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Abstract  Öz 

Deep Packet Inspection (DPI) provides full visibility into 

network traffic by performing detailed analysis on both 

packet header and packet payload. Accordingly, DPI has 

critical importance as it can be used in applications i.e 

network security or government surveillance. In this paper, 

we provide an extensive survey on DPI. Different from the 

previous studies, we try to efficiently integrate DPI 

techniques into network analysis mechanisms by 

identifying performance-limiting parameters in the analysis 

of modern network traffic. Analysis of the network traffic 

model with complex behaviors is carried out with powerful 

hybrid systems by combining more than one technique. 

Therefore, DPI methods are studied together with other 

techniques used in the analysis of network traffic. Security 

applications of DPI on Internet of Things (IoT) and 

Software-Defined Networking (SDN) architectures are 

discussed and Intrusion Detection Systems (IDS) 

mechanisms, in which the DPI is applied as a component of 

the hybrid system, are examined. In addition, methods that 

perform inspection of encrypted network traffic are 

emphasized and these methods are evaluated from the point 

of security, performance and functionality. Future research 

issues are also discussed taking into account the 

implementation challenges for all DPI processes. 

 Derin Paket İnceleme (Deep Packet Inspection-DPI), hem 

paket başlığı hem de paket yükü üzerinde ayrıntılı analizler 

gerçekleştirerek ağ trafiğinin tam görünürlüğünü sağlar. Ağ 

güvenliği veya devlet gözetimi gibi uygulamalarda 

kullanılabilmesi yönüyle DPI, kritik bir öneme sahiptir. Bu 

çalışmada, DPI hakkında kapsamlı bir araştırma 

sunulmuştur. Diğer inceleme çalışmalarından farklı olarak 

bu çalışmanın amacı, modern ağ trafiğinin analiz edilmesi 

sürecinde performansı sınırlandıran parametreleri 

belirleyerek DPI tekniğinin ağ analizi mekanizmalarına 

verimli ve etkili bir şekilde entegrasyonunu sağlamaktır.  

Karmaşık davranışlar gösteren ağ trafiği modelinin 

incelenmesinin birden fazla tekniğin bir araya getirilerek 

güçlü hibrit sistemlerle gerçekleştirildiği göz önünde 

bulundurularak, DPI metodu, ağ trafiğinin analizinde 

kullanılan diğer tekniklerle birlikte incelenmiştir. Ağ 

güvenliği hususunda kritik öneme sahip DPI metodunun 

IoT ve SDN mimarileri üzerindeki güvenlik uygulamaları 

tartışılmış ve DPI’ın IDS’lere hibrit sistemin bir bileşeni 

olarak uygulandığı mekanizmalar incelenmiştir. Ayrıca, 

Şifreli ağ trafiğinde inceleme gerçekleştiren yöntemler 

üzerinde durulmuş ve bu yöntemler güvenlik, performans 

ve fonksiyonellik açılarından değerlendirilmiştir. Son 

olarak, tüm DPI süreçleri için uygulama zorlukları ve bu 

zorluklarla ilişkili gelecek araştırma konuları ele alınmıştır. 

Keywords: Deep packet inspection, Network traffic 

analysis, Security, Survey 

 Anahtar kelimeler: Derin paket inceleme, Ağ trafiği 

analizi, Güvenlik, Araştırma 

1 Introduction 

Modern networks with large number of nodes, such as 

IoT, need to be regularly monitored in order to maintain their 

performance. Maintaining performance in these networks 

with different purposes may include prioritizing one or more 

of the issues such as ensuring quality of service (QoS) 

requirements, identifying problems that threaten network 

security or improving resource consumption. These 

objectives can be achieved through the application of 

network traffic monitoring and analysis (NTMA) techniques 

such as network security, network traffic classification, fault 

management and traffic forecasting. In the process of 

implementing NTMA techniques, different requirements can 

be defined for the acquisition of traffic data. In this regard, 

network packets are generally considered as targets to be 

examined at the traffic data collection tasks [1]. Packet 

inspection can be expressed as an ability to inspect network 

traffic for a specific aim in real-time or offline. Three basic 

methods, classified according to depth, are used to monitor 

network traffic and evaluate its performance [2]. In Shallow 

Packet Inspection (SPI) technique, only header information 

of each packet is examined, and the payload is not taken into 

account. This technique focuses on the second and the third 

layers in the OSI model. With SPI method, IP addresses of 

the sender and the receiver, the number of packets that a 
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message is broken into, the number of hops per packet and 

the synchronization data that allows for reassembling 

packets can be examined. Medium Packet Inspection (MPI) 

technique inspects header and payload of network packets up 

to the presentation layer. MPI technologies can prioritize 

some packets by examining application commands in the 

application layer and file formats in the presentation layer. 

This examination method is commonly used by application 

proxies and provides a more comprehensive analysis than 

SPI technique [3]. Unlike SPI and MPI techniques, DPI 

performs a detailed inspection covering all headers of the 

whole layers and the packet payload. 

The ability to have information on both packet header 

and payload in real-time provides control over the 

communication between two endpoints. Network controllers 

such as Internet Service Providers (ISP) use network 

technologies that enable real-time monitoring of network 

packets. This technology is known as DPI [4]. DPI generally 

provides an in-depth analysis of packets passing through a 

certain network point and makes some decisions based on 

the analysis. This method is called DPI because analysis 

covers both packet header and packet payload. There are two 

main processes of DPI; identification and action. 

Identification is the process of examining packets and 

discovering their hidden features. After identification, 

operations such as keeping logs for analysis of the network 

or dropping from the network for network security can be 

performed in the action process [5]. 

DPI technique is used to detect well-known malware 

signatures. Additionally, the attack pattern which includes 

the attack order, the path followed by the attacker and the 

techniques used by the attacker can be detected in connection 

with the network flow. Besides detecting known attack 

patterns with high accuracy, new exploitation techniques can 

also be discovered via DPI. This allows explorers to build 

new protection mechanisms and signatures [2]. Thus, DPI 

can be used in network security and government surveillance 

applications. Moreover, DPI can be used in content filtering 

to detect and block harmful or illegal content, bandwidth 

management, copyright management and applications that 

allow ISPs to inject advertisements into websites according 

to users' interests [6-8]. Many open-source tools such as the 

Linux firewall and commercial tools such as Norton Core use 

the DPI approach in their products for analysis of the 

network traffic [9]. Additionally, IDS commonly use 

payload-based classifiers to identify malicious network 

activity [10]. 

There are numerous reviews on current applications of 

DPI technology [5,11-13]. In the next sub-section, these 

reviews are examined. Also, the contribution of this paper to 

the literature are discussed. In the second sub-section of the 

introduction, the organizational structure of this paper is 

presented. 

1.1 Existing surveys on DPI 

In the study numbered [11], the literature review was 

conducted on the techniques required to develop DPI 

systems. The impact of challenges associated with complex 

signature sets and hardware or operating system on DPI 

implementations are discussed. The analysis of open source 

DPI modules used in traffic classification is presented in the 

study numbered [12]. This analysis evaluates classification 

accuracy and computational requirements over a real data 

set. The study numbered [5] provides a detailed review of the 

Regular Expression (RE) Matching Technique. In this study, 

the state explosion problem in the Finite State Machine 

(FSM) created for RE Matching is emphasized. In this 

direction, suggested methods for avoiding or mitigating state 

explosion have been examined, and these suggestions are 

presented for the creation of compact and efficient automata. 

Parallel platforms such as Graphics Processing Unit (GPU) 

or Field-Programmable Gate Array (FPGA) that accelerate 

the pattern matching process are also discussed. In the study 

numbered [13], the existing literature on infrastructure and 

communication for the energy sector and smart grids, also a 

review of DPI techniques and application areas are 

presented. The study pays attention to the use of the DPI 

technique as a security tool for smart grids, and proposes a 

SDN-based security monitoring framework that uses a 

hybrid model combining DPI and Deep Learning (DL) 

technique. Also, an additional framework that performs 

network forensic analysis is proposed to expand the 

capabilities of this framework. 

These studies numbered [5, 11, 12] and [13], which focus 

on DPI technology, mainly examine DPI and the application 

areas of these techniques. Only in the study numbered [11], 

the parameters that limit the performance of DPI systems are 

partially mentioned. Despite the widespread use of encrypted 

network traffic, it is an important shortcoming that a detailed 

analysis of DPI techniques in this field is not existing in the 

current literature. In addition, there is no study examining the 

difficulties of implementing DPI techniques in SDN or IoT 

architectures in today's modern networks. Accordingly, this 

paper aims to present a roadmap for the application of DPI 

technology in today's modern networks. Considering that the 

analysis of the state-of-the-art network traffic model is 

carried out with powerful hybrid systems by combining more 

than one technique, the DPI method is examined together 

with other techniques used in the analysis of network traffic. 

In order to protect the confidentiality of network traffic, the 

proposed techniques for analyzing encrypted traffic are 

discussed with their advantages and disadvantages. In 

addition, a comprehensive review of DPI implementation 

challenges for scenarios that generate state-of-the-art 

network traffic such as IoT or SDN architectures is 

conducted, and the security applications of DPI technique on 

these architectures, whose main focus is a security concern, 

are discussed. The main purpose of this paper is to perform 

a detailed analysis on detection and improvement of 

performance-limiting parameters in all processes from 

collecting state-of-the-art network traffic and analyzing it via 

DPI, and to evaluate the contribution of DPI technique to the 

mechanisms created to analyze the network traffic by 

examining DPI applications in the existing literature. The 

contributions of this paper can be listed as follows: 

 We comprehensively review the challenges of 

advanced network traffic analysis, performance-
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limiting parameters and implementation of 

difficulties of DPI techniques. 

