻𝛼𝛽) 

then 𝑟 = 𝑆𝑟 + 𝑉𝑟 and 𝑉𝑟 = 𝑟 − 𝑆𝑟 thus,  

𝜌(𝑉𝑟) = 𝑟𝑉𝑟𝑟−1 = 𝑟(𝑟 − 𝑆𝑟)𝑟−1

= 𝑟𝑟𝑟−1 − 𝑟𝑆𝑟𝑟−1

= 𝑟 − 𝑆𝑟

= 𝑉𝑟

 

 From the above equations, 3-dimensional 
space spanned by {𝑖, 𝑗, 𝑘} remains invariant under 𝜌 
transformation. Also, 𝜌 is an isometries, thus the 
plane, which is perpendicular to 𝑉𝑟, remains 
invariant by 𝜌. Hence the restriction of 𝜌 to space 
which is 𝑠𝑝𝑎𝑛{𝑖, 𝑗, 𝑘}, determines rotation with 
angle 𝜃 around the axis ℝ𝑉𝑟 . This statement is 
illustrated in Figure a. 

Thus, spatial rotations can be obtained from 
generalized quaternionic multiplication restricted to 

𝐸𝛼𝛽
3 = 𝐼𝑚𝐻𝛼𝛽. These consist of the group of all 

linear isometries of 𝐸𝛼𝛽
3  (leaving the origin fixed), 

that is, they make up to the generalized orthogonal 
group 𝑂𝛼𝛽(3). For simplicity, we restrict ourselves 

to direct linear isometries that constitute the 
generalized special orthogonal group 𝑆𝑂𝛼𝛽(3), a 

subgroup of 𝑂𝛼𝛽(3). Thus, if ±1 ≠ 𝑟 ∈ 𝑆𝛼𝛽
3 , then 𝑟 

defines a rotation, an element of 𝑆𝑂𝛼𝛽(3). On the 

other hand, 𝑟 = ±1 defines the identity elements in 

𝑆𝑂𝛼𝛽(3) so that 𝜌 maps into 𝑆𝛼𝛽
3 . It is clear that 𝜌 is 

a homomorphism of group, and by what we just 
said, ± are in the kernel 𝜌. We know that 𝜌 is into 
since all elements in 𝑆𝛼𝛽(3) are rotations. It remains 

to show that the kernel of 𝜌 is exactly {±1}. Let 
𝑟 ∈Ker𝜌, that is, 𝑟𝑞𝑟−1 = 𝑞 for all 𝑞 ∈ 𝐼𝑚𝐻𝛼𝛽 . 

Equivalently, 𝑟 commits with all vectorial part of 
generalized quaternions. Writing this condition out 
in terms of 𝑖, 𝑗 and 𝑘, we obtain that 𝑟 must be real. 

Since it is in 𝑆𝛼𝛽
3 , it must be one of ±1. 

Theorem 4.1 implies that the group 𝑆𝛼𝛽
3  of 

generalized unit quaternions module the normal 
subgroup {±1} isomorphic with the group 𝑆𝑂𝛼𝛽(3) 

of direct spatial linear isometries. The quaternions 

group 𝑆𝛼𝛽
3 /{±1} is, by definition, the group of right 

(or left) cosets of {±1}. A right coset containing 𝑞 ∈

𝑆𝛼𝛽
3 , thus has the form {±1}𝑞 = {±𝑞}. Thus, 

topologically, 𝑆𝛼𝛽
3 /{±1} can be consider as a model 

for the generalized projective space 𝑅𝛼𝛽𝑃3 as in 

(Ata and Yaylı 2009). By Theorem 4.1, 𝑅𝛼𝛽𝑃3 can be 

identified by the group of direct spatial isometries 

𝑆𝑂𝛼𝛽(3). Thus, we obtain 𝑆𝛼𝛽
3 /{±1} ≅ 𝑅𝛼𝛽𝑃3. 

