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Anahtar kelimeler 0z
Genellestirilmis Bu calismada, Hamilton operatérlerini kullanarak genellestiriimis kuaterniyon cebiri ile gergel
kuaterniyonlar; (kompleks) matris cebirleri arasindaki baglantiyr kurduk. Genellestirilmis kuaterniyonlarin gergel ve
Hamilton operatorleri;  kompleks temeline karsilik gelen gercel ve kompleks matrisler elde ettik. Ayrica, gercel ve kompleks
Pauli matrisleri; matrislerin temel 6zelliklerini arastirdik. Genellestirilmis kuaterniyonlara karsilik gelen Pauli matrislerini

Genellestirilmis Giniter  elde ettik. Daha sonra, bu matrisler tarafindan tretilen cebirin, genellestirilmis ESB uzayi tarafindan
matrisler;
Genellestirilmis
ortogonal matrisler

Uretilen Clifford cebiri Cl(E;B) ile izomorf oldugunu gosterdik. Son olarak, genellestirilmis birim
kuaterniyonlara karsilik gelen simplektik matrisler grubu, genellestirilmis birim matrisler grubu ve
genellestirilmis ortogonal matrisler grubu arasindaki iliskileri inceledik.

Generalized Quaternions and Matrix Algebra

Keywords Abstract
Generalized In this paper, we established the connection between generalized quaternion algebra and real
quaternions; (complex) matrix algebras by using Hamilton operators. We obtained real and complex matrices
Hamﬂtqn op?rators; corresponding to real and complex basis of the generalized quaternions. Also, we investigated the basis
Pauli matices; features of real and complex matrices. We get Pauli matrices corresponding to generalized quaternions.

Generalized unitary Then, we have shown that the algebra produced by these matrices is isomorphic to the Clifford algebra

matricgs; Cl(E;ﬁ) produced by generalized space Egﬁ.FinaIIy, we studied the relations among symplectic

Generalized matrices group corresponding to generalized unit quaternions, generalized unitary matrices group, and
orthogonal matrices generalized orthogonal matrices group.
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1. Introduction and Preliminaries following property must be provided for the x and y

vectors in vector space V,
Clifford algebra is a unital associative algebra

generated by a vector space with a quadratic form. xyt+yx=2x-y

This algebra examines the properties of the vector
spaces by using dot product, cross product, where ’+" is a scalar product on V. The subset of the

geometric product. Thus, this algebra is a usefuland ~ €ven degree elements of Cl(p defines th? even
standard tool in dealing with geometric and physical subalgebra'and denotednby Cl (['/)' Wren dlml:l_=1
problems. Clifford algebra can be generalized tothe 7t then, dimCI(V) = 2 .and dimCl™ (V) = 2
real numbers, complex numbers, quaternions, (Aragan et al. 1997, Catoni et al. 2005).
hyper-complex number‘ §ystems. Cliffo‘rd‘ algebra’s In this study, we defined Clifford algebra
name comes from British mathematician W. K. product on generalized space. Afterward, we have
Clifford (1876). The CI'|fford algebra generateq by shown that even Clifford algebra of Egﬁ
th? vector space V with r—:u‘scalar produFt on it is corresponds to generalized quaternion algebra. 3-
uniquely defined. In addition to the linear and . . 3

7 ] dimensional non-degenerate vector space Eaﬁ has a
associative properties of the scalar product, the . .

orthogonal basis {e;,e,,e;}. The even Clifford

algebra C1*(Egg) = Clyq; p + q = 3 of the vector
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space has a orthogonal basis {l,e; =1i,e, =
j,eie; = k}, wheree? = —a, e = —f and e e,
—eyeq (Ata and Savci, 2021).

Generalized quaternions have emerged as a

tool for studying quadratic forms. These
qguaternions are a natural generalization of
Hamilton quaternions and split quaternions.