 We identify implementation challenges and open 

research issues for DPI systems, and provide insight 

into topics that will shed light on future work. 

 We create a roadmap that enables the use of 

appropriate DPI techniques to address advanced 

network analysis challenges. 

 We point to the other techniques that complement 

the DPI technique instead of focusing only on this 

technique in determining the procedures to be 

applied in future mechanisms. 

 We present a classification of the proposed methods 

to perform an inspection on encrypted traffic, and 

discuss the advantages and disadvantages of the 

techniques that directly use or do not use the DPI 

approach or limit the usability of this approach. 

 We evaluate the role of IDS in ensuring the security 

of IoT and SDN architectures whose main focus is 

on security concerns, and discuss the 

implementation challenges of DPI on these 

architectures. 

1.2 Paper organization 

The structure of the paper is shown in Figure 1. In this 

direction, the schedule in this paper is as follows: In Section 

2, the problems encountered in the process of receiving and 

processing network packets from Network İnterface Card 

(NIC) are determined and the solutions to these problems are 

presented. In addition, the platforms developing based on 

these solution methods are examined. In the first sub-section 

of Section 3, considering that the analysis of the network 

traffic model with complex behaviors is carried out with 

powerful hybrid systems by combining more than one 

technique, the DPI method is examined together with the 

other techniques used in the analysis of network traffic. In 

the following sub-section, the software and hardware-based 

methods proposed to improve DPI performance are 

examined. In the last sub-section of the section, suggested 

methods for the analysis of encrypted traffic are presented. 

The advantages and disadvantages of these methods, which 

directly use or do not use the DPI approach or limit the 

usability of this approach, are discussed. In Section 4, the 

role of IDS in ensuring the security of IoT and SDN 

architectures, whose main focus is on security concerns, is 

evaluated, and implementation challenges of DPI on these 

architectures are discussed. Finally, in Section 6, DPI 

implementation difficulties are evaluated and deficiencies in 

this field are identified. In addition, new discussion issues 

are suggested. 

2 Packet capturing and processing with commodity 

hardware 

In this section, the problems encountered in the process 

of receiving and processing network packets from the NIC 

are determined and the solutions to these problems are 

presented. In addition, the platforms developed based on 

these solution methods are examined. Accordingly, a 

common software application for network packet processing 

using commodity hardware is examined. In this direction, 

Unix-based operation systems are used as an example. 

The first step in packet processing is transferring the 

network packets to the main memory. In the Linux kernel, 

the network packets are stored in a sk-buff structure in the 

main memory. Also, NIC has a ring queue that stores the 

descriptors used for these sk-buff structures. This ring queue 

is called a ring buffer. When a packet is accepted by NIC, the 

sk-buff structure is mapped to kernel memory space using the 

Direct Access Memory (DMA) Mechanism. Then, NIC 

schedules hardware interrupt to notify the kernel that a 

packet is available. Central Processing Unit (CPU) responds 

to this by calling the driver's interrupt handler. Since using 

kernel version 2.4.20, New API (NAPI) is used by drivers  

[8].

 

 

Figure 1. The structure of the survey 
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NIC is added to a poll list, and a soft interrupt is scheduled 

by the interrupt handler. Then, each of the devices in the list 

is polled to receive network packets from the ring buffer by 

the CPU. After the packets are processed at the network and 

transport layers, they are forwarded to the application layer. 

The sk-buff data is copied to the user space by using socket 

API. Driver must load the packet descriptor into the 

transmitting ring buffer to be transmitted of a network 

packet.  Then, the driver notifies NIC that packets are ready 

to be transmitted. Finally, NIC informs the CPU via an 

interrupt to release the sk-buff structure [14,15]. 

NAPI contributes to the acceleration of the capturing of 

network packets process with two principles [16]: 

Interrupt mitigation. Accepting high-speed network 

traffic using the traditional structure causes large number of 

interrupts per second. These interrupts cause the CPU to 

become overloaded and therefore to lose performance. The 

NAPI-aware driver initiates the interrupt routine when a 

packet RX/TX interrupt occurs to solve this problem. Unlike 

the traditional approach which copies and queues a packet 

directly, the interrupt routine uses a poll()  function to disable 

similar interrupts in the future. Polling mode consumes more 

CPU cycles compared to interrupt-driven while a load of 

network traffic is low. However, the performance of the 

polling mode increases at higher speeds. NAPI-aware drivers 

fit themselves into the network load to improve performance 

in any case. 

Packet Throttling. Packets must be dropped when high-

speed traffic exceeds system capacity. Legacy drivers that do 

not use the NAPI approach drop network packets at the 

kernel level. This causes CPU cycle consumption 

unnecessarily. NAPI-aware drivers drop packets at the 

network adapter through flow control mechanisms, avoiding 

performance losses from redundant CPU cycles. 

2.1 Performance limiting factors during packet capturing 

and processing 

Linux networking stack is designed for general-purpose 

networks. Besides being used as a router, it supports many 

protocols at network or transmission layers. Although this 

design choice is suitable for running applications with a 

speed of 1 Gbit/s, the operating system starts to drop packets 

and reaches the limit when approaching 10 Gbit/s speed 

since it cannot process more packets [17]. NAPI technique is 

not suitable for capturing high-speed network traffic. In this 

direction, architectural problems in capturing network 

packets from NIC, processing them in the Linux network 

stack and transmitting them to the application layer cause 

performance losses [16]. 

One of the major constraints that cause performance 

losses is the use of main memory. The sk-buff structure must 

be allocated for each packet and released when a packet is 

transferred to the user level or forwarded to another endpoint. 

This behavior consumes unnecessary CPU cycles to transfer 

data from main memory to CPU. In addition, the effort to 

make the network stack compatible with many protocols 

resulted in a complex sk-buff structure. The sk-buff structure 

contains metadata for several protocols that are not required 

for packet processing. This complexity results in the creation 

of a very large data structure, slowing down the process. 

Another problem with main memory usage is that a packet 

has to go through different points until it arrives the 

userspace. This results in at least two copies for each network 

packet. After the packets are accepted by the NIC, the 

packets are copied from the DMA-capable memory area to 

the \textit {sk-buff} structure and then to the user-level 

application. A single copy of data can spend up to 2000 CPU 

cycles, depending on network packet length. Also, sk-buff 

conversion operations and memory allocation consume 1200 

CPU cycles per network packet, and 1100 cycles are required 

to free the buffer [18]. sk-buff operations spend 63 % of the 

CPU cycles in receiving a single 64B packet [19]. 

Context switches that switch between user and kernel 

modes affect performance significantly. The user-level 

application has to make a system call for the context switch 

when it requires to send or receive a packet. These operations 

can spend up to 1000 CPU cycles per network packet [18]. 

The important step in the development of modern NICs 

is the Receive Side Scaling (RSS) Technology [19]. RSS 

Technology takes a load of network traffic from the NIC and 

shares it among the cores of a multi-core system. In this way, 

the load between system resources can be balanced. This 

allows avoiding bottlenecks in packet processing by using a 

single core and optimizing cache [16]. After capturing 

network packets using RSS technology, all network packets 

are concatenated at a certain point, and analyzed in the 

transport layer. The merging of traffic at a single point causes 

a bottleneck. This may also cause packet disordering [20]. 

System performance is adversely affected as the acceleration 

achieved at the driver level is lost at the user level. 

Spinlock is another performance-limiting factor. During 

the transmission of a network packet, two spinlocks are 

required that control the NIC's access to the transmission 

queue [21]. These locks may cause congestion by preventing 

parallel processing when using multiple CPUs. 

The main bottleneck of software architecture is about 

inefficient memory access. Non-Uniform Memory 

Architecture (NUMA) is widely used in the process of 

capturing and processing high-speed network traffic. NUMA 

architecture distributes system memory among different 

Symmetric Multi-Core Processors (SMPs) by assigning a 

memory segment to each. This architecture increases system 

efficiency from the point of cache misses and memory 

accesses [22]. However, scheduling of tasks must be done 

carefully when using this architecture. When NIC is plugged 

to the PCIe slot reserved to a NUMA node, the threads 

assigned to capture packets must be run on the dedicated 

cores for this NUMA node. Assigning these threads to 

another NUMA node causes to transfer of data between 

processors. Therefore, it reduces performance because of 

cache misses and access latency [16]. On the other hand, the 

first access to the DMA-capable memory area causes cache 

misses as it invalidates cache lines of DMA operations. Such 

cache miss spends 13.8% of the CPU cycles for a single 64B 

packet [19]. 
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2.2 Proposed techniques for overcoming limitations in 

capturing and processing network packets 

Various techniques are developed to overcome the 

problems encountered in the process of capturing network 

packets and transmitting them to the user area [16, 23]. These 

techniques are listed below: 

 Preallocation and reuse of memory resources to 

avoid bottleneck generated by per packet 

allocation/releasing buffers 

 Zero copy: Mapping the DMA-capable memory 

region directly accessed by NIC where an 

application can read and write to these regions 

without intermediate copies 

 Batch processing: Copying packets into kernel or 

user memory by grouping them in a buffer to avoid 

the overhead resulted from additional calculations 

and function accesses such as system calls and 

context switches  

 Prefetching: Loading memory locations that may 

be used in the processor's cache in the near future to 

reach them faster in case of need 

 CPU Affinity: Determining the execution region for 

using the threads 

 Memory Affinity: Determining the memory space 

for using the threads 

 Lock-Free Multi-Threading: Avoiding the 

performance issues associated with the use of 

synchronization techniques such as mutexes and 

semaphores to ensure lock-free operation by using 

multiple hardware queues to allow threads to run on 

independent subsets of traffic 

 Compute Batching: Applying network functions to 

handle a group of packets rather than single packets 

in order to decrease the overhead caused by 

additional calculations and function accesses such 

as context-switch and stack initialization 

 Parallel Direct Paths: Using RSS queues and direct 

parallel paths between applications via the 

allocation of certain cores for both receiving 

packets from RSS queues and transferring them to 

the user space 

There are many platforms based on the proposed solution 

to the problems encountered in packet processing. While the 

software-based platforms [23-28] developed as fast packet 

processing architectures use only the processing power of 

CPU in the packet processing, the hardware-based platforms 

[19, 29-32] aim to provide performance gain by executing 

part of the packet processing on specialized hardware such 

as FPGA or GPU. 

