

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci., 2023; 12(1), 001-029

 Niğde Ömer Halisdemir Üniversitesi Mühendislik Bilimleri Dergisi

Niğde Ömer Halisdemir University Journal of Engineering Sciences

Derleme makalesi / Review article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh

* Sorumlu yazar / Corresponding author, e-posta / e-mail: merveorakci@gazi.edu.tr (M. Çelebi)

Geliş / Recieved: 04.10.2022 Kabul / Accepted: 14.11.2022 Yayımlanma / Published: 15.01.2023
doi: 10.28948/ngmuh.1184020

1

A comprehensive survey on deep packet inspection for advanced network traffic

analysis: Issues and challenges

Modern ağ trafiği analizi için derin paket incelemesi hakkında kapsamlı bir

çalışma: Sorunlar ve zorluklar

Merve Çelebi1,* , Alper Özbilen2 , Uraz Yavanoğlu3

1 Gazi University, Department of Computer Forensics, Informatics Institute, 06500, Ankara, Türkiye
2Interprobe, 06800, Ankara, Türkiye

3 Gazi University, Department of Computer Engineering, 06570, Ankara, Türkiye

Abstract Öz

Deep Packet Inspection (DPI) provides full visibility into

network traffic by performing detailed analysis on both

packet header and packet payload. Accordingly, DPI has

critical importance as it can be used in applications i.e

network security or government surveillance. In this paper,

we provide an extensive survey on DPI. Different from the

previous studies, we try to efficiently integrate DPI

techniques into network analysis mechanisms by

identifying performance-limiting parameters in the analysis

of modern network traffic. Analysis of the network traffic

model with complex behaviors is carried out with powerful

hybrid systems by combining more than one technique.

Therefore, DPI methods are studied together with other

techniques used in the analysis of network traffic. Security

applications of DPI on Internet of Things (IoT) and

Software-Defined Networking (SDN) architectures are

discussed and Intrusion Detection Systems (IDS)

mechanisms, in which the DPI is applied as a component of

the hybrid system, are examined. In addition, methods that

perform inspection of encrypted network traffic are

emphasized and these methods are evaluated from the point

of security, performance and functionality. Future research

issues are also discussed taking into account the

implementation challenges for all DPI processes.

 Derin Paket İnceleme (Deep Packet Inspection-DPI), hem

paket başlığı hem de paket yükü üzerinde ayrıntılı analizler

gerçekleştirerek ağ trafiğinin tam görünürlüğünü sağlar. Ağ

güvenliği veya devlet gözetimi gibi uygulamalarda

kullanılabilmesi yönüyle DPI, kritik bir öneme sahiptir. Bu

çalışmada, DPI hakkında kapsamlı bir araştırma

sunulmuştur. Diğer inceleme çalışmalarından farklı olarak

bu çalışmanın amacı, modern ağ trafiğinin analiz edilmesi

sürecinde performansı sınırlandıran parametreleri

belirleyerek DPI tekniğinin ağ analizi mekanizmalarına

verimli ve etkili bir şekilde entegrasyonunu sağlamaktır.

Karmaşık davranışlar gösteren ağ trafiği modelinin

incelenmesinin birden fazla tekniğin bir araya getirilerek

güçlü hibrit sistemlerle gerçekleştirildiği göz önünde

bulundurularak, DPI metodu, ağ trafiğinin analizinde

kullanılan diğer tekniklerle birlikte incelenmiştir. Ağ

güvenliği hususunda kritik öneme sahip DPI metodunun

IoT ve SDN mimarileri üzerindeki güvenlik uygulamaları

tartışılmış ve DPI’ın IDS’lere hibrit sistemin bir bileşeni

olarak uygulandığı mekanizmalar incelenmiştir. Ayrıca,

Şifreli ağ trafiğinde inceleme gerçekleştiren yöntemler

üzerinde durulmuş ve bu yöntemler güvenlik, performans

ve fonksiyonellik açılarından değerlendirilmiştir. Son

olarak, tüm DPI süreçleri için uygulama zorlukları ve bu

zorluklarla ilişkili gelecek araştırma konuları ele alınmıştır.

Keywords: Deep packet inspection, Network traffic

analysis, Security, Survey

 Anahtar kelimeler: Derin paket inceleme, Ağ trafiği

analizi, Güvenlik, Araştırma

1 Introduction

Modern networks with large number of nodes, such as

IoT, need to be regularly monitored in order to maintain their

performance. Maintaining performance in these networks

with different purposes may include prioritizing one or more

of the issues such as ensuring quality of service (QoS)

requirements, identifying problems that threaten network

security or improving resource consumption. These

objectives can be achieved through the application of

network traffic monitoring and analysis (NTMA) techniques

such as network security, network traffic classification, fault

management and traffic forecasting. In the process of

implementing NTMA techniques, different requirements can

be defined for the acquisition of traffic data. In this regard,

network packets are generally considered as targets to be

examined at the traffic data collection tasks [1]. Packet

inspection can be expressed as an ability to inspect network

traffic for a specific aim in real-time or offline. Three basic

methods, classified according to depth, are used to monitor

network traffic and evaluate its performance [2]. In Shallow

Packet Inspection (SPI) technique, only header information

of each packet is examined, and the payload is not taken into

account. This technique focuses on the second and the third

layers in the OSI model. With SPI method, IP addresses of

the sender and the receiver, the number of packets that a

https://orcid.org/0000-0003-0748-7045
https://orcid.org/0000-0003-2707-052X
https://orcid.org/0000-0001-8358-8150

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

2

message is broken into, the number of hops per packet and

the synchronization data that allows for reassembling

packets can be examined. Medium Packet Inspection (MPI)

technique inspects header and payload of network packets up

to the presentation layer. MPI technologies can prioritize

some packets by examining application commands in the

application layer and file formats in the presentation layer.

This examination method is commonly used by application

proxies and provides a more comprehensive analysis than

SPI technique [3]. Unlike SPI and MPI techniques, DPI

performs a detailed inspection covering all headers of the

whole layers and the packet payload.

The ability to have information on both packet header

and payload in real-time provides control over the

communication between two endpoints. Network controllers

such as Internet Service Providers (ISP) use network

technologies that enable real-time monitoring of network

packets. This technology is known as DPI [4]. DPI generally

provides an in-depth analysis of packets passing through a

certain network point and makes some decisions based on

the analysis. This method is called DPI because analysis

covers both packet header and packet payload. There are two

main processes of DPI; identification and action.

Identification is the process of examining packets and

discovering their hidden features. After identification,

operations such as keeping logs for analysis of the network

or dropping from the network for network security can be

performed in the action process [5].

DPI technique is used to detect well-known malware

signatures. Additionally, the attack pattern which includes

the attack order, the path followed by the attacker and the

techniques used by the attacker can be detected in connection

with the network flow. Besides detecting known attack

patterns with high accuracy, new exploitation techniques can

also be discovered via DPI. This allows explorers to build

new protection mechanisms and signatures [2]. Thus, DPI

can be used in network security and government surveillance

applications. Moreover, DPI can be used in content filtering

to detect and block harmful or illegal content, bandwidth

management, copyright management and applications that

allow ISPs to inject advertisements into websites according

to users' interests [6-8]. Many open-source tools such as the

Linux firewall and commercial tools such as Norton Core use

the DPI approach in their products for analysis of the

network traffic [9]. Additionally, IDS commonly use

payload-based classifiers to identify malicious network

activity [10].

There are numerous reviews on current applications of

DPI technology [5,11-13]. In the next sub-section, these

reviews are examined. Also, the contribution of this paper to

the literature are discussed. In the second sub-section of the

introduction, the organizational structure of this paper is

presented.

1.1 Existing surveys on DPI

In the study numbered [11], the literature review was

conducted on the techniques required to develop DPI

systems. The impact of challenges associated with complex

signature sets and hardware or operating system on DPI

implementations are discussed. The analysis of open source

DPI modules used in traffic classification is presented in the

study numbered [12]. This analysis evaluates classification

accuracy and computational requirements over a real data

set. The study numbered [5] provides a detailed review of the

Regular Expression (RE) Matching Technique. In this study,

the state explosion problem in the Finite State Machine

(FSM) created for RE Matching is emphasized. In this

direction, suggested methods for avoiding or mitigating state

explosion have been examined, and these suggestions are

presented for the creation of compact and efficient automata.

Parallel platforms such as Graphics Processing Unit (GPU)

or Field-Programmable Gate Array (FPGA) that accelerate

the pattern matching process are also discussed. In the study

numbered [13], the existing literature on infrastructure and

communication for the energy sector and smart grids, also a

review of DPI techniques and application areas are

presented. The study pays attention to the use of the DPI

technique as a security tool for smart grids, and proposes a

SDN-based security monitoring framework that uses a

hybrid model combining DPI and Deep Learning (DL)

technique. Also, an additional framework that performs

network forensic analysis is proposed to expand the

capabilities of this framework.

These studies numbered [5, 11, 12] and [13], which focus

on DPI technology, mainly examine DPI and the application

areas of these techniques. Only in the study numbered [11],

the parameters that limit the performance of DPI systems are

partially mentioned. Despite the widespread use of encrypted

network traffic, it is an important shortcoming that a detailed

analysis of DPI techniques in this field is not existing in the

current literature. In addition, there is no study examining the

difficulties of implementing DPI techniques in SDN or IoT

architectures in today's modern networks. Accordingly, this

paper aims to present a roadmap for the application of DPI

technology in today's modern networks. Considering that the

analysis of the state-of-the-art network traffic model is

carried out with powerful hybrid systems by combining more

than one technique, the DPI method is examined together

with other techniques used in the analysis of network traffic.

In order to protect the confidentiality of network traffic, the

proposed techniques for analyzing encrypted traffic are

discussed with their advantages and disadvantages. In

addition, a comprehensive review of DPI implementation

challenges for scenarios that generate state-of-the-art

network traffic such as IoT or SDN architectures is

conducted, and the security applications of DPI technique on

these architectures, whose main focus is a security concern,

are discussed. The main purpose of this paper is to perform

a detailed analysis on detection and improvement of

performance-limiting parameters in all processes from

collecting state-of-the-art network traffic and analyzing it via

DPI, and to evaluate the contribution of DPI technique to the

mechanisms created to analyze the network traffic by

examining DPI applications in the existing literature. The

contributions of this paper can be listed as follows:

 We comprehensively review the challenges of

advanced network traffic analysis, performance-

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

3

limiting parameters and implementation of

difficulties of DPI techniques.

 We identify implementation challenges and open

research issues for DPI systems, and provide insight

into topics that will shed light on future work.

 We create a roadmap that enables the use of

appropriate DPI techniques to address advanced

network analysis challenges.

 We point to the other techniques that complement

the DPI technique instead of focusing only on this

technique in determining the procedures to be

applied in future mechanisms.

 We present a classification of the proposed methods

to perform an inspection on encrypted traffic, and

discuss the advantages and disadvantages of the

techniques that directly use or do not use the DPI

approach or limit the usability of this approach.

 We evaluate the role of IDS in ensuring the security

of IoT and SDN architectures whose main focus is

on security concerns, and discuss the

implementation challenges of DPI on these

architectures.

1.2 Paper organization

The structure of the paper is shown in Figure 1. In this

direction, the schedule in this paper is as follows: In Section

2, the problems encountered in the process of receiving and

processing network packets from Network İnterface Card

(NIC) are determined and the solutions to these problems are

presented. In addition, the platforms developing based on

these solution methods are examined. In the first sub-section

of Section 3, considering that the analysis of the network

traffic model with complex behaviors is carried out with

powerful hybrid systems by combining more than one

technique, the DPI method is examined together with the

other techniques used in the analysis of network traffic. In

the following sub-section, the software and hardware-based

methods proposed to improve DPI performance are

examined. In the last sub-section of the section, suggested

methods for the analysis of encrypted traffic are presented.

The advantages and disadvantages of these methods, which

directly use or do not use the DPI approach or limit the

usability of this approach, are discussed. In Section 4, the

role of IDS in ensuring the security of IoT and SDN

architectures, whose main focus is on security concerns, is

evaluated, and implementation challenges of DPI on these

architectures are discussed. Finally, in Section 6, DPI

implementation difficulties are evaluated and deficiencies in

this field are identified. In addition, new discussion issues

are suggested.

2 Packet capturing and processing with commodity

hardware

In this section, the problems encountered in the process

of receiving and processing network packets from the NIC

are determined and the solutions to these problems are

presented. In addition, the platforms developed based on

these solution methods are examined. Accordingly, a

common software application for network packet processing

using commodity hardware is examined. In this direction,

Unix-based operation systems are used as an example.

The first step in packet processing is transferring the

network packets to the main memory. In the Linux kernel,

the network packets are stored in a sk-buff structure in the

main memory. Also, NIC has a ring queue that stores the

descriptors used for these sk-buff structures. This ring queue

is called a ring buffer. When a packet is accepted by NIC, the

sk-buff structure is mapped to kernel memory space using the

Direct Access Memory (DMA) Mechanism. Then, NIC

schedules hardware interrupt to notify the kernel that a

packet is available. Central Processing Unit (CPU) responds

to this by calling the driver's interrupt handler. Since using

kernel version 2.4.20, New API (NAPI) is used by drivers

[8].

Figure 1. The structure of the survey

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

4

NIC is added to a poll list, and a soft interrupt is scheduled

by the interrupt handler. Then, each of the devices in the list

is polled to receive network packets from the ring buffer by

the CPU. After the packets are processed at the network and

transport layers, they are forwarded to the application layer.

The sk-buff data is copied to the user space by using socket

API. Driver must load the packet descriptor into the

transmitting ring buffer to be transmitted of a network

packet. Then, the driver notifies NIC that packets are ready

to be transmitted. Finally, NIC informs the CPU via an

interrupt to release the sk-buff structure [14,15].

NAPI contributes to the acceleration of the capturing of

network packets process with two principles [16]:

Interrupt mitigation. Accepting high-speed network

traffic using the traditional structure causes large number of

interrupts per second. These interrupts cause the CPU to

become overloaded and therefore to lose performance. The

NAPI-aware driver initiates the interrupt routine when a

packet RX/TX interrupt occurs to solve this problem. Unlike

the traditional approach which copies and queues a packet

directly, the interrupt routine uses a poll() function to disable

similar interrupts in the future. Polling mode consumes more

CPU cycles compared to interrupt-driven while a load of

network traffic is low. However, the performance of the

polling mode increases at higher speeds. NAPI-aware drivers

fit themselves into the network load to improve performance

in any case.

Packet Throttling. Packets must be dropped when high-

speed traffic exceeds system capacity. Legacy drivers that do

not use the NAPI approach drop network packets at the

kernel level. This causes CPU cycle consumption

unnecessarily. NAPI-aware drivers drop packets at the

network adapter through flow control mechanisms, avoiding

performance losses from redundant CPU cycles.

2.1 Performance limiting factors during packet capturing

and processing

Linux networking stack is designed for general-purpose

networks. Besides being used as a router, it supports many

protocols at network or transmission layers. Although this

design choice is suitable for running applications with a

speed of 1 Gbit/s, the operating system starts to drop packets

and reaches the limit when approaching 10 Gbit/s speed

since it cannot process more packets [17]. NAPI technique is

not suitable for capturing high-speed network traffic. In this

direction, architectural problems in capturing network

packets from NIC, processing them in the Linux network

stack and transmitting them to the application layer cause

performance losses [16].

One of the major constraints that cause performance

losses is the use of main memory. The sk-buff structure must

be allocated for each packet and released when a packet is

transferred to the user level or forwarded to another endpoint.

This behavior consumes unnecessary CPU cycles to transfer

data from main memory to CPU. In addition, the effort to

make the network stack compatible with many protocols

resulted in a complex sk-buff structure. The sk-buff structure

contains metadata for several protocols that are not required

for packet processing. This complexity results in the creation

of a very large data structure, slowing down the process.

Another problem with main memory usage is that a packet

has to go through different points until it arrives the

userspace. This results in at least two copies for each network

packet. After the packets are accepted by the NIC, the

packets are copied from the DMA-capable memory area to

the \textit {sk-buff} structure and then to the user-level

application. A single copy of data can spend up to 2000 CPU

cycles, depending on network packet length. Also, sk-buff

conversion operations and memory allocation consume 1200

CPU cycles per network packet, and 1100 cycles are required

to free the buffer [18]. sk-buff operations spend 63 % of the

CPU cycles in receiving a single 64B packet [19].

Context switches that switch between user and kernel

modes affect performance significantly. The user-level

application has to make a system call for the context switch

when it requires to send or receive a packet. These operations

can spend up to 1000 CPU cycles per network packet [18].

The important step in the development of modern NICs

is the Receive Side Scaling (RSS) Technology [19]. RSS

Technology takes a load of network traffic from the NIC and

shares it among the cores of a multi-core system. In this way,

the load between system resources can be balanced. This

allows avoiding bottlenecks in packet processing by using a

single core and optimizing cache [16]. After capturing

network packets using RSS technology, all network packets

are concatenated at a certain point, and analyzed in the

transport layer. The merging of traffic at a single point causes

a bottleneck. This may also cause packet disordering [20].

System performance is adversely affected as the acceleration

achieved at the driver level is lost at the user level.

Spinlock is another performance-limiting factor. During

the transmission of a network packet, two spinlocks are

required that control the NIC's access to the transmission

queue [21]. These locks may cause congestion by preventing

parallel processing when using multiple CPUs.

The main bottleneck of software architecture is about

inefficient memory access. Non-Uniform Memory

Architecture (NUMA) is widely used in the process of

capturing and processing high-speed network traffic. NUMA

architecture distributes system memory among different

Symmetric Multi-Core Processors (SMPs) by assigning a

memory segment to each. This architecture increases system

efficiency from the point of cache misses and memory

accesses [22]. However, scheduling of tasks must be done

carefully when using this architecture. When NIC is plugged

to the PCIe slot reserved to a NUMA node, the threads

assigned to capture packets must be run on the dedicated

cores for this NUMA node. Assigning these threads to

another NUMA node causes to transfer of data between

processors. Therefore, it reduces performance because of

cache misses and access latency [16]. On the other hand, the

first access to the DMA-capable memory area causes cache

misses as it invalidates cache lines of DMA operations. Such

cache miss spends 13.8% of the CPU cycles for a single 64B

packet [19].