These relationships can be illustrated in Fig.b.   
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Rotation in generalized quaternions 

 

Diagram of the relations among the groups 

Example 1: Let 𝑞1 =
1

4
+

√7

4
𝑖 +

1

4
𝑗 +

√3

4
𝑘 be 

a unit generalized quaternion and 𝛼 = 1, 𝛽 = 2. The 
rotation matrix is  

𝑅1 =

[
 
 
 
 
 
 0

√7 − √3

4

√21 + 1

4

√7 + √3

8
−

5

8

√7 + 2√3

8

√21 − 1

8

√7 + 2√3

8
−

1

8 ]
 
 
 
 
 
 

 

𝑅1 is a generalized orthogonal matrix, i.e 𝑅1
⊺𝜀1𝑅1 =

𝜀1 and 𝑑𝑒𝑡(𝑅1) = 1 where 𝜀1 = [
1 0 0
0 2 0
0 0 2

] , 𝑞1 unit 

generalized quaternion corresponds to the complex 
matrix 

𝑞1 =
1

4
+

√7

4
𝑖 +

1

4
𝑗 +

√3

4
𝑘

𝑞1 = (
1

4
+

√7

4
𝑖) + (

1

4
+

√3

4
𝑖)𝑗

𝑞1 = 𝑧1 + 𝑤1𝑗where𝑧1 =
1

4
+

√7

4
𝑖and𝑤1 =

1

4
+

√3

4
𝑖

 

substituting 𝑧1, 𝑤1 in the matrix 𝐻ℂ
−(𝑞) =

(
𝑧1 𝑤1

−𝛽𝑤1 𝑧1
) the complex matrix is represented as:  

𝐻−(𝑞1) =

[
 
 
 
 1

4
+

√7

4
𝑖

1

4
+

√3

4
𝑖

−
1

2
+

√3

2
𝑖

1

4
−

√7

4
𝑖]
 
 
 
 

 

𝐻ℂ
−(𝑞1) is a generalized special unitary matrix, i.e. 

(𝐻ℂ
−(𝑞1))

𝑇
𝜖1𝐻ℂ

−(𝑞1) = 𝜖1 and 𝑑𝑒𝑡(𝐻ℂ
−(𝑞1)) = 1, 

where 𝜖1 = [
2 0
0 1

]. 

Example 2:  Let 𝑞2 = √2 + 0𝑖 +
1

2
𝑗 +

1

2
𝑘 be 

a unit generalized quaternion and 𝛼 = 1, 𝛽 = −2. 
The rotation matrix is  

𝑅2 = [
3 2√2 −2√2

√2 2 −1

−√2 −1 2

] 

 𝑅2 is a generalized orthogonal matrix, i.e 𝑅2
⊺𝜀2𝑅2 =

𝜀2 and 𝑑𝑒𝑡(𝑅2) = 1 where 𝜀2 = [
1 0 0
0 −2 0
0 0 −2

] , 𝑞2 

unit generalized quaternion corresponds to the 
complex matrix  

𝑞2 = √2 + 0𝑖 +
1

2
𝑗 +

1

2
𝑘

𝑞2 = √2 + (
1

2
+

1

2
𝑖)𝑗

𝑞2 = 𝑧2 + 𝑤2𝑗where𝑧2 = √2and𝑤2 =
1

2
+

1

2
𝑖

 

 substituting 𝑧2, 𝑤2 in the matrix 𝐻ℂ
−(𝑞) =

(
𝑧2 𝑤2

−𝛽𝑤2 𝑧2
) the complex matrix is represented as:  

𝐻−(𝑞2) = [
√2

1

2
+

1

2
𝑖

1 − 𝑖 √2

] 

 𝐻ℂ
−(𝑞2) is a generalized special unitary matrix, i.e. 

(𝐻ℂ
−(𝑞2))

𝑇
𝜖2𝐻ℂ

−(𝑞2) = 𝜖2 and 𝑑𝑒𝑡(𝐻ℂ
−(𝑞2)) = 1, 

where 

 𝜖2 = [
−2 0
0 1

]. 

 

4  Conclusion 

Generalized quaternions, which are a 
natural expansion of quaternions and split 
quaternions, have attracted the interest of 
researchers in recent years. Many authors 
considered generalized quaternions from different 
aspects. 

In this study, different matrix 
representations of generalized quaternions were 
given and the relations between them were 
investigated. These relations between generalized 
quaternions and matrices mean that all known 
concepts and formulas of matrix algebra can be 
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transferred to generalized quaternion algebra. This 
will provide a great convenience for scientists who 
will work on generalized quaternion algebra. 
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