Click [24] is one of the first modular software 

architecture used to build routers. Although it supports Linux 

interrupt structure which causes performance losses in 

packet transmission, Click uses polling instead of interrupt. 

Also, this architecture does not use zero-copy. Click-based 

Snap [29] is the hardware-based platform that offloads the 

part of the computational overhead to GPUs. Network 

packets in a batch may have different paths in Click. This 

separation may happen before packets reach GPU or inside 

GPU. This process, which causes unnecessary copying of 

packets that are not processed on GPU, is time-consuming 

due to the limited PCIe bandwidth. Snap copies only the 

required packets to a contiguous memory space at the host 

level, and then creates a group of packets that are sent to 

GPU memory in a single transfer over PCIe. Indeed, it is 

aimed to avoid bottlenecks that may occur by transferring 

only certain parts of the network packet processing process 

to GPU. Snap adds predictive bits to each packet to solve the 

problem of the occurence of different paths within GPU. In 

Snap, the zero copy technique is not implemented due to 

deviations before reaching GPU and copying only the 

necessary parts of the network packet for processing. 

PacketShader [19] is another hardware-based platform that 

benefits from GPU to reduce the computational load for fast 

packet processing. It uses a batch processing  technique to 

reduce the processing load for each packet. PacketShader 

uses copying, which allows flexibility of the user buffer, 

instead of the zero-copy technique for better abstraction. It 

also facilitates the recycling of large packet buffer cells. 

Netmap [25] is a userspace packet handler that does not 

requires special hardware and minimizes packet processing 

cost by using techniques such as resource preallocation, 

batch processing, and zero-copy. This framework maps the 

NIC rings to an equivalent number of network map rings so 

that the load is spread across multiple CPU cores without 

lock contention. GASPP [30] is the hardware-based platform 

that benefits from GPU to perform fast packet processing. 

This architecture uses the Netmap library for I/O operations 

in packet processing. In this way, it is possible to avoid 

network packet copies and context switches that cause 

additional overhead. In this framework, reassembling TCP 

streams and flow management are entirely performed on 

GPU. Additionally, a packet scheduling technique that 

eliminates load imbalance and controls flow irregularity is 

applied for GPU threads. Also, the zero-copy technique 

which increases throughput between devices is applied 

between GPU and NICs. Data Plane Development Kit 

(DPDK) [26] is another userspace packet handler to perform 

fast packet processing. This framework is developed for 

Intel's multi-core processors that deliver packets to 

applications by using acceleration techniques such as 

resource preallocation, batch processing, and zero-copy. 

The forwarding process of packets called the data plane 

operation, is performed by DPDK libraries that forward 

network packets to the application network stack directly 

without any Linux kernel overhead [33]. In addition to the 

libraries, DPDK also includes Poll Mode Drivers (PMD) that 

accesses RX and TX descriptors without any interrupts to 

receive, process and transmit packets to the user space. This 

decreases the overhead caused by interrupt operations in 

high speed scenarios. APUNet [31] is a hardware-based 

platform that leverages the power of integrated GPUs for 

network packet processing and uses DPDK infrastructure for 

packet forwarding. APUNet uses the zero-copy technique in 

the entire processing steps. This structure implements 

persistent GPU kernel execution to reduce communication 

latency between CPU and GPU. Thus, GPU threads run in 

parallel for constant input network packet flows. For the 
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solution to the cache coherency problem between CPU and 

GPU, synchronization of cache memory access technique is 

suggested by integrated GPU to present GPU's processing 

results to CPU at a low cost. FastClick [27] is a high-speed 

userspace packet processor that integrates both DPDK and 

Netmap into Click. Fastclick benefits from these two 

versions to increase packet processing speed. It also 

increases the efficiency of Click by using zero-copy, multi-

queue support, I/O and computation batching. 

PF_RING [28] performs active traffic analysis on 

commodity hardware and provides a performance 

improvement in direct proportion to the increased number of 

cores. This library uses PF_RING ZC drivers that implement 

a zero-copy technique to achieve maximum packet 

processing speeds. Packets are read directly from NIC by 

using these drivers. The network packets are polled from 

NICs by using NAPI in PF_RING architecture. Packets are 

copied from the NIC to the circular buffer, and the user area 

application reads the packets from the ring. Accordingly, the 

CPU is used both to transmit from the NIC and to process 

network packets. In PF_RING DNA (Direct NIC Access) 

[34], NIC NPU (Network Process Unit) architecture is used 

instead of NAPI. In this structure, NIC maps memory in 

userspace. As a result, the CPU is only used to process 

packets. 

Vector Packet Processing (VPP) [23] is a framework 

capable of high-speed packet processing in the user space to 

benefit from general-purpose CPU architectures. DPDK or 

Netmap can be used as I/O nodes in the VPP. VPP resources 

are organized into two basic groups composed of a low-level 

libraries used to implement specialized network packet 

processing applications and high-level libraries, called 

plugins, that perform a specific processing task. VPP master 

code and plugins create a forwarding graph that defines the 

possible paths of a packet. Vectors are arrays located in pre-

allocated contiguous memory segments, and per-vector 

processing is a basic principle in VPP. Vectors are efficiently 

managed by VPP in reusable lists before they are released. 

Vectors are reused and managed efficiently without releasing 

in reusable lists by VPP. The main innovation of VPP is that 

it provides performance gain by processing network packets 

in vectorized format. Each node of the VPP processes all 

packets in the vector instead of allowing each packet to 

traverse the entire graph. The underlying assumption of the 

vectorized process is that subsequent packets require similar 

operations. Since the instruction cache is only loaded for the 

first packet in the vector, other packets in the vector tend to 

be processed at high performance. Also, this approach 

provides an efficient prefetching strategy. It is known which 

packet data is required to process the specific feature when 

the node is called. Thus, (i+1)'th packet's data can be 

prefetched while the node is processing the i'th packet. VPP 

also uses the multi-loop approach to take advantage of low-

level hardware support. The approach of multi-loop can be 

defined as a function written to process N packets in parallel. 

In this process, the computations for all network packets are 

independent of each other. With the help of this approach, 

CPU pipelines are allowed to fill up constantly, and the 

latency caused by cache miss is shared with N packets 

instead of a single packet. 

ClickNP [32] is a hardware-based platform that aims to 

provide performance gain by executing part of the packet 

processing in FPGA. FPGAs are programmed in complex 

low-level Hardware Description Languages (HDL) such as 

Verilog or VHDL. This may cause low productivity and 

debugging difficulties in FPGAs. Therefore, ClickNP 

applies three basic approaches to overcome the programming 

difficulties on FPGA. In the first approach, each complicated 

network function is decomposed and determined as well-

defined elements via ClickNP's modular architecture. 

Another approach is to write ClickNP elements in a high-

level language that is easier to understand. The final 

approach is to use the high-performance PCIe channel 

between CPU and FPGA. This channel works with low 

latency and high efficiency, allowing cooperation in the 

processing of network packets on CPU and FPGA. 

Additionally, ClickNP uses a batch processing approach to 

reduce DMA overhead. 

3 DPI techniques 

Today's network traffic model has complex behaviors 

due to device mobility and network heterogeneity [1]. 

Analyzing this complex network traffic requires more 

efficient mechanisms by which multiple techniques are 

combined to create hybrid systems. The packet payload is 

used with or separately from the packet header in DPI 

applications such as content-based recognition, traffic 

classification or IDS whereas the packet header is used with 

its fixed format or statistical character for analysis of 

network traffic [5]. For this reason, it is more accurate to 

examine the DPI method together with other techniques used 

in the analysis of network traffic. In the first sub-section, DPI 

techniques and DPI-related techniques are examined. State-

of-the-art network traffic with complex behavior causes DPI 

implementations to be computationally intensive and time-

consuming. In this direction, improving DPI performance 

becomes an important working area. In the second sub-

section, recommended software and hardware-based 

methods which improve DPI performance are discussed. On 

the one hand, it is important to enhance the existing literature 

with a well-detailed analysis of DPI applications on the 

network composed of encrypted traffic mostly [35]. Indeed, 

the methods that directly use or do not use the DPI approach 

or limit the usability of this approach are examined, and the 

advantages and disadvantages of these methods are 

discussed in the process of analyzing the encrypted network 

traffic in the last sub-section. 