Generalized quaternions can be either a
Hamiltonian quaternion or a split quaternion,
depending on the choice of numbers a and S.
Therefore, it has a more general algebraic structure.
For more detailed information on Hamiltonin and
split quaternions, see (Alagéz 2012,Cockle 1849,
Hamilton 1853, 1866, Ozdemir and Ergin 2006,
Sangwine and Le Bihan 2010). Ata and the Savci
have shown that unit generalized quaternions Héﬁ
correspond to a rotation in generalized space Eéﬁ.
They stated that this motion gives the rotational
motion in 3-dimensional Euclidean space E3 and in
3-dimensional Lorenz space E} for their special
choices of a, f € R (Ata and Savci, 2021). Ata and
Yildirnm have obtained a different polar
representation of generalized quaternions. And,
they showed that a rotational motion in generalized
space can be obtained as the product of two
rotations in the same space by using this notation
(Ata and Yildirim, 2018). See detail (Ata et al. 2012,
Jafari and Yayh 2015, Lam 2005 ) for more
information about generalized space and their
algebraic properties.

In this paper, real and complex matrix
representations of a generalized quaternion are
obtained with the help of Hamilton operators. The
real and complex basis matrices corresponding to
the real and complex basis vectors of the
generalized quaternion algebra are obtained.
Besides that the properties of these matrices are
investigated. It is shown that second complex
Hamilton matrices corresponding to a generalized
unit quaternion are a generalized special unitary 2 X
2 matrix. These matrices have been obtained in
exponential form using generalized Pauli matrices. It
has been shown that the algebra produced by the
generalized Pauli matrices is isomorphic to Cilfford
algebra Cl(Egﬁ) and the Lie algebra of group

SUqp(2).

In this sections, we present some properties
of the generalized quaternions.

Let u = (uq,uy,U3), vV = (V,V,,V3) be in
R3 and a,f € R, then the generalized metric tensor

product is defined by g(u,v) = au,v; + fu,v, +
afusvs. It could be written matrix formas as;

a 0 O
gwv) =u’ [0 B 0 ] v =u’Gv.
0 0 ap

Generalized metric tensor g(u,v) has different
names depending on the choice of numbers a, 8 €
R; g(u, v) is called generalized inner product when
a>0,6>0,

g(u,v) is called the generalized semi-
Euclidean inner product when a > 0, § < 0,

g(u,v) is called Euclidean inner product
when a = =1,

g(u,v) is called semi-Euclidean inner

product whena =1, = —1,

The vector space on R3 equipped with the
generalized inner product, is called 3-dimensional
generalized space denoted by ESB or E3(a, B).

If a=p=1, then E3(1,1)=E3% 3-
dimensional Euclidean space If « =1 and § = —1,
then E3(1,—1) = E3 3-dimensional semi-Euclidean
space (Minkowski space).

1.1 Generalized Quaternions

A generalized quaternion is defined as
q =a9+ai+a,j+azk
where ay, a4, a, and a; are real numbers and i, j, k
are quaternionic units which satisfy the equations
it=-a, jP=-B, k*=-ap
j=k=—ji, jk=pi=—kj
and

ki=aj=—ik, ap€ER

The set of all generalized quaternions are denoted
by Hgp. A generalized quaternion q is a sum of a
scalar and a vector, where scalar part, Sq = aop, and
vector part V,=a;i+ayj+azke ]Rg’lﬁ.
Therefore, Hep forms 4-dimensional real space
which contains the (real) axis R, Hep =R ) Egﬁ.

Special cases:

1) If @ = B =1, then Hgyp is the algebra of
real quaternions.

2)Ifa=1,p = —1,then Hyp is the algebra
of split quaternions.

3)Ifa=1,p =0, then Hyp is the algebra
of semi quaternions.
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4)Ifa = —1,B = 0, then Hyp is the algebra
of split semi-quaternions.

5)Ifa =0, =0, then Hyp is the algebra
of 1/4 quaternions (Jafari 2012).

The addition rule for
quaternions, Hal;, is:

generalized

p+q=(ap+by)+ (ar + by)i + (az + by)j
+ (az + b3)k

for p =ay+aqi +ayj +azk and q = by + byi +
byj + bsk.