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

5

2.2 Proposed techniques for overcoming limitations in

capturing and processing network packets

Various techniques are developed to overcome the

problems encountered in the process of capturing network

packets and transmitting them to the user area [16, 23]. These

techniques are listed below:

 Preallocation and reuse of memory resources to

avoid bottleneck generated by per packet

allocation/releasing buffers

 Zero copy: Mapping the DMA-capable memory

region directly accessed by NIC where an

application can read and write to these regions

without intermediate copies

 Batch processing: Copying packets into kernel or

user memory by grouping them in a buffer to avoid

the overhead resulted from additional calculations

and function accesses such as system calls and

context switches

 Prefetching: Loading memory locations that may

be used in the processor's cache in the near future to

reach them faster in case of need

 CPU Affinity: Determining the execution region for

using the threads

 Memory Affinity: Determining the memory space

for using the threads

 Lock-Free Multi-Threading: Avoiding the

performance issues associated with the use of

synchronization techniques such as mutexes and

semaphores to ensure lock-free operation by using

multiple hardware queues to allow threads to run on

independent subsets of traffic

 Compute Batching: Applying network functions to

handle a group of packets rather than single packets

in order to decrease the overhead caused by

additional calculations and function accesses such

as context-switch and stack initialization

 Parallel Direct Paths: Using RSS queues and direct

parallel paths between applications via the

allocation of certain cores for both receiving

packets from RSS queues and transferring them to

the user space

There are many platforms based on the proposed solution

to the problems encountered in packet processing. While the

software-based platforms [23-28] developed as fast packet

processing architectures use only the processing power of

CPU in the packet processing, the hardware-based platforms

[19, 29-32] aim to provide performance gain by executing

part of the packet processing on specialized hardware such

as FPGA or GPU.

Click [24] is one of the first modular software

architecture used to build routers. Although it supports Linux

interrupt structure which causes performance losses in

packet transmission, Click uses polling instead of interrupt.

Also, this architecture does not use zero-copy. Click-based

Snap [29] is the hardware-based platform that offloads the

part of the computational overhead to GPUs. Network

packets in a batch may have different paths in Click. This

separation may happen before packets reach GPU or inside

GPU. This process, which causes unnecessary copying of

packets that are not processed on GPU, is time-consuming

due to the limited PCIe bandwidth. Snap copies only the

required packets to a contiguous memory space at the host

level, and then creates a group of packets that are sent to

GPU memory in a single transfer over PCIe. Indeed, it is

aimed to avoid bottlenecks that may occur by transferring

only certain parts of the network packet processing process

to GPU. Snap adds predictive bits to each packet to solve the

problem of the occurence of different paths within GPU. In

Snap, the zero copy technique is not implemented due to

deviations before reaching GPU and copying only the

necessary parts of the network packet for processing.

PacketShader [19] is another hardware-based platform that

benefits from GPU to reduce the computational load for fast

packet processing. It uses a batch processing technique to

reduce the processing load for each packet. PacketShader

uses copying, which allows flexibility of the user buffer,

instead of the zero-copy technique for better abstraction. It

also facilitates the recycling of large packet buffer cells.

Netmap [25] is a userspace packet handler that does not

requires special hardware and minimizes packet processing

cost by using techniques such as resource preallocation,

batch processing, and zero-copy. This framework maps the

NIC rings to an equivalent number of network map rings so

that the load is spread across multiple CPU cores without

lock contention. GASPP [30] is the hardware-based platform

that benefits from GPU to perform fast packet processing.

This architecture uses the Netmap library for I/O operations

in packet processing. In this way, it is possible to avoid

network packet copies and context switches that cause

additional overhead. In this framework, reassembling TCP

streams and flow management are entirely performed on

GPU. Additionally, a packet scheduling technique that

eliminates load imbalance and controls flow irregularity is

applied for GPU threads. Also, the zero-copy technique

which increases throughput between devices is applied

between GPU and NICs. Data Plane Development Kit

(DPDK) [26] is another userspace packet handler to perform

fast packet processing. This framework is developed for

Intel's multi-core processors that deliver packets to

applications by using acceleration techniques such as

resource preallocation, batch processing, and zero-copy.

The forwarding process of packets called the data plane

operation, is performed by DPDK libraries that forward

network packets to the application network stack directly

without any Linux kernel overhead [33]. In addition to the

libraries, DPDK also includes Poll Mode Drivers (PMD) that

accesses RX and TX descriptors without any interrupts to

receive, process and transmit packets to the user space. This

decreases the overhead caused by interrupt operations in

high speed scenarios. APUNet [31] is a hardware-based

platform that leverages the power of integrated GPUs for

network packet processing and uses DPDK infrastructure for

packet forwarding. APUNet uses the zero-copy technique in

the entire processing steps. This structure implements

persistent GPU kernel execution to reduce communication

latency between CPU and GPU. Thus, GPU threads run in

parallel for constant input network packet flows. For the

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

6

solution to the cache coherency problem between CPU and

GPU, synchronization of cache memory access technique is

suggested by integrated GPU to present GPU's processing

results to CPU at a low cost. FastClick [27] is a high-speed

userspace packet processor that integrates both DPDK and

Netmap into Click. Fastclick benefits from these two

versions to increase packet processing speed. It also

increases the efficiency of Click by using zero-copy, multi-

queue support, I/O and computation batching.

PF_RING [28] performs active traffic analysis on

commodity hardware and provides a performance

improvement in direct proportion to the increased number of

cores. This library uses PF_RING ZC drivers that implement

a zero-copy technique to achieve maximum packet

processing speeds. Packets are read directly from NIC by

using these drivers. The network packets are polled from

NICs by using NAPI in PF_RING architecture. Packets are

copied from the NIC to the circular buffer, and the user area

application reads the packets from the ring. Accordingly, the

CPU is used both to transmit from the NIC and to process

network packets. In PF_RING DNA (Direct NIC Access)

[34], NIC NPU (Network Process Unit) architecture is used

instead of NAPI. In this structure, NIC maps memory in

userspace. As a result, the CPU is only used to process

packets.

Vector Packet Processing (VPP) [23] is a framework

capable of high-speed packet processing in the user space to

benefit from general-purpose CPU architectures. DPDK or

Netmap can be used as I/O nodes in the VPP. VPP resources

are organized into two basic groups composed of a low-level

libraries used to implement specialized network packet

processing applications and high-level libraries, called

plugins, that perform a specific processing task. VPP master

code and plugins create a forwarding graph that defines the

possible paths of a packet. Vectors are arrays located in pre-

allocated contiguous memory segments, and per-vector

processing is a basic principle in VPP. Vectors are efficiently

managed by VPP in reusable lists before they are released.

Vectors are reused and managed efficiently without releasing

in reusable lists by VPP. The main innovation of VPP is that

it provides performance gain by processing network packets

in vectorized format. Each node of the VPP processes all

packets in the vector instead of allowing each packet to

traverse the entire graph. The underlying assumption of the

vectorized process is that subsequent packets require similar

operations. Since the instruction cache is only loaded for the

first packet in the vector, other packets in the vector tend to

be processed at high performance. Also, this approach

provides an efficient prefetching strategy. It is known which

packet data is required to process the specific feature when

the node is called. Thus, (i+1)'th packet's data can be

prefetched while the node is processing the i'th packet. VPP

also uses the multi-loop approach to take advantage of low-

level hardware support. The approach of multi-loop can be

defined as a function written to process N packets in parallel.

In this process, the computations for all network packets are

independent of each other. With the help of this approach,

CPU pipelines are allowed to fill up constantly, and the

latency caused by cache miss is shared with N packets

instead of a single packet.

ClickNP [32] is a hardware-based platform that aims to

provide performance gain by executing part of the packet

processing in FPGA. FPGAs are programmed in complex

low-level Hardware Description Languages (HDL) such as

Verilog or VHDL. This may cause low productivity and

debugging difficulties in FPGAs. Therefore, ClickNP

applies three basic approaches to overcome the programming

difficulties on FPGA. In the first approach, each complicated

network function is decomposed and determined as well-

defined elements via ClickNP's modular architecture.

Another approach is to write ClickNP elements in a high-

level language that is easier to understand. The final

approach is to use the high-performance PCIe channel

between CPU and FPGA. This channel works with low

latency and high efficiency, allowing cooperation in the

processing of network packets on CPU and FPGA.

Additionally, ClickNP uses a batch processing approach to

reduce DMA overhead.

3 DPI techniques

Today's network traffic model has complex behaviors

due to device mobility and network heterogeneity [1].

Analyzing this complex network traffic requires more

efficient mechanisms by which multiple techniques are

combined to create hybrid systems. The packet payload is

used with or separately from the packet header in DPI

applications such as content-based recognition, traffic

classification or IDS whereas the packet header is used with

its fixed format or statistical character for analysis of

network traffic [5]. For this reason, it is more accurate to

examine the DPI method together with other techniques used

in the analysis of network traffic. In the first sub-section, DPI

techniques and DPI-related techniques are examined. State-

of-the-art network traffic with complex behavior causes DPI

implementations to be computationally intensive and time-

consuming. In this direction, improving DPI performance

becomes an important working area. In the second sub-

section, recommended software and hardware-based

methods which improve DPI performance are discussed. On

the one hand, it is important to enhance the existing literature

with a well-detailed analysis of DPI applications on the

network composed of encrypted traffic mostly [35]. Indeed,

the methods that directly use or do not use the DPI approach

or limit the usability of this approach are examined, and the

advantages and disadvantages of these methods are

discussed in the process of analyzing the encrypted network

traffic in the last sub-section.

A classification of the literature based on DPI techniques

is presented in Figure 2. This classification which focuses on

the application of DPI techniques is created for the

requirements of a state-of-the-art network which has

complex behavior and encrypted traffic mostly. In this

direction, three main categories are identified for

classification DPI techniques, acceleration techniques for

DPI and techniques for performing DPI on encrypted traffic.
Within the first category DPI techniques, two subcategories

are identified: Pattern matching and protocol decoding

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

7

Figure 2. Overview of the surveyed research works classified according to the proposed classification

techniques. In the second category, acceleration techniques

for DPI, two subcategories are identified: Hardware-based

and software-based techniques. In the third category,

techniques for performing DPI on encrypted traffic, three

subcategories are identified: Man-in-the-Middle Attack

(MITM), Access Control (AC) and Trusted Hardware (TH)

techniques. With the help of this classification, it is aimed to

facilitate the reader's access to references that examine a

specific field. However, as a natural consequence of this

classification, there are many studies in which techniques in

different categories are used together. The categorization of

studies numbered [36-39] and [40] can be given as an

example of this case. The studies numbered [39] and [40]

performed filter-based pattern matching by using the TH

technique are examined in the categories of both DPI

techniques and techniques for performing DPI on encrypted

traffic. Likewise, the study numbered [38] performed by

using Cuckoo filter (CF) [41] on GPU is examined in the

categories of both DPI techniques and acceleration

techniques for DPI. The study numbered [37], which

proposes Ternary Content Addressable Memory (TCAM)

based multiple-pattern matching algorithm that uses a hybrid

model of pattern matching techniques is examined in the

three categories. These categories are acceleration

techniques for DPI, hashing and heuristic-based pattern

matching techniques. The study numbered [36] which

proposes TCAM based multiple-pattern matching algorithm

is only examined in the category of acceleration techniques

for DPI as it does not use any of the available DPI

techniques. As seen in the classification, the most commonly

used DPI technique is the automata-based pattern matching

technique, whereas the filter-based pattern matching

technique is the least used. Among the special-purpose

hardware used to accelerate the packet processing in DPI

applications, the most used hardware is the GPU, whereas

Application Specific Integrated Circuit (ASIC) is the least

used hardware. This classification is expanded by adding

other methods related to DPI techniques. Accordingly,

determining the necessary parameters for the construction of

powerful mechanisms to examine the complex network

traffic is an important aim of this paper.

3.1 DPI related techniques

In the study numbered [5], DPI is classified as narrow

and general scope. According to this classification,

generalized DPI includes an examination of both the packet

payload and header. In the narrow scope, DPI represents only

payload-based detection, and the detection is performed by

matching the payload with signatures. On the other hand, this

classification, which accepts port-based and statistical-based

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

8

analysis as a DPI technique, is not valid because it ignores

the task of examining packet payload, which is the most

basic feature of DPI. Therefore, DPI is considered as a part

of network traffic analysis (NTA) methods in this paper. DPI

and DPI-related methods are shown with references to

studies numbered [5, 11] and [12] (Figure 3).

3.1.1 Port based technique

Using the port-based technique in NTA is the most

traditional technique for application protocol detection. This

approach is used to detect the protocol using the port fields

in the TCP/UDP headers. However, reasons i.e peer to peer

(P2P) applications using random port numbers, the

emergence of encrypted protocols, some applications using

ports assigned to other protocols for deception and

replacement of one protocol by another indicate that this

method is not safe for identifying the application protocol

[5,10]. HTTP protocol may be considered as an example of

this case. The HTTP protocol is actively used to download

or upload files. Hence, it replaces FTP, which is designed

specifically for downloading and uploading files. Also, many

P2P applications (skype etc.) use the HTTP protocol to

bypass the firewall if other ports are blocked. Additionally,

HTTP is used by social networks, geomaps, and video

streaming services [42]. The fact that the port-based

approach is insecure and insufficient to determine the

application protocol leads to the application of this technique

as an auxiliary technique in the analysis of network traffic.

For example, the nDPI library [42] uses the port-based

approach to determine the appropriate protocol decoder. By

means of this approach, protocol detection time can be

reduced.

3.1.2 Protocol decoding technique

Protocol decoding is another method of analyzing

network traffic. This method may be considered as the DPI

technique since it performs payload inspection. Protocols

can be detected by using the protocol behavior as well as the

characteristic protocol headers in this method. Therefore,

this technique is based upon re-establishment sessions with

captured packets at the application layer [5]. Different

verification methods can be applied in the protocol decoding

processes. Syntactical verification aims to check the

accuracy of the transferred data in terms of syntactical. For

instance, the HTTP headers must be present if there is an

HTTP payload. Verifiers must decode the message and

ensure that the message is well-formed. Another method is

protocol conformance. The process of confirming that the

HTTP GET request is answered by the server in a valid

manner may be considered as an example of this method.

This method is more valid because it can verify the runtime

behavior of the protocol when it compares to the canonical

state machine. Inspecting the semantic integrity of the data

is another verification method. For example, confirming

whether an image object transferred by the HTTP protocol is

actually an image or some other form of content [43]. The

protocol decoding method, which needs a deep

understanding of the application protocol, achieves high

accuracy with a low false-negative rate. However, protocol

decoding process is computationally intensive and time-

consuming [5,12,42]. In this direction, the application of

hybrid approaches in the analysis process of network traffic

can be applied to improve performance.

The commercial tool PACE [44] software and the open-

source nDPI library are examples of hybrid use of protocol

decoding technique. PACE tool which has capable of

detecting encrypted protocols uses ML techniques along

with behavioral and heuristic analysis in the analysis of

network traffic. nDPI is an open-source library that uses

port-based approach, protocol decoding and pattern

matching technique. In order to analyze encrypted network

traffic, the nDPI library can perform protocol detection by

using strings that match the metadata obtained from the

network stream. In addition, nDPI supports DPDK which is

a kernel bypass technology to minimize performance losses

caused by the hardware or the operating system. There are

many studies comparing the accuracy of nDPI and PACE

libraries according to the degree of granularity in terms of

detection of the application protocol [45-48]. According to

these studies, nDPI is the library with the highest accuracy

among the open-source classifiers, except for the study

numbered [47]. In the study numbered [47], in which

performances are evaluated according to different

classification levels, nDPI is the best performing classifier at

the protocol level, whereas PACE is the most successful

technique at the application level. PACE is a commercial

tool that cannot be accessed by the entire research

community. nDPI is the most successful classifier among the

open-source tools.

Figure 3. DPI related network traffic analysis techniques

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

9

3.1.3 Pattern matching-based technique

Pattern matching-based DPI methods can be

implemented using hashing, heuristics, automaton, filtering

or probabilistic data structure-based algorithms. These

algorithms are based on string or RE Matching methods.

Hashing-Based Technique. Hash-based algorithms [49,

50] use the string matching method. This approach compares

hashes instead of the contents of the packet payload with the

pattern character by character. A hash value is calculated for

each pattern of length m. At the same time, the hash value of

the examined m-long substring is also calculated. If any

pattern-substring matches are detected while the pattern is

sliding over the target text, the pattern and substring are

compared on a byte basis for verification. In addition to the

study [51] in which the matching performance of hash-based

Rabin-Karp (RK) [50] algorithm on IDSs is evaluated, there

are some DPI applications that evaluates the matching

performance of the parallel application of this algorithm on

GPU [52, 53]. In the multi-pattern matching version of the

RK algorithm performed on the GPU, each thread compares

the hash code for all patterns starting from the position

corresponding to the thread index. Thus, the matching

process lasts too long, and RK is not an efficient algorithm

for multi-pattern matching [53]. Additionally, the

performance comparison of the RK from the point of

execution time for variable-size network traffic is presented

for both serial and parallel implementation in the study

numbered [54]. RK algorithm parallelized on GPU

outperforms the serial implementation encoded on CPU and

increases the pattern matching speed.