A classification of the literature based on DPI techniques 

is presented in Figure 2. This classification which focuses on 

the application of DPI techniques is created for the 

requirements of a state-of-the-art network which has 

complex behavior and encrypted traffic mostly. In this 

direction, three main categories are identified for 

classification DPI techniques, acceleration techniques for 

DPI and techniques for performing DPI on encrypted traffic. 
Within the first category DPI techniques, two subcategories 

are identified: Pattern matching and protocol decoding
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Figure 2. Overview of the surveyed research works classified according to the proposed classification 

techniques. In the second category, acceleration techniques 

for DPI, two subcategories are identified: Hardware-based 

and software-based techniques. In the third category, 

techniques for performing DPI on encrypted traffic, three 

subcategories are identified: Man-in-the-Middle Attack 

(MITM), Access Control (AC) and Trusted Hardware (TH) 

techniques. With the help of this classification, it is aimed to 

facilitate the reader's access to references that examine a 

specific field. However, as a natural consequence of this 

classification, there are many studies in which techniques in 

different categories are used together. The categorization of 

studies numbered [36-39] and [40] can be given as an 

example of this case. The studies numbered [39] and [40] 

performed filter-based pattern matching by using the TH 

technique are examined in the categories of both DPI 

techniques and techniques for performing DPI on encrypted 

traffic. Likewise, the study numbered [38] performed by 

using Cuckoo filter (CF) [41] on GPU is examined in the 

categories of both DPI techniques and acceleration 

techniques for DPI. The study numbered [37], which 

proposes Ternary Content Addressable Memory (TCAM) 

based multiple-pattern matching algorithm that uses a hybrid 

model of pattern matching techniques is examined in the 

three categories. These categories are acceleration 

techniques for DPI, hashing and heuristic-based pattern 

matching techniques. The study numbered [36] which 

proposes TCAM based multiple-pattern matching algorithm 

is only examined in the category of acceleration techniques 

for DPI as it does not use any of the available DPI 

techniques. As seen in the classification, the most commonly 

used DPI technique is the automata-based pattern matching 

technique, whereas the filter-based pattern matching 

technique is the least used. Among the special-purpose 

hardware used to accelerate the packet processing in DPI 

applications, the most used hardware is the GPU, whereas 

Application Specific Integrated Circuit (ASIC) is the least 

used hardware. This classification is expanded by adding 

other methods related to DPI techniques. Accordingly, 

determining the necessary parameters for the construction of 

powerful mechanisms to examine the complex network 

traffic is an important aim of this paper. 

3.1 DPI related techniques 

In the study numbered [5], DPI is classified as narrow 

and general scope. According to this classification, 

generalized DPI includes an examination of both the packet 

payload and header. In the narrow scope, DPI represents only 

payload-based detection, and the detection is performed by 

matching the payload with signatures. On the other hand, this 

classification, which accepts port-based and statistical-based 
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analysis as a DPI technique, is not valid because it ignores 

the task of examining packet payload, which is the most 

basic feature of DPI. Therefore, DPI is considered as a part 

of network traffic analysis (NTA) methods in this paper. DPI 

and DPI-related methods are shown with references to 

studies numbered [5, 11] and [12] (Figure 3). 

3.1.1 Port based technique 

Using the port-based technique in NTA is the most 

traditional technique for application protocol detection. This 

approach is used to detect the protocol using the port fields 

in the TCP/UDP headers. However, reasons i.e peer to peer 

(P2P) applications using random port numbers, the 

emergence of encrypted protocols, some applications using 

ports assigned to other protocols for deception and 

replacement of one protocol by another indicate that this 

method is not safe for identifying the application protocol 

[5,10]. HTTP protocol may be considered as an example of 

this case. The HTTP protocol is actively used to download 

or upload files. Hence, it replaces FTP, which is designed 

specifically for downloading and uploading files. Also, many 

P2P applications (skype etc.) use the HTTP protocol to 

bypass the firewall if other ports are blocked. Additionally, 

HTTP is used by social networks, geomaps, and video 

streaming services [42]. The fact that the port-based 

approach is insecure and insufficient to determine the 

application protocol leads to the application of this technique 

as an auxiliary technique in the analysis of network traffic. 

For example, the nDPI library [42] uses the port-based 

approach to determine the appropriate protocol decoder. By 

means of this approach, protocol detection time can be 

reduced. 

3.1.2 Protocol decoding technique 

Protocol decoding is another method of analyzing 

network traffic. This method may be considered as the DPI 

technique since it performs payload inspection. Protocols 

can be detected by using the protocol behavior as well as the 

characteristic protocol headers in this method. Therefore, 

this technique is based upon re-establishment sessions with 

captured packets at the application layer [5]. Different 

verification methods can be applied in the protocol decoding 

processes. Syntactical verification aims to check the 

accuracy of the transferred data in terms of syntactical. For 

instance, the HTTP headers must be present if there is an 

HTTP payload. Verifiers must decode the message and 

ensure that the message is well-formed. Another method is 

protocol conformance. The process of confirming that the 

HTTP GET request is answered by the server in a valid 

manner may be considered as an example of this method. 

This method is more valid because it can verify the runtime 

behavior of the protocol when it compares to the canonical 

state machine. Inspecting the semantic integrity of the data 

is another verification method. For example, confirming 

whether an image object transferred by the HTTP protocol is 

actually an image or some other form of content [43]. The 

protocol decoding method, which needs a deep 

understanding of the application protocol, achieves high 

accuracy with a low false-negative rate. However, protocol 

decoding process is computationally intensive and time-

consuming [5,12,42]. In this direction, the application of 

hybrid approaches in the analysis process of network traffic 

can be applied to improve performance. 

The commercial tool PACE [44] software and the open-

source nDPI library are examples of hybrid use of protocol 

decoding technique. PACE tool which has capable of 

detecting encrypted protocols uses ML techniques along 

with behavioral and heuristic analysis in the analysis of 

network traffic. nDPI is an open-source library that uses 

port-based approach, protocol decoding and pattern 

matching technique. In order to analyze encrypted network 

traffic, the nDPI library can perform protocol detection by 

using strings that match the metadata obtained from the 

network stream. In addition, nDPI supports DPDK which is 

a kernel bypass technology to minimize performance losses 

caused by the hardware or the operating system. There are 

many studies comparing the accuracy of nDPI and PACE 

libraries according to the degree of granularity in terms of 

detection of the application protocol [45-48]. According to 

these studies, nDPI is the library with the highest accuracy 

among the open-source classifiers, except for the study 

numbered [47]. In the study numbered [47], in which 

performances are evaluated according to different 

classification levels, nDPI is the best performing classifier at 

the protocol level, whereas PACE is the most successful 

technique at the application level. PACE is a commercial 

tool that cannot be accessed by the entire research 

community. nDPI is the most successful classifier among the 

open-source tools. 

 

 

Figure 3. DPI related network traffic analysis techniques 
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3.1.3 Pattern matching-based technique 

Pattern matching-based DPI methods can be 

implemented using hashing, heuristics, automaton, filtering 

or probabilistic data structure-based algorithms. These 

algorithms are based on string or RE Matching methods. 

Hashing-Based Technique. Hash-based algorithms [49, 

50] use the string matching method. This approach compares 

hashes instead of the contents of the packet payload with the 

pattern character by character. A hash value is calculated for 

each pattern of length m. At the same time, the hash value of 

the examined m-long substring is also calculated. If any 

pattern-substring matches are detected while the pattern is 

sliding over the target text, the pattern and substring are 

compared on a byte basis for verification. In addition to the 

study [51] in which the matching performance of hash-based 

Rabin-Karp (RK) [50] algorithm on IDSs is evaluated, there 

are some DPI applications that evaluates the matching 

performance of the parallel application of this algorithm on 

GPU [52, 53]. In the multi-pattern matching version of the 

RK algorithm performed on the GPU, each thread compares 

the hash code for all patterns starting from the position 

corresponding to the thread index. Thus,  the matching 

process lasts too long, and RK is not an efficient algorithm 

for multi-pattern matching [53]. Additionally, the 

performance comparison of the RK from the point of 

execution time for variable-size network traffic is presented 

for both serial and parallel implementation in the study 

numbered [54]. RK algorithm parallelized on GPU 

outperforms the serial implementation encoded on CPU and 

increases the pattern matching speed. 

Probabilistic Data Structure Based Technique. Bloom 

filter (BF) [55] is a probabilistic data structure used to 

represent a set for the purpose of performing membership 

testing. Using this data structure makes possible to query 

whether an element is present in the set at a low cost. BF 

does not produce false negatives. Indeed, if BF produces a 

result such as "The element is not present in this set.", it is 

true. However, there is also the possibility of producing false 

positives. BF may produce a result such as "Element is 

present in this set." for an element that is not present in the 

set. BF does not support delete operation. There are 

improved versions of BF which support deletion provide a 

better location or reduce the cost of space [56, 58]. A 

quotient filter (QF) [59] is a hash table that records 

fingerprints of elements to support deletion. In this data 

structure, encoding each entry is required additional 

metadata. This requires 10-25% more space than BF. In this 

data structure, table entry codes must be decoded before 

reaching the target element. Whereas the hash table is filled, 

operations increase at a similar rate. When the fill rate of the 

hash table exceeds 75%, the matching performance of the 

data structure drops dramatically [41]. CF is the membership 

query data structure in which elements can be dynamically 

added or removed. The biggest challenge facing CF 

performance is the use of three hash functions which causes 

additional computations. Quotient-based Cuckoo filter 

(QCF) [60] which uses only two hash functions has less 

computational overhead than standard CF. This filter has 

higher insertion, query and deletion capability than CF. 