This rule preserves the associativity and
commutativity properties of addition, and provides
a consistent behaviour for the subset of quaternions
corresponding to real numbers, i.e

Sp+q = Sp +Sq = ao +b0.

The product of a scalar and a generalized quaternion
is defined in a straight forward manner. If c is a
scalarand g € Hep,

cq =cSq +cVg = (cag)l + (cay)i+ (cay)j + (cas)k.

The multiplication rule for generalized quaternions
is defined as

Pq = SpSq — (Vi Vg) + SpVy + SVg + V, AV,

which could also be expressed as

ay, —aa; —PBa, —afasz\ /by
pq = a; Qo —Paz Pa, by
a, aas ag —aa, b,
a; —a, ag bs

Obviously, quaternion multiplication is associative
and distributive with respect to addition and
subtraction, but the commutative law does not hold
in general (Grop et al. 2003).

Hgp with addition and multiplication has all
the properties of a number field except
commutativity of the multiplication. It is therefore
called the skew field of generalized quaternions.

Some properties of generalized quaternions
were given below;

1) The Hamilton conjugate of q =ay +
ai+ayj+azk=S,+V,is
a=a0_(a1i+a2j+a3k) =Sq _Vq
2) The norm of q is defined as N, = |qq| =
|9q| = |a§ + aa? + Baj + apa3|. If N, = 1, then
q is called unit generalized quaternion, for Nq * 0,

qo = Ni is unit generalized quaternion.
q

If Ny =|a§ +aa? + paj + apaj| =1,
then q is called as unit generalized quaternion.

3) The inverse of generalized quaternion q

is definedas g1 = Ni, N, # 0.
q

IfI, >0,1;,<0,and [, =0 for<gq,q >=
I, , then q is called spacelike, timelike, and lightlike
guaternion, respectively.

If generalized quaternion g is lightlike
quaternion (N, = 0), then, q is not inversible.

4) The scalar product of two generalized
quaternions, p =S5, +V, and q = Sq+Vy, is
defined as;

<p,q> =8585,+9Vp, Vy)

= Spq

The above expression defines a metric in Eéﬁ. From
know on, for the calculation below, according to the
selection of a and f3, Hgﬁ generalized quaternion
space were taken identical to generalized Euclidean
and semi-Euclidean space, where

Eéﬁ ={q = (ay,ay,a;,,a3) € R*: < q,q >
=a¢ +ad? + Ba + aBad a, B
€ R}

Generalized quaternions with scalar part zero are
called pure quaternions and denoted by H;lﬁ. The

set Hgp is a subalgebra of Hyg and it is identical to
3-dimensional generalized real linear Euclidean
space R} 5.

5) Polar form: Let a,8 > 0, then every
generalized quaternion q = ay + a,i + a,j + ask

can be written in the form
q = r(cosf + using), 0<6<2m

with

r=,/N;, = \/a% + aa? + a3 + afaj,

and

Jaa? + Baz + apa?
- :

Qo .
cosf = —, sinf =
T

The unit vector u is given by
a;i +a,j + azk
u=
Jaa? + paz + apa?

where aa? + a3 + afa3 # 0.

Leta > 0,8 <0, then
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q=ag+ai+a,j+azk is generalized
quaternion, in polar coordinates, q is given by

q = r(coshg + usinhg), (the generalized
guaternion is called timelike generalized quaternion
with spacelike vectorial part), where < gq,q >< 0,

=%
g(V,,Vg) >0, coshg = - and

aa?+Bat+afa’
—— @ €ER

T

sinhg =
(Ata and Yildirnm 2018).

1.2 Hamilton Operators in Generalized Quaternion

We will study, the real and complex
Hamilton operators and their properties,
corresponding to generalized quaternions, via
matrices.

Let H* and H™ be linear transformations,
H*: Hup > Hyp and H™:
q-H"(q)

are endomorphisms.