Probabilistic Data Structure Based Technique. Bloom

filter (BF) [55] is a probabilistic data structure used to

represent a set for the purpose of performing membership

testing. Using this data structure makes possible to query

whether an element is present in the set at a low cost. BF

does not produce false negatives. Indeed, if BF produces a

result such as "The element is not present in this set.", it is

true. However, there is also the possibility of producing false

positives. BF may produce a result such as "Element is

present in this set." for an element that is not present in the

set. BF does not support delete operation. There are

improved versions of BF which support deletion provide a

better location or reduce the cost of space [56, 58]. A

quotient filter (QF) [59] is a hash table that records

fingerprints of elements to support deletion. In this data

structure, encoding each entry is required additional

metadata. This requires 10-25% more space than BF. In this

data structure, table entry codes must be decoded before

reaching the target element. Whereas the hash table is filled,

operations increase at a similar rate. When the fill rate of the

hash table exceeds 75%, the matching performance of the

data structure drops dramatically [41]. CF is the membership

query data structure in which elements can be dynamically

added or removed. The biggest challenge facing CF

performance is the use of three hash functions which causes

additional computations. Quotient-based Cuckoo filter

(QCF) [60] which uses only two hash functions has less

computational overhead than standard CF. This filter has

higher insertion, query and deletion capability than CF.

Probabilistic data structures are used as a matching tool

in many DPI applications [60-65]. In the study numbered

[61], Prefix BF (PBF) and Chain Heuristic methods are

proposed, which allow pattern matching without

defragmentation in order to reduce the required storage

space. The PBF data structure allows the detection of the

prefixes of patterns. In this way, it is possible to detect

patterns on more than one network packet. Chain heuristic

increases system throughput by reducing the false positive

rate of PBFs without using any additional memory. In the

study numbered [62], a new BF architecture is proposed by

using the pipelining technique which notably reduces the

overall power consumption of the BF. In the first stage of a

two-stage pipelined BF, hashes are always calculated. If a

match is found between the input and the pattern, the hash

values are calculated in the second stage. Implementing a

small number of hash functions in the first step increases

power savings. In the study numbered [63], a new BF is

proposed in which both two memory addresses are

compressed into one I/O block of main memory. With the

help of this data structure, the number of memory I/O

required for the membership query is reduced. Accordingly,

the average query latency is also significantly reduced. In the

study numbered [64], the DPI application is performed by

using QF. The results obtained from the real dataset show

that QF achieves higher efficiency (30%-75%) and improves

false positive rate compared to BF. In the study numbered

[65], CF is used as a DPI matching tool. The developed

system provides a significant time saving of 93% compared

to BF and 87% compared to QF. In the study numbered [60],

CF performance is tried to be increased with a new proposal

called QCF. The Analysis shows that applying QCF in a DPI

application results in time savings of up to 77% at CF and up

to 98% at BF and QF.

Heuristic Based Technique. Heuristic-based matching

algorithms use string matching. The primary principle of this

approach is to jump as many payload characters as possible

by using some heuristics to speed up the matching. Single-

pattern matching algorithm Boyer-More (BM) [66] and

multi-pattern matching algorithm Wu-Manber (WM) [67]

are examples of heuristic-based matching algorithms. BM is

a heuristic-based algorithm that improves the performance of

the search model by making situational skips. BM algorithm

which carries out control from the right to the left performs

shifts according to the rules of “Good-Suffix” (matched

suffix of target text and pattern) and “Bad-Character”

(unmatched character of target text and pattern). Besides the

studies focusing on reducing the number of character

comparisons to increase the performance and efficiency of

IDSs [68-70], the studies applying the BM algorithm to

detect known attack patterns [71-74] are presented as an

improved version of the BM algorithm. An important aspect

that limits the performance of the BM algorithm is that it

cannot process multiple patterns in parallel. In this direction,

WM which is developed as an advanced version of the BM

algorithm has the ability to process more than one pattern

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

10

simultaneously. WM consists of two phases called

preprocessing and scanning. In the preprocessing phase,

basic calculations required for the scanning phase are made,

and three tables are created namely SHIFT, HASH and

PREFIX. The created tables are used for pattern matching in

the scanning phase. In order to improve the performance of

IDSs, the studies numbered [75], [76] and [77] focus on

reducing the number of CPU cycles by reducing the number

of unnecessary matching attempts, and they are presented as

an improved version of the WM algorithm. In addition, the

study numbered [78] is presented as an advanced version of

the WM algorithm in order to reduce the performance losses

caused by short patterns that result from short shift distance.

The study aims to reduce the effect of short patterns that limit

performance by splitting patterns into the different pattern

clusters according to their lengths and processing these

clusters sequentially.

Automaton Based Technique. Automaton-based

approaches can use both string matching and RE Matching

methods. The matching process in DPI is computationally

intensive and time-consuming as processing each byte in the

payload requires one or more memory accesses. This

situation is negative for the DPI process. Therefore, the DPI

performance is highly dependent on the pattern matching

throughput indeed the performance of the FSM [5].

There are two types of FSMs; Nondeterministic Finite

Automata (NFA) and Deterministic Finite Automata (DFA).

In fact, the two FSMs are equivalent. An equivalent DFA

with NFA can be created, and this DFA accepts the same set

of patterns. The main difference that distinguishes DFA from

NFA is that any DFA state has a single pass for each

character leaving to the specific state. Any NFA state can

switch to different states more than once for the same

character. Accordingly, a DFA can have only one active state

at any one time while a NFA can have more than one active

state. As a result, a NFA and a DFA have completely

opposite characteristics in memory bandwidth requirement.

A DFA is a memory-intensive structure while a NFA is a

computationally intensive structure. Most current research

aims to strike a balance between storage and performance

[79-81].

RE defines a search pattern such as languages, or a set of

strings. This structure can represent a set of exact strings

while the exact string can represent only one string [5]. REs

are widely used in many open source and commercial DPI

applications under favour of their powerful and flexible

detection capability [82-84]. A new RE-based DPI system

that can process out of order packets without performing

packet buffering and stream reassembly is proposed in the

study numbered [85] that aims to improve the accuracy and

speed of pattern matching, besides the studies numbered

[86], [87] and [88] focusing on the creation of memory-

efficient architectures for the RE pattern matching process.

Exact-match strings, the simplest type of REs, are fixed-size

patterns. Automaton-based Aho-Corasick (AC) [89]

algorithm, which has a faster matching power than complex

REs, is widely used for string matching by means of its easy

implementation. Application of the AC algorithm in the

pattern matching process makes the cache space useless for

large state transition tables. As a result of this situation, the

matching speed decreases for large pattern datasets.

Compressing a transition table in order to reduce the memory

requirement and effectively use cache is one of the research

topics of the AC algorithm. Whereas some improved AC

algorithms [90-93] focus on reducing memory space

required for storage of automata, the study numbered [94]

proposes a variable stride pipelined Aho-Corasick

Deterministic Finite Automaton (AC-DFA) to reduce the

number of memory accesses and energy consumption in the

pattern matching process. In addition, DPI is applied by

using the AC algorithm in IDSs developed on the study

numbered [29] and [31] platforms. However, the memory

requirement of the AC algorithm using the large state

transition tables and the slowing of the matching speed for

large pattern datasets show that this algorithm cannot be a

suitable solution especially for GPU-accelerated DPI

applications as discussed in the studies numbered [95-97]

and [98].

Filtering-based Technique. A filtering-based approach

relies on excluding the parts of the input data that do not

match the pattern. Multi-pattern matching algorithm DFC

[99] which increases pattern matching performance by

significantly reducing the number of memory accesses and

cache miss compared to the AC algorithm is an example of

filtering-based matching algorithms. DFC consists of three

stages called initial filtering, progressive filtering and

verification. In the initial filtering stage, A direct filter (DF)

that does not require hash computation and uses a sliding

window is constructed to exclude parts of the input data that

do not match the pattern. In the progressive filtering stage,

multiple layers of DF are constructed to categorize patterns

based upon length and filter the window incrementally. In

the last phase, the input is compared with the patterns to

verify whether an exact match occurs. The studies numbered

[39] and [40] in which the inspection is executed in the

secure enclave can be given as examples of the use of the

DFC algorithm. Also, in the study numbered [82], it is used

a filtering system for RE Matching to exclude flows that

include no segment characteristics of RE.

3.1.4 Machine learning based technique

Some legal restrictions to prevent access to the packet

payload due to some reasons such as protecting the privacy

of users [100] encourages researchers to use different

methods for examining network traffic. The statistical

methods collect payload-independent variables i.e port

numbers, packet length, flow start/stop timestamp and inter-

arrival time of packets in a stream to analyze the network

traffic and predict which application or protocol the traffic

may belong to [5, 101]. In many studies, Machine Learning

(ML) algorithms are used [102-104] besides statistical

methods [105-107] to classify network traffic. The studies

numbered [103] and [104] use TLS header information and

DNS data as well as flow metadata in the analysis of network

traffic. ML is a subset of Artificial Intelligence (AI). AI

approach aims to implement human-like AI by creating a set

of rules. Although this approach successfully completed

well-defined tasks, it is insufficient to perform more

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

11

complicated processes i.e image processing. ML is

developed to overcome such challenges. DL approach which

is a subdomain of ML uses Deep Neural Network (DNN) to

get data representation at each layer [108]. The relationship

between AI, ML and DL is shown in Figure 4. The number

of layers used to model the data is defined as the depth of the

created model. DL models may have hundreds of

consecutive layers to handle complex tasks. Traditional ML

algorithms are inadequate for the analytical requirements of

modern networks. This situation increases the popularity of

DL in the application of NTMA techniques [1].

Figure 4. Relation between AI, ML, and DL

In a ML system, it requires expertise to create a feature

extractor that converts raw data into a convenient

representation [109]. Because DL algorithms use automatic

feature learning, they remove the requirement for feature

engineering in traditional methods. This characteristic of DL

models is important for NTMA methods as a major part of

the network traffic are unlabeled or semi-labeled [110].

Some useful features that cannot be detected by manual

feature engineering can be detected by DL algorithms.

Accordingly, many NTMA applications [111-114]

implement by using DL algorithms.

There are many disadvantages that affect performance in

the process of performing NTMA techniques using ML

approaches. The success of ML methods highly depends on

the quality of data used for training. The networks trained

with low-quality data result in unsuccessful NTMA

implementations. In this process, DL algorithms need large

amounts of network traffic data. The most of data are

unlabeled or semi-labeled in the network applications [110].

However, labeling this data is time-consuming and

computationally labor-intensive. Accordingly, training DL

algorithms with a great number of training data and variables

requires rich devices in computing, memory and power

resources. On the other hand, resource-constrained AI-based

devices such as IoT devices are insufficient to fulfill this

requirement. Also, ML-based models need to be retrained at

frequent intervals to adapt to new situations in the network

such as security violations or network behavior changes.

Besides, high complexity in the training phase causes DL

models to consume too many resources and time.

Accordingly, DL models need to be improved from the point

of time and resource consumption. Another issue to be

evaluated in process of training the networks is about the use

of the dataset. DL techniques must be trained by specific

datasets collected from the network traffic and labeled with

high accuracy due to the heterogeneous nature of networks.

Accuracy of DL techniques trained by public datasets may

decrease in several networks [1,115].

3.2 Acceleration techniques for DPI

Many techniques are proposed to accelerate packet

processing in DPI applications. The hardware-based

methods use special-purpose hardware such as FPGA,

TCAM, ASIC, and GPU to reach high matching speed with

device parallelism. The methods that propose TCAM as a

hardware acceleration tool are based on TCAM's parallel

processing capability [36,37,116]. The studies numbered

[37] and [116], which propose TCAM based multiple pattern

matching algorithms that allow multiple characters to be

processed at once, aim to increase the matching speed by

reducing the number of TCAM searches. The study

numbered [36] is another schema that proposes TCAM based

multiple-pattern matching algorithm. Unlike the algorithms

proposed in studies numbered [37] and [116], this algorithm

does not use any of the existing DPI techniques for packet

processing. In this algorithm, patterns with a pattern length

less than or equal to the specified TCAM width are classified

as simple patterns. The pattern matching process for the

simple patterns is as follows: The first w byte in a packet is

mapped into TCAM to detect a match. Then, one byte is

shifted, and the process is repeated. This iteration is

performed for the entire packet. The first step of the pattern

matching process for long patterns is to identify the prefix

and the suffix patterns. Then the prefix patterns are

combined with the corresponding suffix patterns. Three

tables are stored in memory to perform this process. These

tables are: Pattern table, Partial Hit List and Matching Table.

FPGA is another hardware solution used for pattern

matching. FPGAs consist of programmable logic blocks and

interconnections between these logic blocks. These logic

blocks and interconnects can be reprogrammed according to

the desired purpose. Thanks to its reprogrammable and

parallel processing capability, FPGA is one of the important

solutions used for pattern matching. In order to achieve high

pattern matching speed with device parallelism, many

studies using FPGA aim to maintain a balance between

storage and performance [79-81,117,118]. ASIC is an

integrated circuit designed to perform a specific task, unlike

general-purpose microprocessors. ASIC can run faster

compared with programmable logic devices or logic

integrated circuits. Despite their small size and low energy

consumption, ASIC production is an expensive and time-

consuming process. In the study numbered [119] developed

ASIC for IDSs, FNP multiple pattern matching algorithm

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

12

which reduces the number of memory accesses and improves

pattern matching performance is presented. FPGA has a

more flexible structure than ASIC. However, programming

difficulties of the FPGA prevent its widespread use [120].

The software-based methods using general-purpose

processors provide greater flexibility and programmability

compared with the hardware-based solutions. In the studies

numbered [121,122] and [123], approaches that combine the

advantages of NFA and DFA applications are proposed in

order to benefit from multi-core architectures efficiently. It

is aimed to increase the matching performance by using the

existing parallelism provided by multi-core processors with

the algorithm proposed in the study numbered [121] in which

complex REs are divided and assigned to different cores. In

the study numbered [122], a new pattern matching algorithm

HBM is proposed by combining DFA and NFA. According

to this algorithm, the pattern matching process has two

stages: Head DFA (H-DFA) and body NFA (B-NFA). While

H-DFA processes the pattern up to a certain length, it uses

less memory space than AC algorithm. In the B-NFA phase,

the matching process is applied over the entire pattern by

using a variable stride data structure. Also, Single-

Instruction Multiple Data (SIMD) approach is used for

accelerating the matching process. In this direction, the

HBM algorithm focuses on reducing the used memory space

and increasing the matching speed. Contrary to the HBM

algorithm which creates the head-body finite automaton

according to the predefined depth values, the FHBM

algorithm proposed in the study numbered [123] divides the

head and body parts according to the head size. Accordingly,

this study proposes an algorithm focusing on increasing the

efficiency obtained in the pattern matching process by

providing a more flexible structure in terms of AC-DFA

partitioning.

After the development of high-speed networks,

traditional approaches using CPUs become inadequate in

meeting network packet processing speed requirements.

Accordingly, GPU with superior parallel processing

capability can be used to provide high matching speed

compared to CPUs [97]. GPU is a multi-threaded and multi-

core processor with high computational power. Therefore,

GPU is well-suited to handle parallel computing problems

with high arithmetic intensity. In 2006, NVIDIA introduced

CUDA which is a parallel computing architecture to solve

many complicated computing problems more efficiently

than CPU. CUDA leverages the GPU's capabilities to

increase computational performance [124]. CUDA-

supported GPU cards consist of a Set of Stream

Multiprocessors (SM), and each SM contains a Set of Stream

Processors (SP). SMs are designed with a Single Instruction

Multiple Thread (SIMT) architecture in order to run

hundreds of threads simultaneously. In any clock cycle, each

SP executes the same instruction by processing different

data. The threads are organized according to warps. The

warp is a structure that consists of 32 parallel threads, and it

is the time unit of SM. A warp performs only one command

at a time. Therefore, a high level of performance can be

reached when all threads in the warp have the same

instruction path.

GPU has performance sensitivities as well as its superior

performance in computationally intensive tasks and parallel

computing capability. The organization of warps

significantly affects performance. The maximum

performance can be achieved when threads in the same warp

execute the same instructions. Otherwise, computations in

the warp are done sequentially, resulting in processing

latency. The warp executes each branch serially if threads in

the warp have different execution paths due to any sort of

divergent conditional branching. This situation which is

called as thread divergence causes increasing the total time

of executing instructions in the warp. Bank conflict is

another factor that causes performance sensitivity. The

multiple threads requesting access to the same bank at the

same time results in bank conflict, and this situation

increases execution time. Another factor limiting

performance is the difference in access latency of GPU

memory areas used in the packet processing. CUDA threads

can access different memory areas while they are executing.

Each memory area has its own individual purpose,

accessibility and speed of access. Each thread block has a

shared memory that can be accessed by all threads which

belong to that block has the same lifetime as the block. It is

possible for all threads to access the same global memory.

The shared memory has less memory than the global

memory. Like any device memory hierarchy, the local

memories on GPU have less access latency than the global

memories. Accordingly, executing the packet processing in

shared memory instead of global memory reduces packet

processing time [98].

In DPI applications, high-density computing and the

speed factor are important. Therefore, GPU usage is

common due to its high computational power and

convenience for parallel computing problems [38,96-

98,125,126]. In DPI applications based on GPU,

performance sensitivities of this hardware are mostly

emphasized, and it is aimed to make maximum use of GPU’s

parallel processing capability. Whereas the studies numbered

[98] and [125] focus on reducing the used memory space,

another study numbered [97] aims to increase the

performance by reducing the processing load of GPU by

using a pre-filtering mechanism on the CPU. In addition, BF,

QF, CF and QCF probabilistic data structures are used as

matching tools in many DPI applications. In the study

numbered [38] performed by using CF on GPU, the parts of

global memory that threads in the same block frequently

access are detected and transferred to the shared memory.

Then, it is aimed to reduce the execution time of threads by

using the shared memory instead of the global memory. This

approach only detects memory regions that threads access

frequently. Infrequently accessed memory regions are

accessed by using global memory. As a result, this approach

cannot guarantee that all threads access only shared memory.

Therefore, memory access latency in the study numbered

[38] is much higher than the study numbered [98] that uses

the P3FSM algorithm encoding the DFA state transition

table to fit in the shared memory of GPU.