Probabilistic data structures are used as a matching tool 

in many DPI applications [60-65]. In the study numbered 

[61], Prefix BF (PBF) and Chain Heuristic methods are 

proposed, which allow pattern matching without 

defragmentation in order to reduce the required storage 

space. The PBF data structure allows the detection of the 

prefixes of patterns. In this way, it is possible to detect 

patterns on more than one network packet. Chain heuristic 

increases system throughput by reducing the false positive 

rate of PBFs without using any additional memory. In the 

study numbered [62], a new BF architecture is proposed by 

using the pipelining technique which notably reduces the 

overall power consumption of the BF. In the first stage of a 

two-stage pipelined BF, hashes are always calculated. If a 

match is found between the input and the pattern, the hash 

values are calculated in the second stage. Implementing a 

small number of hash functions in the first step increases 

power savings. In the study numbered [63], a new BF is 

proposed in which both two memory addresses are 

compressed into one I/O block of main memory. With the 

help of this data structure, the number of memory I/O 

required for the membership query is reduced. Accordingly, 

the average query latency is also significantly reduced. In the 

study numbered [64], the DPI application is performed by 

using QF. The results obtained from the real dataset show 

that QF achieves higher efficiency (30%-75%) and improves 

false positive rate compared to BF. In the study numbered 

[65], CF is used as a DPI matching tool. The developed 

system provides a significant time saving of 93% compared 

to BF and 87% compared to QF. In the study numbered [60], 

CF performance is tried to be increased with a new proposal 

called QCF. The Analysis shows that applying QCF in a DPI 

application results in time savings of up to 77% at CF and up 

to 98% at BF and QF. 

Heuristic Based Technique. Heuristic-based matching 

algorithms use string matching. The primary principle of this 

approach is to jump as many payload characters as possible 

by using some heuristics to speed up the matching. Single-

pattern matching algorithm Boyer-More (BM) [66] and 

multi-pattern matching algorithm Wu-Manber (WM) [67] 

are examples of heuristic-based matching algorithms. BM is 

a heuristic-based algorithm that improves the performance of 

the search model by making situational skips. BM algorithm 

which carries out control from the right to the left performs 

shifts according to the rules of “Good-Suffix” (matched 

suffix of target text and pattern) and “Bad-Character” 

(unmatched character of target text and pattern). Besides the 

studies focusing on reducing the number of character 

comparisons to increase the performance and efficiency of 

IDSs [68-70], the studies applying the BM algorithm to 

detect known attack patterns [71-74] are presented as an 

improved version of the BM algorithm. An important aspect 

that limits the performance of the BM algorithm is that it 

cannot process multiple patterns in parallel. In this direction, 

WM which is developed as an advanced version of the BM 

algorithm has the ability to process more than one pattern 
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simultaneously. WM consists of two phases called 

preprocessing and scanning. In the preprocessing phase, 

basic calculations required for the scanning phase are made, 

and three tables are created namely SHIFT, HASH and 

PREFIX. The created tables are used for pattern matching in 

the scanning phase. In order to improve the performance of 

IDSs, the studies numbered [75], [76] and [77] focus on 

reducing the number of CPU cycles by reducing the number 

of unnecessary matching attempts, and they are presented as 

an improved version of the WM algorithm. In addition, the 

study numbered [78] is presented as an advanced version of 

the WM algorithm in order to reduce the performance losses 

caused by short patterns that result from short shift distance. 

The study aims to reduce the effect of short patterns that limit 

performance by splitting patterns into the different pattern 

clusters according to their lengths and processing these 

clusters sequentially. 

Automaton Based Technique. Automaton-based 

approaches can use both string matching and RE Matching 

methods. The matching process in DPI is computationally 

intensive and time-consuming as processing each byte in the 

payload requires one or more memory accesses. This 

situation is negative for the DPI process. Therefore, the DPI 

performance is highly dependent on the pattern matching 

throughput indeed the performance of the FSM [5]. 

There are two types of FSMs; Nondeterministic Finite 

Automata (NFA) and Deterministic Finite Automata (DFA). 

In fact, the two FSMs are equivalent. An equivalent DFA 

with NFA can be created, and this DFA accepts the same set 

of patterns. The main difference that distinguishes DFA from 

NFA is that any DFA state has a single pass for each 

character leaving to the specific state. Any NFA state can 

switch to different states more than once for the same 

character. Accordingly, a DFA can have only one active state 

at any one time while a NFA can have more than one active 

state. As a result, a NFA and a DFA have completely 

opposite characteristics in memory bandwidth requirement. 

A DFA is a memory-intensive structure while a NFA is a 

computationally intensive structure. Most current research 

aims to strike a balance between storage and performance 

[79-81]. 

RE defines a search pattern such as languages, or a set of 

strings. This structure can represent a set of exact strings 

while the exact string can represent only one string [5]. REs 

are widely used in many open source and commercial DPI 

applications under favour of their powerful and flexible 

detection capability [82-84]. A new RE-based DPI system 

that can process out of order packets without performing 

packet buffering and stream reassembly is proposed in the 

study numbered [85] that aims to improve the accuracy and 

speed of pattern matching, besides the studies numbered 

[86], [87] and [88] focusing on the creation of memory-

efficient architectures for the RE pattern matching process. 

Exact-match strings, the simplest type of REs, are fixed-size 

patterns. Automaton-based Aho-Corasick (AC) [89] 

algorithm, which has a faster matching power than complex 

REs, is widely used for string matching by means of its easy 

implementation. Application of the AC algorithm in the 

pattern matching process makes the cache space useless for 

large state transition tables. As a result of this situation, the 

matching speed decreases for large pattern datasets. 

Compressing a transition table in order to reduce the memory 

requirement and effectively use cache is one of the research 

topics of the AC algorithm. Whereas some improved AC 

algorithms [90-93] focus on reducing memory space 

required for storage of automata, the study numbered [94] 

proposes a variable stride pipelined Aho-Corasick 

Deterministic Finite Automaton (AC-DFA) to reduce the 

number of memory accesses and energy consumption in the 

pattern matching process. In addition, DPI is applied by 

using the AC algorithm in IDSs developed on the study 

numbered [29] and [31] platforms. However, the memory 

requirement of the AC algorithm using the large state 

transition tables and the slowing of the matching speed for 

large pattern datasets show that this algorithm cannot be a 

suitable solution especially for GPU-accelerated DPI 

applications as discussed in the studies numbered [95-97] 

and [98]. 

Filtering-based Technique. A filtering-based approach 

relies on excluding the parts of the input data that do not 

match the pattern. Multi-pattern matching algorithm DFC 

[99] which increases pattern matching performance by 

significantly reducing the number of memory accesses and 

cache miss compared to the AC algorithm is an example of 

filtering-based matching algorithms.  DFC consists of three 

stages called initial filtering, progressive filtering and 

verification. In the initial filtering stage, A direct filter (DF) 

that does not require hash computation and uses a sliding 

window is constructed to exclude parts of the input data that 

do not match the pattern. In the progressive filtering stage, 

multiple layers of DF are constructed to categorize patterns 

based upon length and filter the window incrementally. In 

the last phase,  the input is compared with the patterns to 

verify whether an exact match occurs.  The studies numbered 

[39] and [40] in which the inspection is executed in the 

secure enclave can be given as examples of the use of the 

DFC algorithm. Also, in the study numbered [82], it is used 

a filtering system for RE Matching to exclude flows that 

include no segment characteristics of RE. 

3.1.4 Machine learning based technique 

Some legal restrictions to prevent access to the packet 

payload due to some reasons such as protecting the privacy 

of users [100] encourages researchers to use different 

methods for examining network traffic. The statistical 

methods collect payload-independent variables i.e port 

numbers, packet length, flow start/stop timestamp and inter-

arrival time of packets in a stream to analyze the network 

traffic and predict which application or protocol the traffic 

may belong to [5, 101]. In many studies, Machine Learning 

(ML) algorithms are used [102-104] besides statistical 

methods [105-107] to classify network traffic. The studies 

numbered [103] and [104] use TLS header information and 

DNS data as well as flow metadata in the analysis of network 

traffic. ML is a subset of Artificial Intelligence (AI). AI 

approach aims to implement human-like AI by creating a set 

of rules. Although this approach successfully completed 

well-defined tasks, it is insufficient to perform more 
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complicated processes i.e image processing. ML is 

developed to overcome such challenges. DL approach which 

is a subdomain of ML uses Deep Neural Network (DNN) to 

get data representation at each layer [108]. The relationship 

between AI, ML and DL is shown in Figure 4. The number 

of layers used to model the data is defined as the depth of the 

created model. DL models may have hundreds of 

consecutive layers to handle complex tasks. Traditional ML 

algorithms are inadequate for the analytical requirements of 

modern networks. This situation increases the popularity of 

DL in the application of NTMA techniques [1]. 

 

 

Figure 4. Relation between AI, ML, and DL 

 

In a ML system, it requires expertise to create a feature 

extractor that converts raw data into a convenient 

representation [109]. Because DL algorithms use automatic 

feature learning, they remove the requirement for feature 

engineering in traditional methods. This characteristic of DL 

models is important for NTMA methods as a major part of 

the network traffic are unlabeled or semi-labeled [110]. 

Some useful features that cannot be detected by manual 

feature engineering can be detected by DL algorithms. 

Accordingly, many NTMA applications [111-114] 

implement by using DL algorithms. 