Haﬁ d Haﬁ
q—->H"(q)

Left and right notations of H,g algebra can
be given equation (1) and equation (2), respectively;

H*(q): Haﬂ - Haﬁ (1)
x = H"(q)(x) = qx
and
H™(q): Haﬂ - Ha[?
_ _ (2)
x = H™(q)(x) = xq
Those maps are called as Hamilton operators
As known, each finite dimensional

associative A algebra over the K field, isomorphic to
subalgebra of M,,(K) algebra. Thus, one can find
accurate representation of the A algebra of the
M, (K) algebra.

For the H,p generalized quaternion algebra
H*(q) and H™(q) transformations are
isomorphisms,

H*:Hyp - My(R),

a, —aa; —fa, —afas

H*(q) = a; Qo —Baz Pa,
a, aas ag —aay
az —a a Qo

and

H™:Hyg = My(R),

a, —aa, —fa, —afas
H (q) = a; Qo Bas —pa;

a, —aaz ag aa,

a a; —ay QAo

where q = ag +a,i+ayj+azk € Hyp. H'(q)
and H™(q) matrices are called real Hamiltonian
matrices of generalized quaternions. The product of
the generalized quaternions (p and q) can be shown
as matrices product;

qr = H"(q@)p and qp = H™ (p)q

Matrices derived by Hamilton matrices H* (q) and
H™(q) are generalized pseudo-orthogonal matrices
which satisfy the following properties,

i) (H* (@) e(H* (@) = N(q)e,
i) (H™ (@) e(H™ () = N(q)e,
i) H*(q) and H (q) are generalized

orthonormal matrices if and only if g is a generalized
unit quaternions,

qp = H*(q@)p andpq = H™ (p)q
(Jafari and Yayli 2015).

1.3 Fundamental Real Matrices of the Generalized
Quaternions

The scope of this section is to find out how
many real fundamental matrices that generalized
guaternions have .

Let I, be a 4 X4 identity matrix and
Hi,J1,K; be 4 X 4 real matrices. Hence, the first
fundamental matrix of g can be given as

H*(q) = aply + a;Hy + ay]; + azK; (3)

0O —a 0 O

(10 o0 o0
Where H, = 0 0 0 —al

0 o0 1 0

00 —§ 0

L =[00 o g
10 o of

0 -1 0 0

00 0 —ap

K, =0 0 =B 0

0 a O 0

1 0 0 0

The second fundamental matrix;

H™(q) = agly + a1 H; + az); + a3k, (4)
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0 —a O 0
|1 0 0 0
Where H, = 0 0 0 ol
0 0 -1 0
0 0 - O
J, = 0 0 O ]
2"\t 00 o [
010 0
0 0 0 —af
0 0 B 0
K, =
2710 —a 0 0
1 0 0 0
0 as; s, afs;
Amatrixs = [ ~5t O ~Bsa B called a
-5, as, 0 —asg
—S3 —S5 Sg 0
generalized skew-symmetric matrix if STe = —¢S,
where
1 0 0 O
0 a O
£e=1o o g o | a,f ER
0 0 0 af

(Jafari and Yayli 2015).

2. Some Properties of Real Hamilton Matrices in
Generalized Quaternions

The set of all the H,p generalized
guaternions is a form of 4-dimensional real vector
space which contains the real axis R and 3-
dimensional real linear space Egﬁ, so that, Hyp =
R D Ejﬁ. So, q € [RE;B (where E;B is generalized
4-dimensional real vector space) vector and ¢
generalized quaternion can be match, which is
denoted as ”=". Here

q=ag+ai+a,j+azk=q=

2.1 Generator Fundamental Real Matrices of
Generalized Quaternion

In this part, we obtained different
fundamental matrices using the triplet (Hq, /1, K1)
with their negations. Firstly, we generated ordered
triples which satisfy condition 3. We found that
there were totally two possible choices for the first
element of the triplet. Then, deleting the chosen
matrix and its negation, we had four choices for the
second element of the triplet, leaving the third
element to be determined by the product of the first

and second elements. Thus, we got a totally 8
choices for the first system. By the same way, we got
a totally 8 choices for the second system
((Hy,J5,K5). Then, we had 16 ordered triples for
each system. Hence, we obtain 16 different
fundamental matrices using the ordered triples
which satisfy condition 3 or 4.