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

13

3.3 DPI over encrypted traffic

According to Google's September 2022 transparency

report [35], 95% of traffic using the Chrome platform is

HTTPS. The applications that require detailed analysis of the

packet payload are completely disabled by the TLS protocol.

Examples of these applications that are negatively affected

by HTTPS are content filtering, IDS/ Intrusion Prevention

System (IPS), Data Loss Prevention (DLP), fraud detection,

parental control, ad blocker, transcoding and compression

[127]. Additionally, the inability to detect user and session

identifiers, URLs or timestamps due to encrypted traffic

reduces the efficiency of repair services in troubleshooting

difficulties or application layer problems. RFC8404 [128]

points out that information provided by the application is

insufficient in the absence of network packets to analyze.

Therefore, new approaches are required to use existing

techniques such as DPI to analyze encrypted traffic. Another

research topic in the inspection of encrypted network traffic

is the security of Middle Boxes (MB). With the advent of

Network Function Virtualisation (NFV), dependence on

specialized and expensive hardware decreases in the

distribution of MBs responsible for performing network

functions such as IDS or firewalls. The distribution of

software-based MB functions starts to gain importance.

Accordingly, MBs move from a hardware-based device to a

cloud infrastructure that provides more flexibility. However,

transferring data that is internally examined to the MB

provider for processing raises security and privacy concerns

[129,130]. This prompts researchers to develop different

methods for examining network traffic.

This section focuses on suggested methods to perform an

inspection on encrypted traffic. In this regard, inspection

methods on encrypted network traffic are shown with

reference to the studies numbered [127] and [131] (Figure 5).

The classification in Figure 5 is based on whether the

encrypted network traffic is decrypted or not. MITM, AC,

and TH methods analyze network traffic by decrypting

encrypted traffic, whereas Searchable Encryption (SE) and

ML approaches perform their investigations over encrypted

network traffic. The details of these approaches are presented

in this sub-section, with the exception of the ML approach.

The application of NTMA techniques using ML approaches

is discussed in sub-section 3.1.4. However, it is important to

evaluate the ML technique together with techniques

developed for the analysis of encrypted network traffic. Fort

his reason, in this sub-section, a comparison of the ML

technique with the others is presented. In addition, a

comparison of all the techniques developed for the analysis

of encrypted network traffic is presented

3.3.1 MITM technique

MITM technique is implemented by establishing two

TLS sessions, both between client-MB and MB-server. This

approach requires the client to install the MB's root

certificate [132]. The root certificate allows the MB to

identify itself as a server to the client by copying and signing

a new certificate based on the server's credentials. In this

way, encrypted traffic originating from the client can be

decrypted and analyzed by MB [133]. Then, MB re-encrypts

data on behalf of the client and transmits it to the server via

the second TLS session. MITM technique for encrypted

traffic analysis is widely used in the applications such as

antivirus and parental control, also incorporates network

solutions [134-136]. There are also widely open-source tools

such as MitMProxy [137] and SSLSplit [138]..

Figure 5. Methods for inspection encrypted traffic

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

14

3.3.2 SE technique

SE method tries to detect malicious traffic via token

matching without decrypting the encrypted traffic. In this

technique, the SE schema is used to perform a mapping

between encrypted keywords and rule sets [127]. The study

numbered [139] is the first DPI schema using the SE

technique and protecting privacy. In this schema, the client

establishes a TLS connection with the server and a second

connection for token matching. Both of these connections are

routed through MB. MB contains a rule set that is encrypted

using a key derived from the session key of the TLS session.

The client tokenizes and encrypts the message by using the

same key. Then, it transmits the tokenized message by using

the second connection. MB tries to match tokenized traffic

with encrypted rule sets. When a match is found, traffic is

considered malicious and blocked. In this schema, MB

inspects only tokenized data. Thus, the SE technique has

very limited functionality compared to the inspection

performed on the unencrypted traffic. The study numbered

[130] is designed as the first system handing over MBs to

cloud providers while keeping network traffic private. In the

study numbered [139], PrefixMatch which is a new and fast

encryption schema is proposed in order to reduce the

overheads arising from the cryptographic computations. In

addition, the limited functionality of this study is extended

by supporting different SE schemas that can be used for

different MB services such as parental filter, IDS or firewall.

The study numbered [140] which reduces the overhead from

cryptographic computations in the study numbered [139] and

memory space needed to perform MB functions uses

decryptable SE [141] schema based on public-key

cryptography. This schema replaces the existing TLS

protocol by using a different approach to deploying the

public key operation. As for the study numbered [142]

presents another schema by using public-key encryption.

Unlike the symmetric encryption schemas used in the study

numbered [139], public-key encryption schemas increase

functionality and reduce efficiency and overhead from the

cryptographic computations during the setup phase. In

contrast to the study numbered [140], the study numbered

[142] uses public-key operation only in ML-based inspection

for malware detection. The study numbered [139] uses a

garbled circuit to generate encrypted rules used to examine

encrypted traffic. However, setup latency and overhead size

caused by garbled circuits are high. In this approach,

computational and communication overheads are repeated as

encrypted rules are created for each new session. In the study

numbered [133], an obfuscated rule generation technique is

proposed that provides better performance in encrypted rule

generation and does not use garbled circuits. The

intermediate values which can be reused in subsequent

sessions are generated for repeated tokens by using a

reusable obfuscation mechanism in this approach.

Accordingly, this approach provides performance gain by

reusing the rules, and it is aimed to accelerate the encrypted

rule generation process by reducing the computational and

communication overheads in the study numbered [139]. The

study numbered [143] provides hiding of rule sets from MB

with significantly improved performance over the studies

numbered [133] and [139]. Rule hiding is enabled when MBs

are in untrusted cloud providers. Two schemas that host MBs

in cloud providers and implement different approaches in

these providers are presented in the studies numbered [144]

and [145]. The study numbered [145] is based on two cloud

systems where each rule is XORed with a random string and

is split into many blocks to MBs located in one of the cloud

systems. The cloud systems compute blocks together to be

able to inspect the network traffic. The schema which has a

two-layered architecture presented in the study numbered

[144] is deployed on two non-colluding servers. The first

layer filters the legitimate packets using BF. The second

layer supports the exact rule matching for network packet

analysis by using the conjunctive SE schema [146]. In

addition, the results of the inspection are verified with the

cuckoo hashing method.

3.3.3 AC technique

AC technique that allows traffic to be decrypted is an

approach based on the client and the server accountability.

In this technique, the client and the server are aware of all

the MBs deployed between each other. The prominent

feature of this technique is that MBs are visible to endpoints

which decide MBs' right to access encrypted traffic. A

flexible control mechanism that is provided with AC decides

whether the data can be decrypted or not [147]. The study

numbered [147] allows to exchange read and write secret

keys besides session keys by modifying existing TLS

protocol so that the client, MB and server establish a secure

and authenticated channel. In this approach, MBs' access

rights to encrypted traffic are determined by read/write keys.

The inspection is performed on segmented encrypted traffic

by using these keys. However, the main problem with this

approach is that it changes TLS protocol. The study

numbered [148] which does not change the underlying TLS

protocol provides scalability for applications to use cloud-

based MBs. It also leverages the secure enclave of the Intel

SGX trusted hardware to isolate MB from cloud

infrastructure. Another schema that aims to make MBs

visible and auditable is presented in the study numbered

[149]. MB certificates used to encrypt the channel are

defined for each TLS segment to eliminate insecure practices

i.e installing private root certificates by users or sharing

private keys by servers with third parties. These certificates

are logged on an MB transparency log server so that MBs

can be audited. In addition to auditable MBs, the MaTLS

protocol which ensures the security of MBs is designed in

this study. This protocol includes security objectives such as

server, MB and data source authentication, segment and

individual secrecy and path integrity.

3.3.4 TH technique

TH is a technique where inspection is performed in the

secure enclave of the Intel SGX trusted hardware while

maintaining confidentiality. The basic principle in this

approach is that the client or the server shares the session key

with the secure enclave in the MB. The process of

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

15

decryption, inspection, and re-encryption are implemented in

the secure enclave. MBs and service providers holding these

MBs cannot access decrypted data [131]. The studies

numbered [39] and [150] can be given as examples of the

efficient schemas in which the inspection is executed in the

secure enclave. In these studies, DPI is applied as the MB

function. In the study numbered [150], an intrusion detection

and prevention system (IDPS) is implemented by using the

AC algorithm. In the study numbered [39], IDS is

implemented by using DFC algorithm, which increases

pattern matching performance by significantly reducing the

number of memory accesses and cache miss compared to the

AC algorithm, and PCRE2 library [151] for RE matching. In

the study numbered [150] which presents a Click-based

interface for designing and implementing network functions,

the inspection of network traffic is performed in the secure

enclave in MB located on the client, unlike schemas where

MB is deployed between the client and the server. However,

a decentralized system model which requires SGX-enabled

hardware support for all client systems has high deployment

costs [39]. The study numbered [39] which offers

programming abstraction for MB developers to securely

process encrypted traffic uses high-level APIs in a safe

language, RUST [152] and boundary checking mechanism

[153] to mitigate potential memory safety attacks [154] on

enclave code. There are also studies aimed at the efficient

deployment of MBs to untrusted cloud providers and

providing secure MB functions by applying the TH

technique in the NFV environment [40,155,156]. The study

numbered [155] which uses the DPDK library for I/O

operations in network packet processing uses the AC

algorithm as a MB function in DPI implementation. This

schema that allows the cloud provider to see only encrypted

traffic protects rule sets and network function codes from the

cloud provider. The study numbered [156] which presents a

Click-based interface by using ready-to-use elements and

C++ extensions to design and implement various network

functions leverages SCONE [157] which is a shielded

execution framework based on Intel SGX to securely handle

network packets. Additionally, the Hyperscan RE library

[158] is used to implement DPI as a MB function in this

study which uses the DPDK library for I/O operations in the

network packet processing. The study numbered [40]

improves functionality and security of TH-based schemas

such as the studies numbered [148], [155] and [156], and SE-

based schemas such as the studies numbered [130], [139],

[140], [142] and [145]. It maintains confidentiality of the

network traffic metadata such as packet size, count and

timestamps in addition to the L4 payload of the network

packet. The study which uses the DFC pattern matching

algorithm in the application of DPI as MB function suggests

using DPDK and Netmap libraries for I/O operations in the

network packet processing. In addition, the study numbered

[148] using the AC technique benefits from Intel SGX

trusted hardware to isolate MB from the cloud infrastructure.

3.3.5 Comparison

MITM technique is safe as long as a root certificate is

securely stored, a current TLS version is used, and

decryption is done in a controlled manner through whitelists

that contain data not to be decrypted. However, this approach

may weaken TLS security on several counts. The proxies

that implement the MITM technique are responsible for the

certificate validation process while communicating with the

server. The issues such as accepting any certificate which

certificate chain cannot be verified or trusting an expired

Certificate Authority (CA) list may weaken TLS security.

Some distributions may be insecure due to weaknesses in

implementing core protocols, i.e allowing deprecated cipher

suites, and MITM proxies not being updated with patches

against newly discovered vulnerabilities. Also, simple

MITM attacks are possible when the same key is used on all

systems using the same product. Creating product-specific

root certificates dynamically and protecting the associated

private keys are important for this reason. Another security

problem of the MITM technique is related to accessing

decrypted data. It is difficult to determine devices to allow

access and monitor network traffic in a large network with

heterogeneous network devices [133, 134, 159].

There are many studies examining the effect of network

solutions by using the MITM technique on TLS security

[134-136]. In the study numbered [134], a TLS testing

framework is proposed to analyze antivirus and parental

control applications by using the MITM technique for

encrypted traffic analysis. The security vulnerabilities of

TLS proxies analyzed against known attacks are detected.

The support of proxies for different TLS versions is tested,

and the shortcomings of these proxies in the certificate

validation process are investigated. Additionally, the matters

of whether applications dynamically generate product-

specific root certificates and protect the corresponding

private keys are investigated in this study. The study

numbered [135] examines the prevalence and impact of

HTTPS interception. TLS handshakes generated by

browsers, security products and malware are characterized.

The heuristics are created that enable web servers to detect

HTTPS interception and TLS proxies. Then, these heuristics

are implemented in the different networks. The negative

effects of solutions that weaken TLS security by using the

MITM technique for encrypted traffic analysis such as

corporate MBs and antivirus control applications on

connection security are also discussed, and the security

vulnerabilities of these solutions are emphasized. The study

numbered [136] presents a framework to detect potential

security vulnerabilities by analyzing TLS Proxy features of

different network devices. The study which focuses on the

risks and vulnerabilities of using TLS proxies explores

security issues related to the protection of private keys,

patching against known attacks, certificate validation and the

use of appropriate TLS version and CA trusted lists.

AC technique provides more flexibility to protect the

confidentiality of data compared with the MITM technique.

It does not require special cryptographic primitives as in SE.

On the other hand, it changes the TLS protocol as the client,

the server and all MBs must agree on schema to be used.

Moreover, it is not clear how to set the access policy for MBs

in the AC technique alike the MITH technique [131].

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

16

TH method does not require changes in TLS protocol like

SE, MITH, and ML techniques. However, the session key

must be securely transferred by the client or the server to

trusted hardware. Without the disadvantages of the MITM

technique, this method allows MB to examine encrypted

traffic in a protected environment. Therefore, decrypted

packets do not leak out of the environment. The secure

enclave has limited storage, memory and computational

capabilities. For this reason, it is not practical for TH

technology to perform any inspection in the secure enclave.

The main concern of TH-based solutions is the security

vulnerabilities due to the success of attacks such as side-

channel [160] against Intel SGX. The hardware deployment

and the cost of trusted hardware are also among factors

limiting to use of this technique [131,155].

SE-based techniques cause additional overhead in the

setup process as they require the generation of tokens and

encryption of rule sets. However, the matching is done in

only MB, so the setup phase of SE techniques is more

inconvenient than the inspection phase due to the

performance losses. SE technique except for the study

numbered [140] performs a confidential inspection without

any changes to the underlying protocols [131]. Inspections

using this technique which not require decryption and re-

encryption only require the comparison of rulesets to

tokenized data. This approach provides a limited control

mechanism as inspection is not performed on decrypted

packets. However, the studies numbered [133], [139] and

[144] using this approach can also perform DPI processing

for deeper analysis of traffic when suspicious flows are

detected. Alike the schemas in the study numbered [139]

require a separate channel to transmit tokenized traffic. In

these cases, the client and the server must have the installed

schema so that the MB can inspect the inbound and outbound

traffic. That is, it requires to change in the structure of the

existing encrypted traffic setup. In addition, security and

privacy concerns about the use of this technique are resulted

from attacks such as leakage-abuse [161], reconstruction

[162], inference [163] and passive [164] on SE technique.

ML technique does not perform decryption while

analyzing network traffic. This approach represents an ideal

solution in terms of the security and application settings as it

does not require any changes to the existing setup. The

technique is advantageous compared to the AC technique

which changes the TLS protocol or MITH, SE and TH

techniques which require changes in the client and server

settings. The inspection using ML techniques has inherent

limitations on data that can be analyzed. The main concern

about the ML technique is whether it completely meets

security requirements. The inspection on headers and

metadata only is insufficient for cases of using that also

require analyzing over payloads [127]. Attackers carry out

their attacks over encrypted channels by using encrypted

traffic to disguise themselves [140, 165]. The ability to have

information from both the packet header and the payload

provides control over communication between two

endpoints. The analyzes performed on the packet header only

are insufficient to detect whether the packet contains

malware. For this reason, it is necessary to examine the

packet payload to detect attacks that can be performed on

encrypted channels. This approach helps to neutralize the

danger of hidden threats [132]. Therefore, it creates a

motivation to access plain text data. Accordingly, MITH,

AC, TH and some SE schemas [133, 139, 144] achieve a

similar efficiency with analyzes that are performed on

unencrypted traffic data.

4 Ensuring security with DPI

Identifying issues that threaten the security of the

network is an important and current issue for DPI. IoT and

SDN, which are architectures that generate state-of-the-art

network traffic, have many difficulties in ensuring security

due to their structure. In this section, difficulties in ensuring

the security of IoT and SDN structures are emphasized, and

the role of IDSs is evaluated in this regard. In addition,

applications of the DPI method on IoT and SDN

architectures are examined, and the DPI method is evaluated

together with the other techniques commonly used in IDSs.

DPI can be applied as a single technique in IDSs, or it can be

used as a component of a hybrid system by combining with

other techniques. In Figure 6, the classification of IDSs as

for the using method is showed by giving references to the

studies numbered [166], [167] and [168].

In DPI-based IDS systems, IDS alerts when the attack

pattern matches the input stream. A signature is defined for

each attack, and as regard to the number of these attacks

increases the cost of storage increases. Anomaly-based IDS

has an initial stage in which data is collected about the usual

behavior of the observed system. A threshold value is set

when suspicious behavior is encountered in order to alarm

IDS. Unlike the signature-based method, this ML-based

technique can detect unknown attacks. However, as

mentioned earlier, it has many disadvantages such as the lack

of labeled data, the computational cost, the difficulties in

retraining or poor quality data [1]. This technique has a very

high false-positive rate as there may be deviations from the

threshold value. It also has a relatively high false-negative

rate since attacks may show small deviations that are

considered within the norm. It is recommended to overcome

the disadvantages of the two methods by creating a hybrid

system. The hybrid IDS system created by the combination

of the anomaly and the signature-based techniques aims to

balance high storage cost and the limited attack detection of

the signature-based technique with high computational cost

and false positive rate of the anomaly-based techniques

[169]. In the hybrid schema, the signature-based technique is

used to detect known attacks, whereas the anomaly-based

technique is used to detect unknown attacks [170].

Specification-based IDSs can detect intrusions when a

deviation from usual behavior occurs alike anomaly-based

IDSs. The specifications are developed manually and usual

system behavior is detected. These behaviors indicate usual

system behavior, and new behavior is verified according to

the specified operations [171].