There are many disadvantages that affect performance in 

the process of performing NTMA techniques using ML 

approaches. The success of ML methods highly depends on 

the quality of data used for training. The networks trained 

with low-quality data result in unsuccessful NTMA 

implementations. In this process, DL algorithms need large 

amounts of network traffic data. The most of data are 

unlabeled or semi-labeled in the network applications [110]. 

However, labeling this data is time-consuming and 

computationally labor-intensive. Accordingly, training DL 

algorithms with a great number of training data and variables 

requires rich devices in computing, memory and power 

resources. On the other hand, resource-constrained AI-based 

devices such as IoT devices are insufficient to fulfill this 

requirement. Also, ML-based models need to be retrained at 

frequent intervals to adapt to new situations in the network 

such as security violations or network behavior changes. 

Besides, high complexity in the training phase causes DL 

models to consume too many resources and time. 

Accordingly, DL models need to be improved from the point 

of time and resource consumption. Another issue to be 

evaluated in process of training the networks is about the use 

of the dataset. DL techniques must be trained by specific 

datasets collected from the network traffic and labeled with 

high accuracy due to the heterogeneous nature of networks. 

Accuracy of DL techniques trained by public datasets may 

decrease in several networks [1,115]. 

3.2 Acceleration techniques for DPI 

Many techniques are proposed to accelerate packet 

processing in DPI applications. The hardware-based 

methods use special-purpose hardware such as FPGA, 

TCAM, ASIC, and GPU to reach high matching speed with 

device parallelism. The methods that propose TCAM as a 

hardware acceleration tool are based on TCAM's parallel 

processing capability [36,37,116]. The studies numbered 

[37] and [116], which propose TCAM based multiple pattern 

matching algorithms that allow multiple characters to be 

processed at once, aim to increase the matching speed by 

reducing the number of TCAM searches. The study 

numbered [36] is another schema that proposes TCAM based 

multiple-pattern matching algorithm. Unlike the algorithms 

proposed in studies numbered [37] and [116], this algorithm 

does not use any of the existing DPI techniques for packet 

processing. In this algorithm, patterns with a pattern length 

less than or equal to the specified TCAM width are classified 

as simple patterns. The pattern matching process for the 

simple patterns is as follows: The first w byte in a packet is 

mapped into TCAM to detect a match. Then, one byte is 

shifted, and the process is repeated. This iteration is 

performed for the entire packet. The first step of the pattern 

matching process for long patterns is to identify the prefix 

and the suffix patterns. Then the prefix patterns are 

combined with the corresponding suffix patterns. Three 

tables are stored in memory to perform this process. These 

tables are: Pattern table, Partial Hit List and Matching Table. 

FPGA is another hardware solution used for pattern 

matching. FPGAs consist of programmable logic blocks and 

interconnections between these logic blocks. These logic 

blocks and interconnects can be reprogrammed according to 

the desired purpose. Thanks to its reprogrammable and 

parallel processing capability, FPGA is one of the important 

solutions used for pattern matching. In order to achieve high 

pattern matching speed with device parallelism, many 

studies using FPGA aim to maintain a balance between 

storage and performance [79-81,117,118]. ASIC is an 

integrated circuit designed to perform a specific task, unlike 

general-purpose microprocessors. ASIC can run faster 

compared with programmable logic devices or logic 

integrated circuits. Despite their small size and low energy 

consumption, ASIC production is an expensive and time-

consuming process. In the study numbered [119] developed 

ASIC for IDSs, FNP multiple pattern matching algorithm 
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which reduces the number of memory accesses and improves 

pattern matching performance is presented. FPGA has a 

more flexible structure than ASIC. However, programming 

difficulties of the FPGA prevent its widespread use [120]. 

The software-based methods using general-purpose 

processors provide greater flexibility and programmability 

compared with the hardware-based solutions. In the studies 

numbered [121,122] and [123], approaches that combine the 

advantages of NFA and DFA applications are proposed in 

order to benefit from multi-core architectures efficiently. It 

is aimed to increase the matching performance by using the 

existing parallelism provided by multi-core processors with 

the algorithm proposed in the study numbered [121] in which 

complex REs are divided and assigned to different cores. In 

the study numbered [122], a new pattern matching algorithm 

HBM is proposed by combining DFA and NFA.  According 

to this algorithm, the pattern matching process has two 

stages: Head DFA (H-DFA) and body NFA (B-NFA). While 

H-DFA processes the pattern up to a certain length, it uses 

less memory space than AC algorithm. In the B-NFA phase, 

the matching process is applied over the entire pattern by 

using a variable stride data structure. Also, Single-

Instruction Multiple Data (SIMD) approach is used for 

accelerating the matching process. In this direction, the 

HBM algorithm focuses on reducing the used memory space 

and increasing the matching speed. Contrary to the HBM 

algorithm which creates the head-body finite automaton 

according to the predefined depth values, the FHBM 

algorithm proposed in the study numbered [123] divides the 

head and body parts according to the head size. Accordingly, 

this study proposes an algorithm focusing on increasing the 

efficiency obtained in the pattern matching process by 

providing a more flexible structure in terms of AC-DFA 

partitioning. 

After the development of high-speed networks, 

traditional approaches using CPUs become inadequate in 

meeting network packet processing speed requirements. 

Accordingly, GPU with superior parallel processing 

capability can be used to provide high matching speed 

compared to CPUs [97]. GPU is a multi-threaded and multi-

core processor with high computational power. Therefore, 

GPU is well-suited to handle parallel computing problems 

with high arithmetic intensity. In 2006, NVIDIA introduced 

CUDA which is a parallel computing architecture to solve 

many complicated computing problems more efficiently 

than CPU. CUDA leverages the GPU's capabilities to 

increase computational performance [124]. CUDA-

supported GPU cards consist of a Set of Stream 

Multiprocessors (SM), and each SM contains a Set of Stream 

Processors (SP). SMs are designed with a Single Instruction 

Multiple Thread (SIMT) architecture in order to run 

hundreds of threads simultaneously. In any clock cycle, each 

SP executes the same instruction by processing different 

data. The threads are organized according to warps. The 

warp is a structure that consists of 32 parallel threads, and it 

is the time unit of SM. A warp performs only one command 

at a time. Therefore, a high level of performance can be 

reached when all threads in the warp have the same 

instruction path. 

GPU has performance sensitivities as well as its superior 

performance in computationally intensive tasks and parallel 

computing capability. The organization of warps 

significantly affects performance. The maximum 

performance can be achieved when threads in the same warp 

execute the same instructions. Otherwise, computations in 

the warp are done sequentially, resulting in processing 

latency. The warp executes each branch serially if threads in 

the warp have different execution paths due to any sort of 

divergent conditional branching. This situation which is 

called as thread divergence causes increasing the total time 

of executing instructions in the warp. Bank conflict is 

another factor that causes performance sensitivity. The 

multiple threads requesting access to the same bank at the 

same time results in bank conflict, and this situation 

increases execution time. Another factor limiting 

performance is the difference in access latency of GPU 

memory areas used in the packet processing. CUDA threads 

can access different memory areas while they are executing. 

Each memory area has its own individual purpose, 

accessibility and speed of access. Each thread block has a 

shared memory that can be accessed by all threads which 

belong to that block has the same lifetime as the block. It is 

possible for all threads to access the same global memory. 

The shared memory has less memory than the global 

memory. Like any device memory hierarchy, the local 

memories on GPU have less access latency than the global 

memories. Accordingly, executing the packet processing in 

shared memory instead of global memory reduces packet 

processing time [98]. 

In DPI applications, high-density computing and the 

speed factor are important. Therefore, GPU usage is 

common due to its high computational power and 

convenience for parallel computing problems [38,96-

98,125,126]. In DPI applications based on GPU, 

performance sensitivities of this hardware are mostly 

emphasized, and it is aimed to make maximum use of GPU’s 

parallel processing capability. Whereas the studies numbered 

[98] and [125] focus on reducing the used memory space, 

another study numbered [97] aims to increase the 

performance by reducing the processing load of GPU by 

using a pre-filtering mechanism on the CPU. In addition, BF, 

QF, CF and QCF probabilistic data structures are used as 

matching tools in many DPI applications. In the study 

numbered [38] performed by using CF on GPU, the parts of 

global memory that threads in the same block frequently 

access are detected and transferred to the shared memory. 

Then, it is aimed to reduce the execution time of threads by 

using the shared memory instead of the global memory. This 

approach only detects memory regions that threads access 

frequently. Infrequently accessed memory regions are 

accessed by using global memory. As a result, this approach 

cannot guarantee that all threads access only shared memory. 

Therefore, memory access latency in the study numbered 

[38] is much higher than the study numbered [98] that uses 

the P3FSM algorithm encoding the DFA state transition 

table to fit in the shared memory of GPU. 
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3.3 DPI over encrypted traffic 

According to Google's September 2022 transparency 

report [35], 95% of traffic using the Chrome platform is 

HTTPS. The applications that require detailed analysis of the 

packet payload are completely disabled by the TLS protocol. 

Examples of these applications that are negatively affected 

by HTTPS are content filtering, IDS/ Intrusion Prevention 

System (IPS), Data Loss Prevention (DLP), fraud detection, 

parental control, ad blocker, transcoding and compression 

[127]. Additionally, the inability to detect user and session 

identifiers, URLs or timestamps due to encrypted traffic 

reduces the efficiency of repair services in troubleshooting 

difficulties or application layer problems. RFC8404 [128] 

points out that information provided by the application is 

insufficient in the absence of network packets to analyze. 