For the convenience in working, we will
express fundamental matrices H*'(q) and H™'(q),

0<i<7 obtained from ordered triples
(Hs']sv Ks)r (Hsr _]sr _Ks)r (Hs' _151 Ks)r
(Hs']sv _Ks)r (_Hsr]sv _Ks)r (_HSJ _]s' Ks)r

(—Hg,Js, Ks), (—Hg,—Js,—Ks), respectively, for
s=1,2.

2.2 Basic Properties of The Fundamental Real
Matrices

For a given generalized quaternion g =
ag + aqi + a,j + azk, we can write the conjugate
of q as below,

Qo 1 0 0 0
— = [ Ta1 ) [0 -1 0 0
1=a=| _q, |=C C={y o 1 o
—as 0 0 0 -1
and
1 0
0 a
Sq = Ap€q, €1 = 0 , Vq = q. = a;
0 as

Let g and p be the generalized quaternions and a, b
€ R, then the following identities hold: H*!
represents H*! and H™! together.

lLgq=pe HY (@) =H@®p), 0<i<7,
2. HYM(p+q@) =HYM(p)+HY(g),
H*(pq) = H*' (p)H*'(q),
3. H* (@)H ' (p) = H'(p)H*'(q),
4 HY(PHY(q) = H(H () @),
H*(ap + bq) = aH*'(p) + bH*'(q),
5. (HY' (@)™ = C(H (9)"C,
6. tr(H*(q)) =4S, det(H*(q)) =
llqll?.

The 3th identity can be proved by simple
matrix computation. Naturally, these identities are
closely related to basic properties of generalized
quaternion algebra. For example, the identity

H*'(ap + bq) = aH*'(p) + bH*'(q)
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is connected to the linearity of left (or right)
multiplication. Similarly, the identity

H* (p)H* (@) = H* ((H™ () (»))

is related to the associative law for generalized
quaternion multiplication. Furthermore, applying
the matrix approach leads to a convenient and
concise way of writing proofs. We can illustrate this
point by considering three well-known identities

lqql = llqll% llgpll? = liqli?llp|l? and gp = Pq.
lqq| = |H*(@)(@| = [H°@) ()| = |q|%ey,

2

= ||lqlI? = ||a3 + aa? + a3 + aBdi|

2
lapll* = [IH** (@ ®)I|” = llali*llplI?

and
@ = C(H™ (@ @) = (CH* (@) )
=H (@) = pq.
Now, we define the linear transformation

representing  multiplication of fundamental
matrices in Hyp. Let g be a generalized quaternion,
then y*'(q): Hop = Hap and ¥ 7'(q): Hyp = Hyp
are defined as follows:

Y@ () = HT (@) (%), ,
Y (@) =H ' (@)(x),
X € Ha,B

Let g be a unit generalized quaternion;

Y@@ = [H @] = [H (@]lx] = Ix|,

and

ly " H @ @)| = [H (@) )| = [H (@)|Ix] = |x],

where y*{(q) and y~i(q) are generalized
orthogonal transformations of Hgp. Thus, for unit
generalized quaternions q and p, the mapping
Cp,q: Hap = Hyp is defined by

Cpg =V (@ v '@ =7v7 () o v+ (@)
Similarly, the complex Hamilton operators

corresponding to generalized quaternions are
calculated as follows

q =ay+ai+ayj+aszk
= (ap + a;i) + (a; + agi)j

q =z +wj, where z = ay + aqi, w = a,j + ask,
and z,w € C. Hence, the generalized quaternion g
is conceivable pair of complex number, i.e. Hyp =
C2. The complex standard base of the generalized
quaternion algebrais {1, j},

HY (@) =q-1 =z+wj
HE@G) =q-j =@z+w) j=zj+wj?
=—pw + zj
from the above two equations;
z w
HE@=Cgy ) @=LBER