4.1 SDN security with DPI

In traditional networks, all network functions are

performed by network devices such as switches, routers or

MB. These devices can be supplied by a single vendor or

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

17

Figure 6. Classification of IDS

multiple vendors. Using network devices from a single

vendor reduces innovation and makes it harder to change on

the network. The dependency on multiple vendors can

increase the complexity of the network [130, 172]. As a

solution to these problems, SDN and NFV technologies are

developed. SDN is a new networking model in which routing

hardware is distinguished from the control plane. It

significantly simplifies network management while

facilitating innovation and evolution. Network intelligence is

centralized in the software-based control plane. The network

devices become simple programmable packet routing

devices, forming the data plane [173]. NFV implements the

network functions via software virtualization techniques and

executes them on commodity hardware. These virtual

appliances eliminate both the cost of dedicated hardware and

energy reasons why running a separate device for each

function in various parts of the network. In this way, NFV is

an innovative step towards the implementation of the lower-

cost agile network infrastructure [174]. However, one of the

major barriers in NFV is ensuring that the network

performance becomes as good as the purpose-built hardware

implementations. Virtualization can cause unusual latency

and throughput instability even when network infrastructure

is not used at full capacity [175]. The agility provided by a

programmable network infrastructure under central control,

the fast updating and the easy maintenance facilitate the

implementation of virtualized network functions. In this

respect, SDN and NFV are complementary technologies

[172].

Some security vulnerabilities may arise in network

components of SDN architecture and in their relationships

due to natural changes [176]. Introducing new interfaces and

protocols also leads to the occurrence of new attack

interfaces and exploitable targets. The network structure

created with SDN may be insecure in case of not taking

precautions against the security threats originating from

SDN architecture [177]. The determination of preservation

architectures for the control channel or another interface in

SDN architecture must be made by considering services and

protocols that use the channel. The traffic on the

communication channels may be intercepted, and this traffic

data may be used by the attackers to compromise the assets

in the network when the channels and interfaces used for data

exchange are not sufficiently secured [178, 179].

Adoption of using cloud infrastructure and virtualization

of network functions contributes to the improvement of SDN

security by ensuring integration of different security

functions. The hardware-based security functions such as

IDS, IPS or firewalls begin to be implemented as software-

based network functions on commodity hardware by

virtualizing in SDN intertwined with NFV technology [180].

Whereas these security services can run anywhere in the

network topology, they can also be shared and moved

between different security clouds. Accordingly, virtualized

security contributes to the scalability of SDN security. The

network elements avoid the additional resource cost required

to run complicated and resource-consuming security

functions with the help of this approach. There is a reduction

in the controller processing load when the processing of

security functions is transferred to the external data

processing systems. This contributes to improve SDN

performance [172].

DPI techniques are widely used in IDS applications

created to ensure network security in SDN. In addition to the

studies that present the systems created by applying DPI

engines that perform signature detection on SDN controllers

[181-183], there are also some studies supported by an

anomaly-based IDS to determine unknown or zero-day

attacks such as the studies numbered [13] and [184]. In the

study numbered [13], which points to the use of the DPI

technique as a security solution for smart grids, a SDN-based

security monitoring framework by using a hybrid model of

the DL approach and DPI technique is presented. A hybrid

system design for the classification of QoS categories is also

presented in the study numbered [185] different from the

studies which purpose of network security. In this study, a

SDN flow classification framework by using DPI and ML-

based classifiers is proposed. DPI technique is used to label

flows with specific applications to create a partially labeled

dataset. Then, the classifier is trained with this dataset and

used to identify QoS categories corresponding to different

application flows.

In traditional networks, DPI engines implemented in the

hardware MBs can be virtualized and dynamically deployed

as parts of the software on the commodity hardware by using

software-defined networks intertwined with NFV

technology. Using such virtual DPI engines is costly from

the point of license fee and power consumption [172].

Accordingly, it is important to design low-cost DPI engine

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

18

deployment strategies that supply with cybersecurity

operational constraints. In order to that, a method based on

genetic algorithms and optimizing the cost of DPI engine

deployment is proposed in the study numbered [186]. In this

direction, an approach reduces the DPI engine number, the

global network load, and the number of unanalyzed flows.

As a result of analyzes performed with different traffic types,

the cost can be reduced up to 58% with this multi-purpose

optimization approach. However, this approach is not

scalable for the larger networks. Therefore, his problem is

handled with the integer linear programming (ILP) method

in the study numbered [187]. The validity of designed

centrality-based greedy algorithm is evaluated by comparing

with the ILP solution, and the complexity in the study

numbered [186] is reduced. The experiments using real

traffic data show that the proposed approach is 20-25 times

faster than ILP, and it is a scalable solution that can be

applied for large networks. The proposed cost-optimization-

based approaches determine the number and location of DPI

engines to be deployed to the network. This method can also

be used at runtime to dynamically adapt DPI features.

4.2 IoT security with DPI

IoT composes large number of interconnected devices.

These applieances accessed over the internet are

interconnected by sensing, communication and computing

capabilities. There are many terms that form the basis of IoT

i.e machine-to-machine (M2M) communication and sensor

networks. These terms are a form of communication that

machines interact with each other without any human

interaction [188]. The importance of security and privacy for

providers and end-users increases the interest in the

classification of the network traffic in IoT. The classification

of the network traffic also consists of many solutions for the

other fields i.e intelligent home systems and health care [10].

The scale of network traffic generated is much larger than

in other scenarios because the IoT network has a great

number of devices. The variety of services that led to this

large scale also caused the traffic flows to grow rapidly. In

addition, new obfuscation techniques resulting in more

sophisticated and malware traffic allow malware to reach

their targets in less time. For these reasons, the traffic in IoT

is more complicated than other types of network traffic. This

causes great difficulties in the examination of the network

traffic [189].

IoT devices in large-scale network traffic are faced with

serious security problems. The security violations on

interconnected IoT devices can expose confidential

information such as audio and video recording, email and

passwords. Moreover, poorly designed devices allow various

commands to be executed on them and reconfiguration of the

firmware [190]. IoT devices have a wide distribution and

interact with each other. Therefore, such malicious behavior

may endanger the security of the entire network. Mirai is an

example of IoT-specific developed malware [191]. This

cyber-attack leads to a large-scale DDoS attack by using

compromised IoT devices.

The host-based security solutions are inadequate to

protect themselves for most smart devices. These

shortcomings arise from a lack of physical resources i.e

power and computational resources. One of the essential

solutions that preserve IoT devices from cyber attacks is

network-based security solutions. However, the

implementation of these security solutions involves many

difficulties due to the structure of IoT networks [10].

It is very difficult to gather and identify signatures from

all device actions and interactions owing to the

heterogeneous and large-scale structure of IoT networks.

Additionally, the firmware releases can affect signatures and

behaviors generated by IoT devices. This makes it difficult

to identify and filter malicious activity in network traffic for

IDS. However, implementing complex IDSs is difficult due

to the resource and energy constraints of IoT devices. The

low-cost and the low-quality sensor nodes have inflexible

constraints i.e computing capacity, memory and energy.

Most of the existing IDSs cause a high computational cost

and memory requirements for data analysis and storage.

Reducing resource consumption by reducing the memory

used for storage and computation to more reasonable levels

is an important starting point in the researches conducted for

IDSs [10, 166]. Developing an IDS that can protect a high

detection rate whereas keeping the false alarm rate not high

is another challenge. Accordingly, determining the normal

behaviors for large-scale sensor applications is an extremely

difficult task [192].

The sensor nodes in IoT networks are sensitive to

environmental influences. Therefore, the data collected from

the sensor nodes for analysis is often insecure. In large-scale

IoT networks, a great number of sensor nodes are distributed

in harsh and unattended environments that are not easily

accessible. The data which is noisy, erroneous, inaccurate, or

unnecessary may occur as a result of these nodes running out

of battery power or fault. This leads to the insecurity of

analyzes performed with low-quality data. Also, a sensor

network deployed for long periods in unattended

environments is susceptible to dynamic network topology.

IoT devices may attach or leave the network from anywhere.

A network topology becomes dynamic with the ability to add

and remove devices regardless of time or location. It is

difficult to adapt to such sudden network topology changes

for IDSs. The sensor nodes with different sensing and

processing capabilities may move between different

locations. In fact, each sensor node may contain a different

number and type of sensors. This dynamism and

heterogeneity increase the complexity in designing and

applying analysis techniques [193].

Similar to SDN, the DPI method may also be applied to

IDSs in IoT networks, either alone [194-196] or as a

component of a hybrid system. Enabling anomaly detection

technique on every resource-constrained IoT device results

in high energy consumption, so it is necessary to balance

between accuracy detection and energy consumption. The

ability of responding to unknown attacks besides increasing

the accuracy in detecting known attacks is one of the

important goals of hybrid NIDS. For this reason, many

hybrid studies use anomaly detection technique to detect the

unknown attack signatures whereas the DPI-based technique

is used for known attack types [169, 170, 197, 198].

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 12(1): xxx-xxx

M. Çelebi, A. Özbilen, U. Yavanoğlu

19

Figure 7. Implementation challenges for DPI systems

In addition, the study numbered [13] which proposes a

hybrid model of the ML approach and DPI technique

presents a security monitoring framework in which IoT and

SDN architectures are combined with each other.

5 Challenges and open issues in implementing DPI

systems

Designing efficient DPI mechanisms can be

accomplished by individually evaluating and optimizing all

processes from acquisition to inspection of network traffic.

A review on DPI implementation challenges is presented in

this section [1, 10, 11, 16]. Figure 7 summarizes the factors

affecting system performance in the entire DPI process. In

addition to the application difficulties of the DPI technique,

the research issues of the field are discussed in this section.

5.1 Challenges obtaining network traffic

Performing data analysis on modern communication

systems and networks includes challenges such as ensuring

accuracy and efficient analysis of big data in real-time.

Especially in the cellular networks, traffic pattern exhibits

complex behavior due to the varied factors i.e device

mobility and network heterogeneity. The aforementioned

difficulties are related to main difficulties such as the

volume, speed, accuracy and diversity of data encountered in

the process of obtaining valuable information from the

structure called big data [1, 115]. The collection and

evaluation of this heterogeneous network traffic resulting

from increasing network complexity require efficient

mechanisms created by designing scalable and distributed

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

20

applications that perform the real-time analysis of large

amounts of data. Some platforms developed for processing

big data are presented in the studies numbered [199], [200]

and [201]. On the other hand, it is unclear whether NTMA

applications fully benefit from big data solutions [115].

5.2 Challenges with signature patterns

The increasing number of new systems, services and

applications containing malware result in the growth of

signature sets that need to be examined by DPI. Although the

large signature sets are important for traffic identification,

this degrades the overall performance of DPI systems [11].

Also, DPI applications have more complicated signature

datasets compared to the others. For instance, the rules of

Snort which are the implementation of DPI are more

complex than a XML filter using RE for pattern detection

[202]. Accordingly, reducing the computational complexity

and memory requirement for DPI applications developed by

using complex and databases with many signatures rank

among the important research topic. On the other hand,

signature-based systems cannot be used for the detection of

unknown attacks or zero-day attacks. Therefore, it is

necessary to create hybrid systems that can respond to

unknown attacks while aiming to increase accuracy in

detecting known attacks. In addition, these hybrid systems

allow the updating of databases used for signature-based

detection by detecting new signatures.

5.3 Hardware and OS related challenges

In the process of obtaining network packets, there are

many factors that limit performance associated with an

operating system such as problems with the use of main

memory, spinlocks, context switches, inefficient memory

accesses or serialization problem in accessing network traffic

[16]. In section 2, the problems encountered in receiving

network packets from NIC and processing are detailed, and

solutions developed for these problems are presented. In

addition, the hardware factors such as processor, memory,

hard disk and their communication over the system bus also

affect the processing performance. Most of the devices are

not physically linked to each other. In this case, main

memory becomes the common interface between devices for

data communication. The latency in situations that occurs

when DMA structure cannot be used, and data must be

transmitted from the main memory causes bottlenecks. The

time of the NIC is not performing DMA to GPU memory is

counted as an example of this situation. If data has to be

transmitted from the main memory, a bottleneck may be

occurred even though the bus is fast enough [11, 203].

Moreover, the bottlenecks may be occurred in the transfer

process of packets due to the limited PCIe bandwidth for the

hardware-based solutions. This bottleneck can be reduced by

the use of a pre-filtering mechanism that prevents all packets

from being forwarded to the hardware for processing.

5.4 Challenges arising from the architecture of the

network structure

Contemporary architectures such as IoT or SDN have

many difficulties in ensuring security. The resource and

energy constraints of the devices in IoT networks make it

difficult to implement complex IDSs on these devices, and

the host-based security solutions are insufficient to secure

these devices. The poor design of devices causes security

vulnerabilities leaving them vulnerable to any cyber attack.

Considering the span of IoT devices and their interaction

with each other, such malicious behavior may have negative

effects on the security of the entire network [10, 166, 191].

The security threats originating from SDN architecture may

cause insecurity of network structure created by the

architecture. The new interfaces and protocols may lead to

the occurrence of new attack interfaces and exploitable

targets. Accordingly, the network traffic on the

communication channels can be accessed by the attackers,

and this traffic data can be used to endanger the assets in the

network when channels and interfaces used for information

exchange are not secure enough [177-179]. Therefore, it is

extremely important to develop security strategies on SDN

and IoT architectures which security threats affect a wide

area. Designing deployment strategies of the DPI engine

which is costly in terms of the license fees and power

consumption is another challenge arising from the SDN

architecture in the development of security strategies [172].

On the other hand, the implementation of DPI engines as

virtualized network functionality on SDN architecture may

lead information leakage during the implementation of

security functions such as IDS, IPS or firewalls [129].

5.5 Challenges during implementation of DPI techniques

Nowadays, almost all network traffic is encrypted due to

security and privacy concerns. Therefore, it is important to

evaluate the DPI technique over encrypted traffic. In this

direction, the difficulties encountered in the application of

DPI techniques are examined in this section. The application

of DPI techniques in analyzing encrypted network traffic

requires cryptographic computations. This requirement

causes additional overhead for DPI systems. In addition, the

intensive computation required in process of matching

complex patterns on plaintext data increases this overhead

[11]. Additively, the requirement of reducing memory space

required for algorithms that are applied in the pattern

matching process is an important research topic about DPI

applications that use hardware such as GPUs that accelerate

the processing of network packets, especially with parallel

computing capabilities. Accordingly, it is a great challenge

to develop well-performed systems for DPI applications with

high computational complexity and memory space

requirement [98]. As summarized in Figure 5, the methods

that apply DPI by decoding encrypted traffic and perform an

inspection on fully encrypted traffic are discussed together

for an accurate comparison. In this direction, the inspection

techniques are evaluated in terms of security, performance

and functionality.

5.5.1 Security

The successful side-channel attacks on the Intel SGX

used in the TH approach and attacks on the SE technique

such as inference attack, leakage-abuse attack,

reconstruction attacks and passive attacks require further

research on the security of these techniques. AC technique

provides more flexibility in protecting the confidentiality of

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

21

data compared to the MITM technique. However, setting

access policies and monitoring network traffic for both

MITH and AC techniques are the significant security

challenge in a large network with heterogeneous network

devices. Moreover, the main concern of techniques that

perform inspection by decrypting network traffic on MBs in

insecure cloud environments is the risk of information

leakage [130, 131]. The main concern of the ML technique

which does not decrypt the network traffic is whether it fully

meets security requirements [127]. The fact that almost all of

today's network traffic is encrypted causes attackers to use

encrypted channels to hide themselves [165]. The

inspections of headers and metadata only are insufficient to

detect whether a packet contains malware.

5.5.2 Performance

The most important factor limiting performance for the

SE technique is the additional cryptographic calculations at

the setup phase. The research focus of schemas

implementing this technique is to increase efficiency by

reducing computations. In the TH technique, one of the most

important factor limiting the performance is the secure

enclave which is limited in terms of memory, storage space

and computational capability [131]. Therefore, future

researches in this area must focus on balancing storage and

performance. Also, all network traffic that routes to the

secure enclave causes inspection on all packets. An efficient

pre-filtering mechanism enables a more efficient mechanism

without unnecessary investigations on the resource-

constrained region.

For ML-based models that need to be retrained frequently

due to security breaches or network behavior changes, the

high complexity in the training phase consumes lots of

resources and time, limiting performance [1]. Accordingly,

the optimization of ML models from the point of the time

complexity and the resource consumption is required.

5.5.3 Functionality

In MITH, AC, TH, and some SE schemas [133, 139,

144], performing inspections on the decrypted data means

full control over communication between two endpoints.

This provides full functionality for NTMA applications. For

ML-based schemas in which inspections are performed on

the encrypted traffic, the main challenge is to create ML

models that enable the successful implementation of NTMA

applications without examining the packet payload. Also,

ML technique does not require any changes on the existing

setup compared to AC technique that changes TLS protocol,

or MITH, SE, and TH techniques that require changes in the

client and the server settings. Accordingly, ML technique

offers the most advantageous solution in terms of application

settings [131].

6 Conclusion

In this paper, a comprehensive review of DPI

implementation challenges is made for the scenarios that

generate state-of-the-art network traffic. A detailed analysis

is presented as regards the determination and the

improvement of the parameters that limit the performance in

all processes from the collection of the network traffic to the

analysis with DPI. The structures of the frameworks

containing DPI techniques in the current literature are

examined. In addition, this paper points the other techniques

that complement the DPI technique instead of focusing only

on this technique in determining the procedures to be applied

in future mechanisms. The discussion of the application

based on DPI technique in the network security field and the

analysis of this technique over encrypted traffic fulfil an

important deficiency in the literature toward the increasing

concerns about security and privacy. For this reason, the

security issues of the current architectures such as IoT and

SDN, whose main focus is security concerns, are discussed,

and DPI implementation difficulties on these architectures

are evaluated. In addition, a classification of the proposed

methods is presented to perform an inspection on encrypted

traffic, and the advantages and disadvantages of the

techniques that directly use or do not use the DPI approach

or limit the usability of this approach are discussed. In

conclusion, the aim of this paper is to evaluate integration of

DPI technique into mechanisms aiming to analyze network

traffic efficiently by determining the requirements of state-

of-the-art network traffic.