Therefore, new approaches are required to use existing 

techniques such as DPI to analyze encrypted traffic. Another 

research topic in the inspection of encrypted network traffic 

is the security of Middle Boxes (MB). With the advent of 

Network Function Virtualisation (NFV), dependence on 

specialized and expensive hardware decreases in the 

distribution of MBs responsible for performing network 

functions such as IDS or firewalls. The distribution of 

software-based MB functions starts to gain importance. 

Accordingly, MBs move from a hardware-based device to a 

cloud infrastructure that provides more flexibility. However, 

transferring data that is internally examined to the MB 

provider for processing raises security and privacy concerns 

[129,130]. This prompts researchers to develop different 

methods for examining network traffic. 

This section focuses on suggested methods to perform an 

inspection on encrypted traffic. In this regard, inspection 

methods on encrypted network traffic are shown with 

reference to the studies numbered [127] and [131] (Figure 5). 

The classification in Figure 5 is based on whether the 

encrypted network traffic is decrypted or not. MITM, AC, 

and TH methods analyze network traffic by decrypting 

encrypted traffic, whereas Searchable Encryption (SE) and 

ML approaches perform their investigations over encrypted 

network traffic. The details of these approaches are presented 

in this sub-section, with the exception of the ML approach. 

The application of NTMA techniques using ML approaches 

is discussed in sub-section 3.1.4. However, it is important to 

evaluate the ML technique together with techniques 

developed for the analysis of encrypted network traffic. Fort 

his reason, in this sub-section, a comparison of the ML 

technique with the others is presented. In addition, a 

comparison of all the techniques developed for the analysis 

of encrypted network traffic is presented 

3.3.1 MITM technique 

MITM technique is implemented by establishing two 

TLS sessions, both between client-MB and MB-server. This 

approach requires the client to install the MB's root 

certificate [132]. The root certificate allows the MB to 

identify itself as a server to the client by copying and signing 

a new certificate based on the server's credentials. In this 

way, encrypted traffic originating from the client can be 

decrypted and analyzed by MB [133]. Then, MB re-encrypts 

data on behalf of the client and transmits it to the server via 

the second TLS session. MITM technique for encrypted 

traffic analysis is widely used in the applications such as 

antivirus and parental control, also incorporates network 

solutions [134-136]. There are also widely open-source tools 

such as MitMProxy [137] and SSLSplit [138]..

 

 

Figure 5. Methods for inspection encrypted traffic 
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3.3.2 SE technique 

SE method tries to detect malicious traffic via token 

matching without decrypting the encrypted traffic. In this 

technique, the SE schema is used to perform a mapping 

between encrypted keywords and rule sets [127]. The study 

numbered [139] is the first DPI schema using the SE 

technique and protecting privacy. In this schema, the client 

establishes a TLS connection with the server and a second 

connection for token matching. Both of these connections are 

routed through MB. MB contains a rule set that is encrypted 

using a key derived from the session key of the TLS session. 

The client tokenizes and encrypts the message by using the 

same key. Then, it transmits the tokenized message by using 

the second connection. MB tries to match tokenized traffic 

with encrypted rule sets. When a match is found, traffic is 

considered malicious and blocked. In this schema, MB 

inspects only tokenized data. Thus, the SE technique has 

very limited functionality compared to the inspection 

performed on the unencrypted traffic. The study numbered 

[130] is designed as the first system handing over MBs to 

cloud providers while keeping network traffic private. In the 

study numbered [139], PrefixMatch which is a new and fast 

encryption schema is proposed in order to reduce the 

overheads arising from the cryptographic computations. In 

addition, the limited functionality of this study is extended 

by supporting different SE schemas that can be used for 

different MB services such as parental filter, IDS or firewall. 

The study numbered [140] which reduces the overhead from 

cryptographic computations in the study numbered [139] and 

memory space needed to perform MB functions uses 

decryptable SE [141] schema based on public-key 

cryptography. This schema replaces the existing TLS 

protocol by using a different approach to deploying the 

public key operation. As for the study numbered [142] 

presents another schema by using public-key encryption. 

Unlike the symmetric encryption schemas used in the study 

numbered [139], public-key encryption schemas increase 

functionality and reduce efficiency and overhead from the 

cryptographic computations during the setup phase. In 

contrast to the study numbered [140], the study numbered 

[142] uses public-key operation only in ML-based inspection 

for malware detection. The study numbered [139] uses a 

garbled circuit to generate encrypted rules used to examine 

encrypted traffic. However, setup latency and overhead size 

caused by garbled circuits are high. In this approach, 

computational and communication overheads are repeated as 

encrypted rules are created for each new session. In the study 

numbered [133], an obfuscated rule generation technique is 

proposed that provides better performance in encrypted rule 

generation and does not use garbled circuits. The 

intermediate values which can be reused in subsequent 

sessions are generated for repeated tokens by using a 

reusable obfuscation mechanism in this approach. 

Accordingly, this approach provides performance gain by 

reusing the rules, and it is aimed to accelerate the encrypted 

rule generation process by reducing the computational and 

communication overheads in the study numbered [139]. The 

study numbered [143] provides hiding of rule sets from MB 

with significantly improved performance over the studies 

numbered [133] and [139]. Rule hiding is enabled when MBs 

are in untrusted cloud providers. Two schemas that host MBs 

in cloud providers and implement different approaches in 

these providers are presented in the studies numbered [144] 

and [145]. The study numbered [145] is based on two cloud 

systems where each rule is XORed with a random string and 

is split into many blocks to MBs located in one of the cloud 

systems. The cloud systems compute blocks together to be 

able to inspect the network traffic. The schema which has a 

two-layered architecture presented in the study numbered 

[144] is deployed on two non-colluding servers. The first 

layer filters the legitimate packets using BF. The second 

layer supports the exact rule matching for network packet 

analysis by using the conjunctive SE schema [146]. In 

addition, the results of the inspection are verified with the 

cuckoo hashing method. 

3.3.3 AC technique 

AC technique that allows traffic to be decrypted is an 

approach based on the client and the server accountability. 

In this technique, the client and the server are aware of all 

the MBs deployed between each other. The prominent 

feature of this technique is that MBs are visible to endpoints 

which decide MBs' right to access encrypted traffic. A 

flexible control mechanism that is provided with AC decides 

whether the data can be decrypted or not [147]. The study 

numbered [147] allows to exchange read and write secret 

keys besides session keys by modifying existing TLS 

protocol so that the client, MB and server establish a secure 

and authenticated channel. In this approach, MBs' access 

rights to encrypted traffic are determined by read/write keys. 

The inspection is performed on segmented encrypted traffic 

by using these keys. However, the main problem with this 

approach is that it changes TLS protocol. The study 

numbered [148] which does not change the underlying TLS 

protocol provides scalability for applications to use cloud-

based MBs. It also leverages the secure enclave of the Intel 

SGX trusted hardware to isolate MB from cloud 

infrastructure. Another schema that aims to make MBs 

visible and auditable is presented in the study numbered 

[149]. MB certificates used to encrypt the channel are 

defined for each TLS segment to eliminate insecure practices 

i.e installing private root certificates by users or sharing 

private keys by servers with third parties. These certificates 

are logged on an MB transparency log server so that MBs 

can be audited. In addition to auditable MBs, the MaTLS 

protocol which ensures the security of MBs is designed in 

this study. This protocol includes security objectives such as 

server, MB and data source authentication, segment and 

individual secrecy and path integrity. 

3.3.4 TH technique 

TH is a technique where inspection is performed in the 

secure enclave of the Intel SGX trusted hardware while 

maintaining confidentiality. The basic principle in this 

approach is that the client or the server shares the session key 

with the secure enclave in the MB. The process of 
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decryption, inspection, and re-encryption are implemented in 

the secure enclave. MBs and service providers holding these 

MBs cannot access decrypted data [131]. The studies 

numbered [39] and [150] can be given as examples of the 

efficient schemas in which the inspection is executed in the 

secure enclave. In these studies, DPI is applied as the MB 

function. In the study numbered [150], an intrusion detection 

and prevention system (IDPS) is implemented by using the 

AC algorithm. In the study numbered [39], IDS is 

implemented by using DFC algorithm, which increases 

pattern matching performance by significantly reducing the 

number of memory accesses and cache miss compared to the 

AC algorithm, and PCRE2 library [151] for RE matching. In 

the study numbered [150] which presents a Click-based 

interface for designing and implementing network functions, 

the inspection of network traffic is performed in the secure 

enclave in MB located on the client, unlike schemas where 

MB is deployed between the client and the server. However, 

a decentralized system model which requires SGX-enabled 

hardware support for all client systems has high deployment 

costs [39]. The study numbered [39] which offers 

programming abstraction for MB developers to securely 

process encrypted traffic uses high-level APIs in a safe 

language, RUST [152] and boundary checking mechanism 

[153] to mitigate potential memory safety attacks [154] on 

enclave code. There are also studies aimed at the efficient 

deployment of MBs to untrusted cloud providers and 

providing secure MB functions by applying the TH 

technique in the NFV environment [40,155,156]. The study 

numbered [155] which uses the DPDK library for I/O 

operations in network packet processing uses the AC 

algorithm as a MB function in DPI implementation. This 

schema that allows the cloud provider to see only encrypted 

traffic protects rule sets and network function codes from the 

cloud provider. The study numbered [156] which presents a 

Click-based interface by using ready-to-use elements and 

C++ extensions to design and implement various network 

functions leverages SCONE [157] which is a shielded 

execution framework based on Intel SGX to securely handle 

network packets. Additionally, the Hyperscan RE library 

[158] is used to implement DPI as a MB function in this 

study which uses the DPDK library for I/O operations in the 

network packet processing. The study numbered [40] 

improves functionality and security of TH-based schemas 

such as the studies numbered [148], [155] and [156], and SE-

based schemas such as the studies numbered [130], [139], 

[140], [142] and [145]. It maintains confidentiality of the 

network traffic metadata such as packet size, count and 

timestamps in addition to the L4 payload of the network 

packet. The study which uses the DFC pattern matching 

algorithm in the application of DPI as MB function suggests 

using DPDK and Netmap libraries for I/O operations in the 

network packet processing. In addition, the study numbered 

[148] using the AC technique benefits from Intel SGX 

trusted hardware to isolate MB from the cloud infrastructure. 