Fundamental
quaternions;

complex matrices of generalized

H{ (q) = zl, + wHy;

where I, = (1 0), H, = (0 _ﬁ) and

0 1 1 0
H? = —BI,.
Similarly, second fundamental complex
matrices;
Hc(@)(1) =1-q =z+wj
Hc(@U) =j-q =j-(z+wj)=jz+jwj
=Zzj + wj?
=7j - pw
= —fw+7zj

from the above equations;
_ z w
He(q) = (—,BW 5)
Using the Hyp = C? relation, mentioned above, D
and g quaternion product of generalized
quaternions p, q (right product of p with q)

according to matrix product H¢ (q) - p, such as, for
q =2z, +wyjandp =z, + wyj,
qp = (z1 + wyj)(z; + wyj)
= (2125 — Pwiwy) + (W12 + Z1wy)j
= (2123 — Pwiwy, 21w, + Wy Z3)

- Z1 W1 .
and, for H¢(q) = [_'[),Wl 2 ], P =2 twy =

[3122], then

- _[%2 W21 %1

qp =Hc(p) -q = [—ﬁWz ;2][W1]
_ [z122 + wiw,

B —ﬂW221+W122]

In this respect, quaternion multiplication can be
presented with second Hamilton complex matrices.

If one take g =z+wj, ZzweC as a
generalized unit quaternion, then second
fundamental Hamiltonian complex matrix H¢ (q) =

z w
[—,BW E] is equivalent (Nq)2 =|z|2 + Blw|? =
1, where 8 # 0. In this case, matrix Hc (q) is a
generalized special unitary matrix, i.e.
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—_\T
(H(C‘(q)) €Hg (q) = e and det(HE (q)) =1,

B 0]

0 1

where € is 2 X 2 diagonal matrix, obtained using
generalized inner product and base {1,j}. Those
matrices generate SU,p(2) which is a group of
generalized special unitary 2 X 2 matrices.

€ =

If we take p <0, then SU,p(2) is a group of
generalized special unitary hyperbolic matrices.
Consequently, it is an isomorphism of the group Sgﬁ
onto the group SUqg(2). Using the matrix H¢ (q),
we can obtain matrices corresponding to unit
quaternions {1, i, j, k} as follows:

=l 3 =l 2l=il 20

l
P R A i B
Let '
w=lp 1 a=ls o
l-
GRS A

Then
wew =[pw 3=ty 2t

call Prals OJraly Jrall )

0

=aoao+a1i[(1) 21]+a2i B

T 0 1
+a3L[ 0]
0 B

= Qp0y + i(a301 + a,0, + a103),

where the matrices {0y,0,,03} are generalized
Paula matrices. These matrices are generalized
Hamilton matrices and have zero traces. if we chose
ay = ey, a3z = e4,a, = e, and a; = e3 then we can
write Hc (q) = ageg + i(e104 + a0, + azo3)
where e, €4, e; and e5 are called Euler parameters
corresponding to the rotation specified by H¢ (q).
Since det(H¢ (q))= 1 so we can

Hc (q) = cosbay + isinf(fo3 + yo, + 601),

1
where (B,7,6) = pev
known exponential function for matrices A =

Bos; +yo, + 60y we get

(as,a,,a1). If we use the

HZ (q) = cosfay + isinfA = e'04,
Since the matrix A is a generalized Hamilton
matrices and has zero traces, matrix iA is a

generalized skew symmetric Hamilton matrix and
has zero traces.

The group SU,p(2) is the Lie group of
generalized unitary matrices which determinant is
1. The Lie algebra of SU,p(2) is a 3 —dimesional
generalized real algebra spanned by the set
{igy,i0,,i03} and denoted by

Suqp(2) = span{ioy, ioy, ioz}. As a result, the
above exponential formula is obtained from the
exponential transformation defined from Lie group
SUqp(2) to Lie algebra su,p(2). Generalized vector
space Eo?;ﬁ is a Lie algebra with the cross product
defined on itself. Thus,

exp = Egﬁ - SUqp(2)

0v — exp(0D) = (cosH, sinf1’)
the transformation is isomorphism where ¥ is a unit
vector in space Eo?;ﬁ and 8 € R. The algebra
produced by generalized Paulo matrices {ay, 03, 05}
is isomorphic to the Cl(Egﬁ ) Clifford algebra of Egﬁ

and the algebra produced by matrices {ioy, ig,, io3}
is isomorphic to the algebra of generalized
quaternions Hypg

In the following section, we showed matrix
representation of the generalized 3-sphere 523.