Conflict of interest

The author declares that there is no conflict of interest.

Similarity rate (iThenticate): %14

References

[1] M. Abbasi, A. Shahraki, A. Taherkordi, Deep learning

for network traffic monitoring and analysis (ntma): A

survey, Computer Communications 170 (10), 19–41,

2021. https://doi.org/10.1016/j.comcom.2021.01.021.

[2] G. A. Pimenta Rodrigues, R. de Oliveira Albuquerque,

F. E. Gomes de Deus, G. A. De Oliveira J´unior, L. J.

Garc´ıa Villalba, T.-H. Kim, et al., Cybersecurity and

network forensics: Analysis of malicious traffic

towards a honeynet with deep packet inspection,

Applied Sciences 7 (10), 1082, 2017.

https://doi.org/10.3390/app7101082.

[3] C. Parsons, Deep Packet Inspection in Perspective:

Tracing its lineage and surveillance potentials,

Citeseer, 2011.

[4] C. Parsons, The politics of deep packet inspection:

What drives surveillance by internet service providers?,

Ph.D. thesis, 2013.

[5] C. Xu, S. Chen, J. Su, S.-M. Yiu, L. C. Hui, A survey

on regular expression matching for deep packet

inspection: Applications, algorithms, and hardware

platforms, IEEE Communications Surveys & Tutorials

18 (4), 2991–3029, 2016.

https://doi.org/10.1109/COMST.2016.2566669.

[6] R. Bendrath, M. Mueller, The end of the net as we know

it? deep packet inspection and internet governance,

New Media & Society 13 (7), 1142–1160, 2011.

https://doi.org/10.1177/1461444811398031.

[7] P. Renals, G. A. Jacoby, Blocking skype through deep

packet inspection, in: 2009 42nd Hawaii International

Conference on System Sciences, IEEE, pp. 1–5, 2009.

https://doi.org/10.3390/app7101082
https://doi.org/10.1109/COMST.2016.2566669
https://doi.org/10.1177/1461444811398031

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

22

[8] R. M. Topolski, F. Press, P. Knowledge, Nebuad and

partner isps: Wiretapping, forgery and browser

hijacking, Washington DC: FreePress.

[9] M. R. Shahid, G. Blanc, Z. Zhang, H. Debar, Iot devices

recognition through network traffic analysis, in: 2018

IEEE international conference on big data (big data),

IEEE, pp. 5187–5192, 2018.

[10] H. Tahaei, F. Afifi, A. Asemi, F. Zaki, N. B. Anuar,

The rise of traffic classification in iot networks: A

survey, Journal of Network and Computer Applications

154, 102538, 2020.

https://doi.org/10.1016/j.jnca.2020.102538.

[11] R. Antonello, S. Fernandes, C. Kamienski, D. Sadok, J.

Kelner, I. Godor, G. Szabo, T. Westholm, Deep packet

inspection tools and techniques in commodity

platforms: Challenges and trends, Journal of Network

and Computer Applications 35 (6), 1863–1878, 2012.

https://doi.org/10.1016/j.jnca.2012.07.010.

[12] M. Finsterbusch, C. Richter, E. Rocha, J.-A. Muller, K.

Hanssgen, A survey of payload-based traffic

classification approaches, IEEE Communications

Surveys & Tutorials 16 (2), 1135–1156, 2013.

https://doi.org/10.1109/SURV.2013.100613.00161.

[13] G. D. L. T. Parra, P. Rad, K.-K. R. Choo,

Implementation of deep packet inspection in smart

grids and industrial internet of things: Challenges and

opportunities, Journal of Network and Computer

Applications 135, 32–46, 2019.

https://doi.org/10.1016/j.jnca.2019.02.022.

[14] W. Wu, M. Crawford, M. Bowden, The performance

analysis of linux networking–packet receiving,

Computer Communications 30 (5), 1044–1057, 2007.

https://doi.org/10.1016/j.comcom.2006.11.001.

[15] R. Rosen, Linux kernel networking: Implementation

and theory, Apress, 2014.

[16] J. L. Garc´ıa-Dorado, F. Mata, J. Ramos, P. M. S. del

R´ıo, V. Moreno, J. Aracil, High-performance network

traffic processing systems using commodity hardware,

in: Data traffic monitoring and analysis, Springer, pp.

3–27, 2013. http://dx.doi.org/10.1007/978-3-642-

36784-7_1.

[17] D. Scholz, A look at intels dataplane development kit,

Network 115. http://dx.doi.org/10.2313/NET-2014-08-

1_15.

[18] G. Liao, X. Znu, L. Bnuyan, A new server i/o

architecture for high speed networks, in: 2011 IEEE

17th International Symposium on High Performance

Computer Architecture, IEEE, pp. 255–265, 2011.

[19] S. Han, K. Jang, K. Park, S. Moon, Packetshader: a

gpu-accelerated software router, ACM SIGCOMM

Computer Communication Review 40 (4), 195–206,

2010. https://doi.org/10.1145/1851275.1851207.

[20] W. Wu, P. DeMar, M. Crawford, Why can some

advanced ethernet nics cause packet reordering?, IEEE

Communications Letters 15 (2), 253–255, 2010.

https://doi.org/10.1109/LCOMM.2011.122010.10 022.

[21] C. Benvenuti, Understanding linux network internals,

o’relly media, Inc., Sebastopol, CA.

[22] M. Dobrescu, K. Argyraki, S. Ratnasamy, Toward

predictable performance in software packet-processing

platforms, in: 9th {USENIX} Symposium on

Networked Systems Design and Implementation

({NSDI} 12), pp. 141–154., 2012.

[23] D. Barach, L. Linguaglossa, D. Marion, P. Pfister, S.

Pontarelli, D. Rossi, High-speed software data plane

via vectorized packet processing, IEEE

Communications Magazine 56 (12), 97–103, 2018.

https://doi.org/10.1109/MCOM.2018.1800069.

[24] E. Kohler, R. Morris, B. Chen, J. Jannotti, M. F.

Kaashoek, The click modular router, ACM

Transactions on Computer Systems (TOCS) 18 (3),

263–297, 2000.

https://doi.org/10.1145/354871.354874.

[25] L. Rizzo, netmap: a novel framework for fast packet i/o,

in: 21st USENIX Security Symposium (USENIX

Security 12), pp. 101–112, 2012.

https://doi.org/10.1145/354871.354874.

[26] INTEL DPDK, https://www.dpdk.org/, Accessed 3

October 2022.

[27] T. Barbette, C. Soldani, L. Mathy, Fast userspace

packet processing, in: 2015 ACM/IEEE Symposium on

Architectures for Networking and Communications

Systems (ANCS), IEEE, pp. 5–16, 2015.

[28] PFRING, http://www.ntop.org/products/packet-

capture/pf_ring/, Accessed 3 October 2022.

[29] W. Sun, R. Ricci, Fast and flexible: Parallel packet

processing with gpus and click, in: Architectures for

Networking and Communications Systems, IEEE, pp.

25–35, 2013.

[30] G. Vasiliadis, L. Koromilas, M. Polychronakis, S.

Ioannidis, {GASPP}: A gpu-accelerated stateful packet

processing framework, in: 2014 {USENIX} Annual

Technical Conference ({USENIX}{ATC} 14), pp.

321–332, 2014.

[31] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, K. Park,

Apunet: Revitalizing {GPU} as packet processing

accelerator, in: 14th {USENIX} Symposium on

Networked Systems Design and Implementation

({NSDI} 17), pp. 83–96, 2017.

[32] B. Li, K. Tan, L. Luo, Y. Peng, R. Luo, N. Xu, Y.

Xiong, P. Cheng, E. Chen, Clicknp: Highly flexible and

high performance network processing with

reconfigurable hardware, in: Proceedings of the 2016

ACM SIGCOMM Conference, pp. 1–14, 2016.

[33] Intel DPDK Performance on the SAU5081I Server,

https://www.accton.com/Technology-Brief/inteldpdk-

performance-on-the-sau5081i-server/, Accessed 3

October 2022.

[34] L. Rizzo, L. Deri, A. Cardigliano, 10 gbit/s line rate

packet processing using commodity hardware: Survey

and new proposals, 2012.

[35] Google Transparency Report,

https://transparencyreport.google.com/https/overview,

Accessed 3 October 2022.

[36] F. Yu, R. H. Katz, T. V. Lakshman, Gigabit rate packet

pattern-matching using tcam, in: Proceedings of the

12th IEEE International Conference on Network

https://doi.org/10.1016/j.jnca.2020.102538
https://doi.org/10.1016/j.jnca.2012.07.010
https://doi.org/10.1109/SURV.2013.100613.00161
https://doi.org/10.1016/j.jnca.2019.02.022
https://doi.org/10.1016/j.comcom.2006.11.001
http://dx.doi.org/10.1007/978-3-642-36784-7_1
http://dx.doi.org/10.1007/978-3-642-36784-7_1
http://dx.doi.org/10.2313/NET-2014-08-1_15
http://dx.doi.org/10.2313/NET-2014-08-1_15
https://doi.org/10.1145/1851275.1851207
https://doi.org/10.1109/LCOMM.2011.122010.10%20022
https://doi.org/10.1109/MCOM.2018.1800069
https://doi.org/10.1145/354871.354874
https://doi.org/10.1145/354871.354874
https://www.accton.com/Technology-Brief/

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

23

Protocols, 2004. ICNP 2004., IEEE, pp. 174–183,

2004.

[37] J.-S. Sung, S.-M. Kang, Y. Lee, T.-G. Kwon, B.-T.

Kim, A multi-gigabit rate deep packet inspection

algorithm using tcam, in: GLOBECOM’05. IEEE

Global Telecommunications Conference, Vol. 1, IEEE,

2005.

[38] T. Ho, S.-J. Cho, S.-R. Oh, Parallel multiple pattern

matching schemes based on cuckoo filter for deep

packet inspection on graphics processing units, IET

Information Security 12 (4), 381–388, 2018.

https://doi.org/10.1049/iet-ifs.2017.0421.

[39] J. Han, S. Kim, D. Cho, B. Choi, J. Ha, D. Han, A

secure middlebox framework for enabling visibility

over multiple encryption protocols, IEEE/ACM

Transactions on Networking 28 (6), 2727–2740, 2020.

https://doi.org/10.1109/TNET.2020.3016785.

[40] H. Duan, X. Yuan, C. Wang, Lightbox: Sgx-assisted

secure network functions at near-native speed. corr

abs/1706.06261, arXiv preprint arXiv:1706.06261,

2017.

[41] B. Fan, D. G. Andersen, M. Kaminsky, M. D.

Mitzenmacher, Cuckoo filter: Practically better than

bloom, in: Proceedings of the 10th ACM International

on Conference on emerging Networking Experiments

and Technologies, pp. 75–88, 2014.

[42] L. Deri, M. Martinelli, T. Bujlow, A. Cardigliano, ndpi:

Open-source high-speed deep packet inspection, in:

2014 International Wireless Communications and

Mobile Computing Conference (IWCMC), IEEE, pp.

617–622, 2014.

[43] F. Risso, M. Baldi, O. Morandi, A. Baldini, P. Monclus,

Lightweight, payload-based traffic classification: An

experimental evaluation, in: 2008 IEEE International

Conference on Communications, IEEE, pp. 5869–

5875, 2008.

[44] Protocol and application classification with metadata

extraction (PACE) ,

https://www.ipoque.com/products/dpi-engine-rsrpace-

2, Accessed 3 October 2022.

[45] T. Bujlow, V. Carela-Espanol, Comparison of deep

packet inspection (dpi) tools for traffic classification.

[46] S. Alcock, R. Nelson, Measuring the accuracy of open-

source payload-based traffic classifiers using popular

internet applications, in: 38th Annual IEEE Conference

on Local Computer Networks-Workshops, IEEE, pp.

956–963, 2013.

[47] T. Bujlow, V. Carela-Espa˜nol, P. Barlet-Ros,

Independent comparison of popular dpi tools for traffic

classification, Computer Networks 76, 75–89, 2015.

https://doi.org/10.1016/j.comnet.2014.11.001.

[48] G. B. Satrya, F. E. Nugroho, T. Brotoharsono,

Improving network security-a comparison between

ndpi and l7-filter, International Journal on Information

and Communication Technology (IJoICT) 2 (2), 11–11,

2016. https://doi.org/10.21108/IJOICT.2016.22.77.

[49] R. Muth, U. Manber, Approximate multiple string

search, in: Annual Symposium on Combinatorial

Pattern Matching, Springer, pp. 75–86, 1996.

[50] R. M. Karp, M. O. Rabin, Efficient randomized pattern-

matching algorithms, IBM journal of research and

development 31 (2), 249–260, 1987.

https://doi.org/10.1147/rd.312.0249.

[51] V. Gupta, M. Singh, V. K. Bhalla, Pattern matching

algorithms for intrusion detection and prevention

system: A comparative analysis, in: 2014 International

Conference on Advances in Computing,

Communications and Informatics (ICACCI), IEEE, pp.

50–54, 2014.

[52] N. Shoaib, J. Shamsi, T. Mustafa, A. Zaman, J. ul

Hasan, M. Gohar, Gdpi: Signature based deep packet

inspection using gpus, Int. J. Adv. Comput. Sci. Appl 8

(11), 210–216, 2017.

https://doi.org/10.14569/IJACSA.2017.081128.

[53] M. Ramesh, H. Jeon, Parallelizing deep packet

inspection on gpu, in: 2018 IEEE Fourth International

Conference on Big Data Computing Service and

Applications (BigDataService), IEEE, pp. 248–253,

2018.

[54] J. Sharma, M. Singh, Cuda based rabin-karp pattern

matching for deep packet inspection on a multicore

gpu, International Journal of Computer Network and

Information Security 7 (10), 70–77, 2015.

https://doi.org/10.5815/ijcnis.2015.10.08.

[55] B. H. Bloom, Space/time trade-offs in hash coding with

allowable errors, Communications of the ACM 13 (7),

422–426, 1970.

https://doi.org/10.1145/362686.362692.

[56] L. Fan, P. Cao, J. Almeida, A. Z. Broder, Summary

cache: a scalable wide-area web cache sharing protocol,

IEEE/ACM transactions on networking 8 (3), 281–293,

2000. https://doi.org/10.1109/90.851975.

[57] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,

G. Varghese, An improved construction for counting

bloom filters, in: European Symposium on Algorithms,

Springer, pp. 684–695, 2006.

[58] F. Putze, P. Sanders, J. Singler, Cache-, hash-and

space-efficient bloom filters, in: International

Workshop on Experimental and Efficient Algorithms,

Springer, pp. 108–121, 2007.

[59] D. E. Knuth, The art of computer programming:

Sorting and searching, Vol. 3, Addison-Wesley

Publishing Company.

[60] M. Al-Hisnawi, M. Ahmadi, Qcf for deep packet

inspection, IET Networks 7 (5), 346–352, 2018.

https://doi.org/10.1049/iet-net.2017.0037.

[61] N. S. Artan, H. J. Chao, Multi-packet signature

detection using prefix bloom filters, in:

GLOBECOM’05. IEEE Global Telecommunications

Conference, 2005., Vol. 3, IEEE, 2005.

[62] T. Kocak, I. Kaya, Low-power bloom filter architecture

for deep packet inspection, IEEE Communications

Letters 10 (3), 210–212, 2006.

https://doi.org/10.1109/LCOMM.2006.1603387.

[63] Y. Chen, A. Kumar, J. J. Xu, A new design of bloom

filter for packet inspection speedup, in: IEEE

GLOBECOM 2007-IEEE Global Telecommunications

Conference, IEEE, pp. 1–5, 2007.

https://doi.org/10.1049/iet-ifs.2017.0421
https://doi.org/10.1109/TNET.2020.3016785
https://doi.org/10.1016/j.comnet.2014.11.001
https://doi.org/10.21108/IJOICT.2016.22.77
https://doi.org/10.1147/rd.312.0249
https://doi.org/10.14569/IJACSA.2017.081128
https://doi.org/10.5815/ijcnis.2015.10.08
https://doi.org/10.1145/362686.362692
https://doi.org/10.1109/90.851975
https://doi.org/10.1049/iet-net.2017.0037
https://doi.org/10.1109/LCOMM.2006.1603387

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

24

[64] M. Al-Hisnawi, M. Ahmadi, Deep packet inspection

using quotient filter, IEEE Communications Letters 20

(11), 2217–2220, 2016.

https://doi.org/10.1109/LCOMM.2016.2601898.

[65] M. Al-Hisnawi, M. Ahmadi, Deep packet inspection

using cuckoo filter, in: 2017 Annual Conference on

New Trends in Information & Communications

Technology Applications (NTICT), IEEE, pp. 197–

202, 2017.

[66] R. S. Boyer, J. S. Moore, A fast string searching

algorithm, Communications of the ACM 20 (10), 762–

772, 1977. https://doi.org/10.1145/359842.359859.

[67] S. Wu, U. Manber, et al., A fast algorithm for multi-

pattern searching, University of Arizona. Department

of Computer Science, 1994.

[68] Y. Wang, H. Kobayashi, An improved technology for

content matching intrusion detection system, in: 2006

International Conference on Software in

Telecommunications and Computer Networks, IEEE,

pp. 238–241, 2006.

[69] A. A. Hasan, N. A. A. Rashid, Hash-boyer-moore-

horspool string matching algorithm for intrusion

detection system, in: International Conference on

Computer Networks and Communication Systems,

IPCSIT, 35, pp. 12–16, 2012.

[70] S. Sharma, M. Dixit, Single digit hash boyer moore

horspool pattern matching algorithm for intrusion

detection system, International Journal of Future

Generation Communication and Networking 9 (9),

169–180, 2016.

https://doi.org/10.14257/ijfgcn.2016.9.9.15.

[71] R. Padmashani, S. Sathyadevan, D. Dath, Bsnort ips

better snort intrusion detection/prevention system, in:

2012 12th International Conference on Intelligent

Systems Design and Applications (ISDA), IEEE, pp.

46–51, 2012.

[72] S. Gupta, Efficient malicious domain detection using

word segmentation and bm pattern matching, in: 2016

International Conference on Recent Advances and

Innovations in Engineering (ICRAIE), IEEE, pp. 1–6,

2016.

[73] T. F. A. Rahman, A. G. Buja, K. Abd, F. M. Ali, Sql

injection attack scanner using boyer-moore string

matching algorithm., J. Comput. 12 (2), 183–189, 2017.

https://doi.org/10.17706/jcp.12.2.183-189.

[74] Y. Otoum, A. Nayak, As-ids: Anomaly and signature

based ids for the internet of things, Journal of Network

and Systems Management 29 (3), 1–26, 2021.

https://doi.org/0.1007/s10922-021-09589-6.

[75] Q. Zheng, An improved multiple patterns matching

algorithm for intrusion detection, in: 2010 IEEE

International Conference on Intelligent Computing and

Intelligent Systems, Vol. 2, IEEE, pp. 124–127, 2010.

[76] C. Ke-Qin, D. Lin, W. Hui, An improved multi-pattern

matching algorithms in intrusion detection, in: 2013

Fifth International Conference on Measuring

Technology and Mechatronics Automation, IEEE, pp.

203–205, 2013.

[77] M. Aldwairi, K. Al-Khamaiseh, F. Alharbi, B. Shah,

Bloom filters optimized wu-manber for intrusion

detection, Journal of Digital Forensics, Security and

Law 11 (4), 5, 2016.

https://doi.org/10.15394/jdfsl.2016.1427.

[78] B. Zhang, X. Chen, X. Pan, Z. Wu, High concurrence

wu-manber multiple patterns matching algorithm, in:

Proceedings. The 2009 International Symposium on

Information Processing (ISIP 2009), Citeseer, p. 404,

2009.

[79] D. Luchaup, L. De Carli, S. Jha, E. Bach, Deep packet

inspection with dfa-trees and parametrized language

overapproximation, in: IEEE INFOCOM 2014-IEEE

Conference on Computer Communications, IEEE, pp.

531–539, 2014.

[80] M. ˇCeˇska, V. Havlena, L. Hol´ık, O. Leng´al, T.

Vojnar, Approximate reduction of finite automata for

high-speed network intrusion detection, International

Journal on Software Tools for Technology Transfer 22

(5), 523–539, 2020. https://doi.org/10.1007/978-3-319-

89963-3_9.

[81] M. Ceˇska, V. Havlena, L. Hol´ık, J. Korenek, O.

Leng´al, D. Matouˇsek, J. Matouˇsek, J. Semric, T.

Vojnar, Deep packet inspection in fpgas via

approximate nondeterministic automata, in: 2019 IEEE

27th Annual International Symposium on Field-

Programmable Custom Computing Machines (FCCM),

IEEE, pp. 109–117, 2019.

[82] M. Roesch, et al., Snort: Lightweight intrusion

detection for networks., in: Lisa, Vol. 99, 1999, pp.

229–238.

[83] R. Sommer, Bro: An open source network intrusion

detection system, Security, E-learning, E-Services, 17.

DFNArbeitstagung¨uber Kommunikationsnetze.

https://doi.org/10.1007/978-3-319-89963-3_9.

[84] Cisco IOS Intrusion Prevention System (IPS) ,

https://www.cisco.com/c/en/us/products/security/iosin

trusion-prevention-system-ips/index.html, Accessed 3

October 2022.

[85] X. Yu, W.-c. Feng, D. Yao, M. Becchi, O3 fa: A

scalable finite automata–based pattern-matching

engine for out–of–order deep packet inspection, in:

2016 ACM/IEEE Symposium on Architectures for

Networking and Communications Systems (ANCS),

IEEE, pp. 1–11, 2016.

[86] C. Yin, H. Wang, X. Yin, R. Sun, J. Wang, Improved

deep packet inspection in data stream detection, The

Journal of Supercomputing 75 (8), 4295–4308, 2019.

https://doi.org/10.1007/s11227-018-2685-y.

[87] R. Sun, L. Shi, C. Yin, J. Wang, An improved method

in deep packet inspection based on regular expression,

The Journal of Supercomputing 75 (6), 3317–3333,

2019. https://doi.org/10.1007/s11227-018-2517-0.

[88] S. Nagaraju, B. Shanmugham, K. Baskaran, High

throughput token driven fsm based regex pattern

matching for network intrusion detection system,

Materials Today: Proceedings.

https://doi.org/10.1016/j.matpr.2021.04.028.

https://doi.org/10.1109/LCOMM.2016.2601898
https://doi.org/10.1145/359842.359859
https://doi.org/10.14257/ijfgcn.2016.9.9.15
https://doi.org/10.17706/jcp.12.2.183-189
https://doi.org/0.1007/s10922-021-09589-6
https://doi.org/10.15394/jdfsl.2016.1427
https://doi.org/10.1007/978-3-319-89963-3_9
https://doi.org/10.1007/978-3-319-89963-3_9
https://doi.org/10.1007/978-3-319-89963-3_9
https://doi.org/10.1007/s11227-018-2685-y
https://doi.org/10.1007/s11227-018-2517-0
https://doi.org/10.1016/j.matpr.2021.04.028

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

25

[89] A. V. Aho, M. J. Corasick, Efficient string matching:

an aid to bibliographic search, Communications of the

ACM 18 (6), 333–340, 1975.

https://doi.org/10.1145/360825.360855.

[90] M. Norton, Optimizing pattern matching for intrusion

detection, Sourcefire, Inc., Columbia, MD.

[91] N. Tuck, T. Sherwood, B. Calder, G. Varghese,

Deterministic memory-efficient string matching

algorithms for intrusion detection, in: IEEE INFOCOM

2004, 4, IEEE, pp. 2628–2639, 2004.

[92] L. Tan, T. Sherwood, A high throughput string

matching architecture for intrusion detection and

prevention, in: 32nd International Symposium on

Computer Architecture (ISCA’05), IEEE, pp. 112–122,

2005.

[93] T.-H. Lee, N.-L. Huang, A pattern-matching scheme

with high throughput performance and low memory

requirement, IEEE/ACM Transactions on Networking

21 (4), 1104–1116, 2012.

https://doi.org/10.1109/TNET.2012.2224881.

[94] H. Kim, A scalable architecture for reducing power

consumption in pipelined deep packet inspection

system, Microelectronics Journal 46 (10), 950–955,

2015. https://doi.org/10.1016/j.mejo.2015.08.002.

[95] X. Zha, S. Sahni, Multipattern string matching on a

gpu, in: 2011 IEEE Symposium on Computers and

Communications (ISCC), IEEE, pp. 277–282, 2011.

[96] C.-H. Lin, C.-H. Liu, L.-S. Chien, S.-C. Chang,

Accelerating pattern matching using a novel parallel

algorithm on gpus, IEEE Transactions on Computers

62 (10), 1906–1916, 2012.

https://doi.org/10.1109/TC.2012.254.

[97] C.-L. Lee, Y.-S. Lin, Y.-C. Chen, A hybrid cpu/gpu

pattern-matching algorithm for deep packet inspection,

PloS one 10 (10), e0139301, 2015.

https://doi.org/10.1371/journal.pone.0139301.

[98] C.-L. Hsieh, L. Vespa, N. Weng, A high-throughput dpi

engine on gpu via algorithm/implementation co-

optimization, Journal of Parallel and Distributed

Computing 88, 46–56, 2016.

https://doi.org/10.1016/j.jpdc.2015.11.001.

[99] B. Choi, J. Chae, M. Jamshed, K. Park, D. Han, {DFC}:

Accelerating string pattern matching for network

applications, in: 13th {USENIX} Symposium on

Networked Systems Design and Implementation

({NSDI} 16), pp. 551–565, 2016.

[100] D. C. Sicker, P. Ohm, D. Grunwald, Legal issues

surrounding monitoring during network research, in:

Proceedings of the 7th ACM SIGCOMM conference

on Internet measurement, pp. 141–148, 2007.

[101] T. T. Nguyen, G. Armitage, A survey of techniques

for internet traffic classification using machine

learning, IEEE communications surveys & tutorials 10

(4), 56–76, 2008.

https://doi.org/10.1109/SURV.2008.080406.

[102] A. Finamore, M. Mellia, M. Meo, D. Rossi, Kiss:

Stochastic packet inspection classifier for udp traffic,

IEEE/ACM Transactions on Networking 18 (5), 1505–

1515, 2010.

https://doi.org/10.1109/TNET.2010.2044046.

[103] B. Anderson, D. McGrew, Machine learning for

encrypted malware traffic classification: accounting for

noisy labels and non-stationarity, in: Proceedings of the

23rd ACM SIGKDD International Conference on

knowledge discovery and data mining, pp. 1723–1732,

2017.

[104] B. Anderson, S. Paul, D. McGrew, Deciphering

malware’s use of tls (without decryption), Journal of

Computer Virology and Hacking Techniques 14 (3),

195–211, 2018. https://doi.org/10.1007/s11416-017-

0306-6.

[105] A. Yamada, Y. Miyake, K. Takemori, A. Studer, A.

Perrig, Intrusion detection for encrypted web accesses,

in: 21st International Conference on Advanced

Information Networking and Applications Workshops

(AINAW’07), 1, IEEE, pp. 569–576, 2007.

[106] J. Y. Chung, B. Park, Y. J. Won, J. Strassner, J. W.

Hong, Traffic classification based on flow similarity,

in: International Workshop on IP Operations and

Management, Springer, pp. 65–77, 2009.

[107] E. Rocha, P. Salvador, A. Nogueira, Detection of

illicit network activities based on multivariate gaussian

fitting of multi-scale traffic characteristics, in: 2011

IEEE International Conference on Communications

(ICC), IEEE, pp. 1–6, 2011.

[108] I. Goodfellow, Y. Bengio, A. Courville, Deep

learning, MIT press, 2016.

[109] Y. LeCun, Y. Bengio, G. Hinton, Deep learning,

nature 521 (7553), 436–444, 2015.

https://doi.org/10.1038/nature14539.

[110] M. A. Alsheikh, D. Niyato, S. Lin, H.-P. Tan, Z.

Han, Mobile big data analytics using deep learning and

apache spark, IEEE network 30 (3), 22–29, 2016.

https://doi.org/10.1109/MNET.2016.7474340.

[111] B. J. Radford, L. M. Apolonio, A. J. Trias, J. A.

Simpson, Network traffic anomaly detection using

recurrent neural networks, arXiv preprint

arXiv:1803.10769.

[112] D. Andreoletti, S. Troia, F. Musumeci, S. Giordano,

G. Maier, M. Tornatore, Network traffic prediction

based on diffusion convolutional recurrent neural

networks, in: IEEE INFOCOM 2019-IEEE Conference

on Computer Communications Workshops

(INFOCOM WKSHPS), IEEE, pp. 246–251, 2019.

[113] K. Ding, S. Ding, A. Morozov, T. Fabarisov, K.

Janschek, On-line error detection and mitigation for

time-series data of cyber-physical systems using deep

learning based methods, in: 2019 15th European

Dependable Computing Conference (EDCC), IEEE,

pp. 7–14, 2019.

[114] W. Zhong, F. Gu, A multi-level deep learning

system for malware detection, Expert Systems with

Applications 133, 151–162, 2019.

https://doi.org/10.1016/j.eswa.2019.04.064.

[115] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia,

P. Casas, A survey on big data for network traffic

monitoring and analysis, IEEE Transactions on

https://doi.org/10.1145/360825.360855
https://doi.org/10.1109/TNET.2012.2224881
https://doi.org/10.1016/j.mejo.2015.08.002
https://doi.org/10.1109/TC.2012.254
https://doi.org/10.1371/journal.pone.0139301
https://doi.org/10.1016/j.jpdc.2015.11.001
https://doi.org/10.1109/SURV.2008.080406
https://doi.org/10.1109/TNET.2010.2044046
https://doi.org/10.1007/s11416-017-0306-6
https://doi.org/10.1007/s11416-017-0306-6
https://doi.org/10.1038/nature14539
https://doi.org/10.1109/MNET.2016.7474340
https://doi.org/10.1016/j.eswa.2019.04.064

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

26

Network and Service Management 16 (3), 800–813,

2019. https://doi.org/10. 1109/TNSM.2019.2933358.

[116] M. Alicherry, M. Muthuprasanna, V. Kumar, High

speed pattern matching for network ids/ips, in:

Proceedings of the 2006 IEEE International Conference

on Network Protocols, IEEE, pp. 187–196, 2006.

[117] H. Kim, K.-I. Choi, A pipelined non-deterministic

finite automaton-based string matching scheme using

merged state transitions in an fpga, PloS one 11 (10),

e0163535, 2016.

https://doi.org/10.1371/journal.pone.0163535.

[118] I. Sourdis, D. N. Pnevmatikatos, S. Vassiliadis,

Scalable multigigabit pattern matching for packet

inspection, IEEE Transactions on Very Large Scale

Integration (VLSI) Systems 16 (2), 156–166, 2008.

https://doi.org/10.1109/ TVLSI.2007.912036.

[119] R.-T. Liu, N.-F. Huang, C.-H. Chen, C.-N. Kao, A

fast string-matching algorithm for network processor-

based intrusion detection system, ACM Transactions

on Embedded Computing Systems (TECS) 3 (3), 614–

633, 2004. https://doi.org/10.1145/1015047.1015055.

[120] D. F. Bacon, R. Rabbah, S. Shukla, Fpga

programming for the masses, Communications of the

ACM 56 (4), 56–63, 2013.

https://doi.org/10.1145/2436256.2436271.

[121] Y. Sun, H. Liu, V. C. Valgenti, M. S. Kim, Hybrid

regular expression matching for deep packet inspection

on multi-core architecture, in: 2010 Proceedings of

19th International Conference on Computer

Communications and Networks, IEEE, pp. 1–7, 2010.

[122] Y.-H. E. Yang, V. K. Prasanna, Robust and scalable

string pattern matching for deep packet inspection on

multicore processors, IEEE Transactions on Parallel

and Distributed Systems 24 (11), 2283–2292, 2012

https://doi.org/10.1109/TPDS.2012.217.

[123] C.-L. Lee, T.-H. Yang, A flexible pattern-matching

algorithm for network intrusion detection systems

using multi-core processors, Algorithms 10 (2), 58,

2017. https://doi.org/10.3390/a10020058.

[124] CUDA C PROGRAMMING GUIDE ,

https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_

C_Programming_Guide.pdf, Accessed 3 October 2022.

[125] R. Smith, N. Goyal, J. Ormont, K. Sankaralingam,

C. Estan, Evaluating gpus for network packet signature

matching, in: 2009 IEEE International Symposium on

Performance Analysis of Systems and Software, IEEE,

pp. 175–184, 2009.

[126] M. Ramesh, Network traffic anomaly-detection

framework using gpus, Ph.D. thesis, San Jose State

University, 2017.

[127] X. d. C. de Carnavalet, P. C. van Oorschot, A survey

and analysis of tls interception mechanisms and

motivations, arXivpreprint arXiv:2010.16388.

[128] K. Moriarty, A. Morton, Effects of pervasive

encryption on operators, draft-mm-wg-effect-encrypt-

25 (work in progress).

[129] K. Bhargavan, I. Boureanu, A. Delignat-Lavaud, P.-

A. Fouque, C. Onete, A formal treatment of

accountable proxying over tls, in: 2018 IEEE

Symposium on Security and Privacy (SP), IEEE, pp.

799–816, 2018.

[130] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, Z. Liu,

Embark: Securely outsourcing middleboxes to the

cloud, in: 13th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 16),

2016, pp. 255–273.

[131] G. S. Poh, D. M. Divakaran, H. W. Lim, J. Ning, A.

Desai, A survey of privacy-preserving techniques for

encrypted traffic inspection over network middleboxes,

arXiv preprint arXiv:2101.04338.

[132] L. S. Huang, A. Rice, E. Ellingsen, C. Jackson,

Analyzing forged ssl certificates in the wild, in: 2014

IEEE Symposium on Security and Privacy, IEEE, pp.

83–97, 2014.

[133] J. Ning, G. S. Poh, J.-C. Loh, J. Chia, E.-C. Chang,

Privdpi: Privacy-preserving encrypted traffic

inspection with reusable obfuscated rules, in:

Proceedings of the 2019 ACM SIGSAC Conference on

Computer and Communications Security, pp. 1657–

1670, 2019.

[134] X. de Carn´e de Carnavalet, M. Mannan, Killed by

proxy: analyzing client-end tls interception software

https://doi.org/10.3390/a10020058.

[135] Z. Durumeric, Z. Ma, D. Springall, R. Barnes, N.

Sullivan, E. Bursztein, M. Bailey, J. A. Halderman, V.

Paxson, The security impact of https interception., in:

NDSS, 2017.

[136] L. Waked, M. Mannan, A. Youssef, To intercept or

not to intercept: Analyzing tls interception in network

appliances, in: Proceedings of the 2018 on Asia

Conference on Computer and Communications

Security, pp. 399–412, 2018.

[137] MitMProxy, https://mitmproxy.org/, Accessed 3

October 2022.

[138] SSLSpit, https://www.roe.ch/, Accessed 3 October

2022.

[139] J. Sherry, C. Lan, R. A. Popa, S. Ratnasamy,

Blindbox: Deep packet inspection over encrypted

traffic, in: Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication, pp.

213–226, 2015.