Also, its relations with other matrix groups are
given.

3. Matrices Representation of The Generalized
Unit 3-Sphere Siﬁ

Let Séﬁ denotes the wunit generalized
quaternions set in Hypg, generalized quaternions
space. Hence,

533 = {(xo,xl,xz,x3)
€ R*|x3 + ax? + Bx3 + afx3|
=1,a,B € R} C Egp.

The set has a group structure with generalized
quaternions product.

Symplectic group over the generalized
guaternion matrices is defined with the following
set;
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A € Mp(Hgp)| < Ax, Ay >=}

5P 0 (M) ={ <x,y>Vxy € Hyg

if we choose n = 1, then;

SPap(1) = {q € HapIN(q) = 1},
namely, the set becomes group of all unit length
generalized quaternions. Therefore, if Spaﬁ(l) =
Sgﬁ then Sp aﬁ(l) is unit sphere in Egﬁ generalized
space.

In Section 3, we defined an isomorphism
between a group of generalized unit quaternions
Sgﬁ and a group of generalized special unitary
matrices SU,p(2). Now using the following
proposition, we will establish a correspondence
between a group of generalized unit quaternions
503,,3 and a group of generalized special orthogonal
matrices S0,p(3). A group of generalized
orthogonal matrices O,p(3) can be given as follow;

A € M3(R)|ATeA = |Ale,
a 0 O
Oaﬂ(g) = &= <0 ,8 0 ) .
| 0 0 af |
ka,[feR,a;«tOorﬁiO

If we take @ > 0 and 8 < 0, then the group is to be
generalized semi-orthogonal group. SO4p(3) is a
group of generalized special orthogonal matrices,
which is a subgroup of generalized orthogonal
matrices group. SO, (3) can be given as follows;

S0ap(3) = {A € 0,45(3)|detd = |A| = 1}.

Teorem 4.1: p: 523 - 850,33), p(q) =
rqr-i,r € Hgp is a surjective homomorphism and
Kerp = {—1,1}.

Proof. The set of H,p the generalized
quaternions composes a group under the
quaternion multiplication. Sz and SOqp(3) sets
are subgroups of Hyg. Forany p,q € Hyg,

1 1

=rp(r r)qr-
= (rpr~H(rqr™) = p(P)p(q)

so, p defines a group homomorphism.

p(pq) = rpqr-

If r # 0 then |p(q)| = |rqr~1| = |q|, then
p mapping is a linear isometry,

ifr =S, (ie.r € R)thenp(q) =rqr' =g,

if =1V (i.e. r €span{i,j, k} =Im Hgp)
thenr =S, + V. and I, =1 — §, thus,

p(V) =rhrt=r@-S)r
rrr~! —rS,rt
=r—35,

=V

From the above equations, 3-dimensional
space spanned by {i, j, k} remains invariant under p
transformation. Also, p is an isometries, thus the
plane, which is perpendicular to V., remains
invariant by p. Hence the restriction of p to space
which is span{i,j, k}, determines rotation with
angle 6 around the axis RV, . This statement is
illustrated in Figure a.

Thus, spatial rotations can be obtained from
generalized quaternionic multiplication restricted to
E;g = ImHgg. These consist of the group of all
linear isometries of Eg;ﬁ (leaving the origin fixed),
that is, they make up to the generalized orthogonal
group Oaﬁ(3). For simplicity, we restrict ourselves
to direct linear isometries that constitute the
generalized special orthogonal group S0.g(3), a
subgroup of O,43(3). Thus, if £1 # 7 € 525, thenr
defines a rotation, an element of SO,z(3). On the
other hand, r = +1 defines the identity elements in
$04p(3) so that p maps into 523- Itis clear that p is
a homomorphism of group, and by what we just
said, * are in the kernel p. We know that p is into
since all elementsin S, 3(3) are rotations. It remains
to show that the kernel of p is exactly {+1}. Let
T EKerp, that is, rqr~1 =q for all q € ImHgg.
Equivalently, r commits with all vectorial part of
generalized quaternions. Writing this condition out
in terms of i, j and k, we obtain that r must be real.
Since it is in S 5, it must be one of +1.

Theorem 4.1 implies that the group 525 of
generalized unit quaternions module the normal
subgroup {£1} isomorphic with the group S044(3)
of direct spatial linear isometries. The quaternions
group S;5/{x1} is, by definition, the group of right
(or left) cosets of {+1}. A right coset containing q €
SéB, thus has the form {+1}q ={%q}. Thus,
topologically, Séﬂ{il} can be consider as a model
for the generalized projective space RaBP3 as in
(Ata and Yayh 2009). By Theorem 4.1, RaﬁP3 can be
identified by the group of direct spatial isometries
S04p(3). Thus, we obtain S7g/{+1} = RyzP3.
These relationships can be illustrated in Fig.b.
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RV,

r

Rotation in generalized quaternions

S
SO04(3)

Diagram of the relations among the groups

Example 1: Let g, =i+\/77i+ij+§k be

a unit generalized quaternionanda = 1,5 = 2.The
rotation matrix is

SUuB(Z)

[ V7—V3 V2141 ]
0 4 4
R, =|V7+Y3 5 V7 +2v3
8 8 8
V21-1 VJ7+2V3 1
8 8 8
R, is a generalized orthogonal matrix, i.e Rj&; R, =
1 0 0
g anddet(R,) = 1 whereg; = [0 2 0], gqunit
0 0 2

generalized quaternion corresponds to the complex
matrix

1 V7. 1. 3
nEGtIt Ytk
1 V7. 1 v3_
h=GTt 0+ G+
| 1 V7, 1 V3
g1 = z; + wijwherez; = I + Tlandwl =3 + Tl

substituting z;, w; in the matrix H¢(q) =

Z1 W1 .
( — = ) the complex matrix is represented as:
—Bwy 7y

Ir1+ 7 1+\/§_1|
—+—i —+—i
_ _ 14 4 4 4
=" "5 | 7|

=zt 2t 27 %1

H¢ (qq) is a generalized special unitary matrix, i.e.
— T
(Hz (q1)) €1Hg (q1) = €1 and det(Hg (q1)) = 1,

where €; = [(2) 2]

Example 2: Let g, =\/7+0i+%j+%k be

a unit generalized quaternionand a =1, f = —2.
The rotation matrix is
3 V2 —2V2
Ry, = (V2 2 -1
—2 -1 2
R, is a generalized orthogonal matrix, i.e Ry&,R, =

1 0 O
&y and det(R,) = 1wheree, =0 -2 0

]'QZ
0 0 -2

unit generalized quaternion corresponds to the
complex matrix

1,1
q2=\/§+0i+zj+zk

1 1
VT4 (2D
q: + (2 + > )]
. 1 1.
q, = z, + wyjwherez, = v2andw, = 5 + rk
substituting z;, w, in the matrix H¢(q) =

Z3 w2 -
( — = ) the complex matrix is represented as:
—Bw;

Zy
1 1
- V2. o+ =i
H™(q2) = 2 2
1—-i 2

H¢ (g3) is a generalized special unitary matrix, i.e.

T
(H; (q2)) €2Hc(qz) =€, and det(Hg (92)) = 1,
where

-2 0
€, = [0 1].

4 Conclusion

Generalized quaternions, which are a
natural expansion of quaternions and split
quaternions, have attracted the interest of
researchers in recent vyears. Many authors
considered generalized quaternions from different

aspects.

In this study, different matrix
representations of generalized quaternions were
given and the relations between them were
investigated. These relations between generalized
guaternions and matrices mean that all known
concepts and formulas of matrix algebra can be
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transferred to generalized quaternion algebra. This
will provide a great convenience for scientists who
will work on generalized quaternion algebra.
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