[140] S. Canard, A. Diop, N. Kheir, M. Paindavoine, M.

Sabt, Blindids: Market-compliant and privacy-friendly

intrusion detection system over encrypted traffic, in:

Proceedings of the 2017 ACM on Asia Conference on

Computer and Communications Security, pp. 561–574,

2017.

[141] T. Fuhr, P. Paillier, Decryptable searchable

encryption, in: International Conference on Provable

Security, Springer, pp. 228–236, 2007.

[142] J. Fan, C. Guan, K. Ren, Y. Cui, C. Qiao, Spabox:

Safeguarding privacy during deep packet inspection at

a middlebox, IEEE/ACM Transactions on Networking

25 (6), 3753–3766, 2017.

https://doi.org/10.1109/TNET.2017.2753044.

[143] J. Ning, X. Huang, G. S. Poh, S. Xu, J.-C. Loh, J.

Weng, R. H. Deng, Pine: Enabling privacy-preserving

deep packet inspection on tls with rule-hiding and fast

https://doi.org/10.1371/journal.pone.0163535
https://doi.org/10.1145/1015047.1015055
https://doi.org/10.1145/2436256.2436271
https://doi.org/10.1109/TPDS.2012.217
https://doi.org/10.3390/a10020058
https://doi.org/10.3390/a10020058
https://doi.org/10.1109/TNET.2017.2753044

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

27

connection establishment, in: European Symposium on

Research in Computer Security, Springer, pp. 3–22,

2020.

[144] H. Ren, H. Li, D. Liu, G. Xu, N. Cheng, X. S. Shen,

Privacy-preserving efficient verifiable deep packet

inspection for cloud-assisted middlebox, IEEE

Transactions on Cloud Computing.

https://doi.org/10.1109/TCC.2020.2991167.

[145] H. J. Asghar, L. Melis, C. Soldani, E. De Cristofaro,

M. A. Kaafar, L. Mathy, Splitbox: Toward efficient

private network function virtualization, in: Proceedings

of the 2016 workshop on Hot topics in Middleboxes

and Network Function Virtualization, pp. 7–13, 2016.

[146] S. Lai, S. Patranabis, A. Sakzad, J. K. Liu, D.

Mukhopadhyay, R. Steinfeld, S.-F. Sun, D. Liu, C. Zuo,

Result pattern hiding searchable encryption for

conjunctive queries, in: Proceedings of the 2018 ACM

SIGSAC Conference on Computer and

Communications Security, pp. 745–762, 2018.

[147] D. Naylor, K. Schomp, M. Varvello, I. Leontiadis,

J. Blackburn, D. R. L´opez, K. Papagiannaki, P.

Rodriguez Rodriguez, P. Steenkiste, Multi-context tls

(mctls) enabling secure in-network functionality in tls,

ACM SIGCOMM Computer Communication Review

45 (4), 199–212, 2015.

https://doi.org/10.1145/2829988.2787482.

[148] D. Naylor, R. Li, C. Gkantsidis, T. Karagiannis, P.

Steenkiste, And then there were more: Secure

communication for more than two parties, in:

Proceedings of the 13th International Conference on

emerging Networking EXperiments and Technologies,

pp. 88–100, 2017.

[149] H. Lee, Z. Smith, J. Lim, G. Choi, S. Chun, T.

Chung, T. T. Kwon, matls: How to make tls middlebox-

aware?, in: NDSS, 2019.

[150] D. Goltzsche, S. R¨usch, M. Nieke, S. Vaucher, N.

Weichbrodt, V. Schiavoni, P.-L. Aublin, P. Cosa, C.

Fetzer, P. Felber, et al., Endbox: Scalable middlebox

functions using client-side trusted execution, in: 2018

48th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), IEEE, pp.

386–397, 2018.

[151] Perl Compatible Regular Expressions Library

(PCRE2), https://ftp.pcre.org/pub/pcre/, Accessed 3

October 2022.

[152] N. D. Matsakis, F. S. Klock, The rust language,

ACM SIGAda Ada Letters 34 (3), 103–104, 2014.

https://doi. org/10.1145/2692956.2663188.

[153] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach,

P. Bhatotia, P. Felber, C. Fetzer, Sgxbounds: Memory

safety for shielded execution, in: Proceedings of the

Twelfth European Conference on Computer Systems,

pp. 205–221, 2017.

[154] L. Szekeres, M. Payer, T. Wei, D. Song, Sok:

Eternal war in memory, in: 2013 IEEE Symposium on

Security and Privacy, IEEE, pp. 48–62, 2013.

[155] R. Poddar, C. Lan, R. A. Popa, S. Ratnasamy,

Safebricks: Shielding network functions in the cloud,

in: 15th {USENIX} Symposium on Networked

Systems Design and Implementation ({NSDI} 18), pp.

201–216, 2018.

[156] B. Trach, A. Krohmer, F. Gregor, S. Arnautov, P.

Bhatotia, C. Fetzer, Shieldbox: Secure middleboxes

using shielded execution, in: Proceedings of the

Symposium on SDN Research, pp. 1–14, 2018.

[157] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A.

Martin, C. Priebe, J. Lind, D. Muthukumaran, D.

O’keeffe, M. L. Stillwell, et al., {SCONE}: Secure

linux containers with intel {SGX}, in: 12th {USENIX}

Symposium on Operating Systems Design and

Implementation ({OSDI} 16), pp. 689–703, 2016.

[158] hyperscan, https://www.hyperscan.io/, Accessed 3

October 2022.

[159] J. M. Sherry, Middleboxes as a cloud service, Ph.D.

thesis, UC Berkeley, 2016.

[160] Y. Lindell, The security of intel sgx for key

protection and data privacy applications.

[161] D. Cash, P. Grubbs, J. Perry, T. Ristenpart,

Leakage-abuse attacks against searchable encryption,

in: Proceedings of the 22nd ACM SIGSAC conference

on computer and communications security, pp. 668–

679, 2015.

[162] G. Kellaris, G. Kollios, K. Nissim, A. O’neill,

Generic attacks on secure outsourced databases, in:

Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pp. 1329–

1340, 2016.

[163] M. S. Islam, M. Kuzu, M. Kantarcioglu, Access

pattern disclosure on searchable encryption:

ramification, attack and mitigation., in: Ndss, Vol. 20,

Citeseer, p. 12, 2012.

[164] J. Ning, J. Xu, K. Liang, F. Zhang, E.-C. Chang,

Passive attacks against searchable encryption, IEEE

Transactions on Information Forensics and Security 14

(3), 789–802, 2018.

https://doi.org/10.1109/TIFS.2018.2866321.

[165] Cisco Encrypted Traffic Analytics White Paper,

https://www.cisco.com/c/en/us/solutions/collateral/ent

erprise-networks/enterprise-network-security/nb-09-

encrytd-traf-anlytcs-wp-cte-en.html, Accessed 3

October 2022.

[166] S. Hajiheidari, K. Wakil, M. Badri, N. J.

Navimipour, Intrusion detection systems in the internet

of things: A comprehensive investigation, Computer

Networks 160, 165–191, 2019.

https://doi.org/10.1016/j.comnet.2019.05.014.

[167] C. Birkinshaw, E. Rouka, V. G. Vassilakis,

Implementing an intrusion detection and prevention

system using softwaredefined networking: Defending

against port-scanning and denial-of-service attacks,

Journal of Network and Computer Applications 136,

71–85, 2019.

https://doi.org/10.1016/j.jnca.2019.03.005.

[168] H.-J. Liao, C.-H. R. Lin, Y.-C. Lin, K.-Y. Tung,

Intrusion detection system: A comprehensive review,

Journal of Network and Computer Applications 36 (1),

16–24, 2013.

https://doi.org/10.1016/j.jnca.2012.09.004.

https://doi.org/10.1109/TCC.2020.2991167
https://doi.org/10.1145/2829988.2787482
https://doi.org/10.1109/TIFS.2018.2866321
https://doi.org/10.1016/j.comnet.2019.05.014
https://doi.org/10.1016/j.jnca.2019.03.005
https://doi.org/10.1016/j.jnca.2012.09.004

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

28

[169] S. Raza, L. Wallgren, T. Voigt, Svelte: Real-time

intrusion detection in the internet of things, Ad hoc

networks 11 (8), 2661–2674, 2013.

https://doi.org/10.1016/j.adhoc.2013.04.014.

[170] H. Sedjelmaci, S. M. Senouci, M. Al-Bahri, A

lightweight anomaly detection technique for low-

resource iot devices: A game-theoretic methodology,

in: 2016 IEEE international conference on

communications (ICC), IEEE, pp. 1–6, 2016.

[171] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A.

Tiwari, H. Yang, S. Zhou, Specification-based anomaly

detection: a new approach for detecting network

intrusions, in: Proceedings of the 9th ACM conference

on Computer and communications security, pp. 265–

274, 2002.

[172] S. Demirci, M. Demirci, S. Sagiroglu, Virtual

security functions and their placement in software

defined networks: A survey, Gazi University Journal of

Science 32 (3), 833–851, 2019.

https://doi.org/10.35378/gujs.422000.

[173] B. A. A. Nunes, M. Mendonca, X.-N. Nguyen, K.

Obraczka, T. Turletti, A survey of software-defined

networking: Past, present, and future of programmable

networks, IEEE Communications surveys & tutorials

16 (3), 1617–1634, 2014.

https://doi.org/10.1109/SURV.2014.012214.00180.

[174] B. Han, V. Gopalakrishnan, L. Ji, S. Lee, Network

function virtualization: Challenges and opportunities

for innovations, IEEE Communications Magazine 53

(2), 90–97, 2015.

https://doi.org/10.1109/MCOM.2015.7045396.

[175] G.Wang, T. E. Ng, The impact of virtualization on

network performance of amazon ec2 data center, in:

2010 Proceedings IEEE INFOCOM, IEEE, pp. 1–9,

2010.

[176] S. Scott-Hayward, S. Natarajan, S. Sezer, A survey

of security in software defined networks, IEEE

Communications Surveys & Tutorials 18 (1), 623–654,

2015. https://doi.org/10.1109/COMST.2015.2453114.

[177] J. C. C. Chica, J. C. Imbachi, J. F. B. Vega, Security

in sdn: A comprehensive survey, Journal of Network

and Computer Applications 159, 102595, 2020.

https://doi.org/10.1016/j.jnca.2020.102595.

[178] L. Schehlmann, S. Abt, H. Baier, Blessing or curse?

revisiting security aspects of software-defined

networking, in: 10th International Conference on

Network and Service Management (CNSM) and

Workshop, IEEE, pp. 382–387, 2014.

[179] M. Liyanage, M. Ylianttila, A. Gurtov, Securing the

control channel of software-defined mobile networks,

in: Proceeding of IEEE International Symposium on a

World of Wireless, Mobile and Multimedia Networks

2014, IEEE, pp. 1–6, 2014.

[180] Y. Jarraya, A. Shameli-Sendi, M. Pourzandi, M.

Cheriet, Multistage ocdo: Scalable security

provisioning optimization in sdn-based cloud, in: 2015

IEEE 8th International Conference on Cloud

Computing, IEEE, pp. 572–579, 2015.

[181] M. Sainz, I. Garitano, M. Iturbe, U. Zurutuza, Deep

packet inspection for intelligent intrusion detection in

softwaredefined industrial networks: A proof of

concept, Logic Journal of the IGPL 28 (4), 461–472,

2020.

[182] A. Bremler-Barr, Y. Harchol, D. Hay, Y. Koral,

Deep packet inspection as a service, in: Proceedings of

the 10th ACM International on Conference on

emerging Networking Experiments and Technologies,

pp. 271–282, 2014.

[183] Y. Li, R. Fu, An parallelized deep packet inspection

design in software defined network, in: Proceedings of

2nd International Conference on Information

Technology and Electronic Commerce, IEEE, pp. 6–

10, 2014.

[184] A. Abubakar, B. Pranggono, Machine learning

based intrusion detection system for software defined

networks, in: 2017 seventh international conference on

emerging security technologies (EST), IEEE, pp. 138–

143, 2017.

[185] C. Yu, J. Lan, J. Xie, Y. Hu, Qos-aware traffic

classification architecture using machine learning and

deep packet inspection in sdns, Procedia computer

science 131, 1209–1216, 2018.

https://doi.org/10.1016/j.procs.2018.04.331.

[186] M. Bouet, J. Leguay, V. Conan, Cost-based

placement of virtualized deep packet inspection

functions in sdn, in: MILCOM 2013-2013 IEEE

Military Communications Conference, IEEE, pp. 992–

997, 2013.

[187] M. Bouet, J. Leguay, T. Combe, V. Conan, Cost-

based placement of vdpi functions in nfv

infrastructures, International Journal of Network

Management 25 (6), 490–506, 2015.

https://doi.org/10.1002/nem.1920.

[188] J. Kim, J. Lee, J. Kim, J. Yun, M2m service

platforms: Survey, issues, and enabling technologies,

IEEE Communications Surveys & Tutorials 16 (1), 61–

76, 2013.

https://doi.org/10.1109/SURV.2013.100713.00203

[189] H. Yao, P. Gao, J. Wang, P. Zhang, C. Jiang, Z.

Han, Capsule network assisted iot traffic classification

mechanism for smart cities, IEEE Internet of Things

Journal 6 (5), 7515–7525, 2019.

https://doi.org/10.1109/JIOT.2019.2901348.

[190] E. Bertino, N. Islam, Botnets and internet of things

security, Computer 50 (2), 76–79, 2017.

https://doi.org/10.1109/MC.2017.62.

[191] M. Antonakakis, T. April, M. Bailey, M. Bernhard,

E. Bursztein, J. Cochran, Z. Durumeric, J. A.

Halderman, L. Invernizzi, M. Kallitsis, et al.,

Understanding the mirai botnet, in: 26th {USENIX}

security symposium ({USENIX} Security 17), pp.

1093–1110, 2017.

[192] Y. Zhang, N. Meratnia, P. Havinga, Outlier

detection techniques for wireless sensor networks: A

survey, IEEE communications surveys & tutorials 12

(2), 159–170, 2010.

https://doi.org/10.1109/SURV.2010.021510.00088.

https://doi.org/10.1016/j.adhoc.2013.04.014
https://doi.org/10.35378/gujs.422000
https://doi.org/10.1109/SURV.2014.012214.00180
https://doi.org/10.1109/MCOM.2015.7045396
https://doi.org/10.1109/COMST.2015.2453114
https://doi.org/10.1016/j.jnca.2020.102595
https://doi.org/10.1016/j.procs.2018.04.331
https://doi.org/10.1002/nem.1920
https://doi.org/10.1109/SURV.2013.100713.00203
https://doi.org/10.1109/JIOT.2019.2901348
https://doi.org/10.1109/MC.2017.62
https://doi.org/10.1109/SURV.2010.021510.00088

NÖHÜ Müh. Bilim. Derg. / NOHU J. Eng. Sci. 2023; 12(1), 001-029

M. Çelebi, A. Özbilen, U. Yavanoğlu

29

[193] J. Wang, Q. Kuang, S. Duan, A new online anomaly

learning and detection for large-scale service of internet

of thing, Personal and Ubiquitous Computing 19 (7),

1021–1031, 2015.

[194] H. Sun, X. Wang, R. Buyya, J. Su, Cloudeyes:

Cloud-based malware detection with reversible sketch

for resourceconstrained internet of things (iot) devices,

Software: Practice and Experience 47 (3), 421–441,

2017. https://doi.org/10.1002/spe.2420.

[195] D. Oh, D. Kim, W. W. Ro, A malicious pattern

detection engine for embedded security systems in the

internet of things, Sensors 14 (12), 24188–24211,

2014. https://doi.org/10.3390/s141224188.

[196] S. O. Amin, M. S. Siddiqui, C. S. Hong, J. Choe, A

novel coding scheme to implement signature based ids

in ip based sensor networks, in: 2009 IFIP/IEEE

International Symposium on Integrated Network

Management-Workshops, IEEE, pp. 269–274, 2009.

[197] H. Sedjelmaci, S. M. Senouci, T. Taleb, An accurate

security game for low-resource iot devices, IEEE

Transactions on Vehicular Technology 66 (10), 9381–

9393, 2017.

https://doi.org/10.1109/TVT.2017.2701551.

[198] D. Midi, A. Rullo, A. Mudgerikar, E. Bertino,

Kalis—a system for knowledge-driven adaptable

intrusion detection for the internet of things, in: 2017

IEEE 37th International Conference on Distributed

Computing Systems (ICDCS), IEEE, pp. 656–666,

2017.

[199] Y. Lee, Y. Lee, Toward scalable internet traffic

measurement and analysis with hadoop, ACM

SIGCOMM Computer Communication Review 43 (1),

5–13, 2012. https://doi.org/10.1145/2427036.2427038.

[200] M. Wullink, G. C. Moura, M. M¨uller, C.

Hesselman, Entrada: A high-performance network

traffic data streaming warehouse, in: NOMS 2016-

2016 IEEE/IFIP Network Operations and Management

Symposium, IEEE, pp. 913-918, 2016.

[201] C. Orsini, A. King, D. Giordano, V. Giotsas, A.

Dainotti, Bgpstream: a software framework for live and

historical bgp data analysis, in: Proceedings of the 2016

Internet Measurement Conference, pp. 429–444, 2016.

[202] M. Becchi, M. Franklin, P. Crowley, A workload

for evaluating deep packet inspection architectures, in:

2008 IEEE International Symposium on Workload

Characterization, IEEE, pp. 79–89, 2008.

[203] F. Schneider, J. Wallerich, A. Feldmann, Packet

capture in 10-gigabit ethernet environments using

contemporary commodity hardware, in: International

Conference on Passive and Active Network

Measurement, Springer, pp. 207–217, 2007.

https://doi.org/10.1002/spe.2420
https://doi.org/10.3390/s141224188
https://doi.org/10.1109/TVT.2017.2701551
https://doi.org/10.1145/2427036.2427038