3.3.5 Comparison 

MITM technique is safe as long as a root certificate is 

securely stored, a current TLS version is used, and 

decryption is done in a controlled manner through whitelists 

that contain data not to be decrypted. However, this approach 

may weaken TLS security on several counts. The proxies 

that implement the MITM technique are responsible for the 

certificate validation process while communicating with the 

server. The issues such as accepting any certificate which 

certificate chain cannot be verified or trusting an expired 

Certificate Authority (CA) list may weaken TLS security. 

Some distributions may be insecure due to weaknesses in 

implementing core protocols, i.e allowing deprecated cipher 

suites, and MITM proxies not being updated with patches 

against newly discovered vulnerabilities. Also, simple 

MITM attacks are possible when the same key is used on all 

systems using the same product. Creating product-specific 

root certificates dynamically and protecting the associated 

private keys are important for this reason. Another security 

problem of the MITM technique is related to accessing 

decrypted data. It is difficult to determine devices to allow 

access and monitor network traffic in a large network with 

heterogeneous network devices [133, 134, 159]. 

There are many studies examining the effect of network 

solutions by using the MITM technique on TLS security 

[134-136]. In the study numbered [134], a TLS testing 

framework is proposed to analyze antivirus and parental 

control applications by using the MITM technique for 

encrypted traffic analysis. The security vulnerabilities of 

TLS proxies analyzed against known attacks are detected. 

The support of proxies for different TLS versions is tested, 

and the shortcomings of these proxies in the certificate 

validation process are investigated. Additionally, the matters 

of whether applications dynamically generate product-

specific root certificates and protect the corresponding 

private keys are investigated in this study. The study 

numbered [135] examines the prevalence and impact of 

HTTPS interception. TLS handshakes generated by 

browsers, security products and malware are characterized. 

The heuristics are created that enable web servers to detect 

HTTPS interception and TLS proxies. Then, these heuristics 

are implemented in the different networks. The negative 

effects of solutions that weaken TLS security by using the 

MITM technique for encrypted traffic analysis such as 

corporate MBs and antivirus control applications on 

connection security are also discussed, and the security 

vulnerabilities of these solutions are emphasized. The study 

numbered [136] presents a framework to detect potential 

security vulnerabilities by analyzing TLS Proxy features of 

different network devices. The study which focuses on the 

risks and vulnerabilities of using TLS proxies explores 

security issues related to the protection of private keys, 

patching against known attacks, certificate validation and the 

use of appropriate TLS version and CA trusted lists. 

AC technique provides more flexibility to protect the 

confidentiality of data compared with the MITM technique. 

It does not require special cryptographic primitives as in SE. 

On the other hand, it changes the TLS protocol as the client, 

the server and all MBs must agree on schema to be used. 

Moreover, it is not clear how to set the access policy for MBs 

in the AC technique alike the MITH technique [131]. 
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TH method does not require changes in TLS protocol like 

SE, MITH, and ML techniques. However, the session key 

must be securely transferred by the client or the server to 

trusted hardware. Without the disadvantages of the MITM 

technique, this method allows MB to examine encrypted 

traffic in a protected environment. Therefore, decrypted 

packets do not leak out of the environment. The secure 

enclave has limited storage, memory and computational 

capabilities. For this reason, it is not practical for TH 

technology to perform any inspection in the secure enclave. 

The main concern of TH-based solutions is the security 

vulnerabilities due to the success of attacks such as side-

channel [160] against Intel SGX. The hardware deployment 

and the cost of trusted hardware are also among factors 

limiting to use of this technique [131,155]. 

SE-based techniques cause additional overhead in the 

setup process as they require the generation of tokens and 

encryption of rule sets. However, the matching is done in 

only MB, so the setup phase of SE techniques is more 

inconvenient than the inspection phase due to the 

performance losses. SE technique except for the study 

numbered [140] performs a confidential inspection without 

any changes to the underlying protocols [131]. Inspections 

using this technique which not require decryption and re-

encryption only require the comparison of rulesets to 

tokenized data. This approach provides a limited control 

mechanism as inspection is not performed on decrypted 

packets. However, the studies numbered [133], [139] and 

[144] using this approach can also perform DPI processing 

for deeper analysis of traffic when suspicious flows are 

detected. Alike the schemas in the study numbered [139] 

require a separate channel to transmit tokenized traffic. In 

these cases, the client and the server must have the installed 

schema so that the MB can inspect the inbound and outbound 

traffic. That is, it requires to change in the structure of the 

existing encrypted traffic setup. In addition, security and 

privacy concerns about the use of this technique are resulted 

from attacks such as leakage-abuse [161], reconstruction 

[162], inference [163] and passive [164] on SE technique. 

ML technique does not perform decryption while 

analyzing network traffic. This approach represents an ideal 

solution in terms of the security and application settings as it 

does not require any changes to the existing setup. The 

technique is advantageous compared to the AC technique 

which changes the TLS protocol or MITH, SE and TH 

techniques which require changes in the client and server 

settings. The inspection using ML techniques has inherent 

limitations on data that can be analyzed. The main concern 

about the ML technique is whether it completely meets 

security requirements. The inspection on headers and 

metadata only is insufficient for cases of using that also 

require analyzing over payloads [127]. Attackers carry out 

their attacks over encrypted channels by using encrypted 

traffic to disguise themselves [140, 165]. The ability to have 

information from both the packet header and the payload 

provides control over communication between two 

endpoints. The analyzes performed on the packet header only 

are insufficient to detect whether the packet contains 

malware. For this reason, it is necessary to examine the 

packet payload to detect attacks that can be performed on 

encrypted channels. This approach helps to neutralize the 

danger of hidden threats  [132]. Therefore, it creates a 

motivation to access plain text data. Accordingly, MITH, 

AC, TH and some SE schemas [133, 139, 144] achieve a 

similar efficiency with analyzes that are performed on 

unencrypted traffic data. 

4 Ensuring security with DPI 

Identifying issues that threaten the security of the 

network is an important and current issue for DPI. IoT and 

SDN, which are architectures that generate state-of-the-art 

network traffic, have many difficulties in ensuring security 

due to their structure. In this section, difficulties in ensuring 

the security of IoT and SDN structures are emphasized, and 

the role of IDSs is evaluated in this regard. In addition, 

applications of the DPI method on IoT and SDN 

architectures are examined, and the DPI method is evaluated 

together with the other techniques commonly used in IDSs. 

DPI can be applied as a single technique in IDSs, or it can be 

used as a component of a hybrid system by combining with 

other techniques. In Figure 6, the classification of IDSs as 

for the using method is showed by giving references to the 

studies numbered [166], [167] and [168]. 

In DPI-based IDS systems, IDS alerts when the attack 

pattern matches the input stream. A signature is defined for 

each attack, and as regard to the number of these attacks 

increases the cost of storage increases. Anomaly-based IDS 

has an initial stage in which data is collected about the usual 

behavior of the observed system. A threshold value is set 

when suspicious behavior is encountered in order to alarm 

IDS. Unlike the signature-based method, this ML-based 

technique can detect unknown attacks. However, as 

mentioned earlier, it has many disadvantages such as the lack 

of labeled data, the computational cost, the difficulties in 

retraining or poor quality data [1]. This technique has a very 

high false-positive rate as there may be deviations from the 

threshold value. It also has a relatively high false-negative 

rate since attacks may show small deviations that are 

considered within the norm. It is recommended to overcome 

the disadvantages of the two methods by creating a hybrid 

system. The hybrid IDS system created by the combination 

of the anomaly and the signature-based techniques aims to 

balance high storage cost and the limited attack detection of 

the signature-based technique with high computational cost 

and false positive rate of the anomaly-based techniques 

[169]. In the hybrid schema, the signature-based technique is 

used to detect known attacks, whereas the anomaly-based 

technique is used to detect unknown attacks [170]. 

Specification-based IDSs can detect intrusions when a 

deviation from usual behavior occurs alike anomaly-based 

IDSs. The specifications are developed manually and usual 

system behavior is detected. These behaviors indicate usual 

system behavior, and new behavior is verified according to 

the specified operations [171]. 

4.1 SDN security with DPI 

In traditional networks, all network functions are 

performed by network devices such as switches, routers or 

MB. These devices can be supplied by a single vendor or 
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Figure 6. Classification of IDS 

multiple vendors. Using network devices from a single 

vendor reduces innovation and makes it harder to change on 

the network. The dependency on multiple vendors can 

increase the complexity of the network [130, 172]. As a 

solution to these problems, SDN and NFV technologies are 

developed. SDN is a new networking model in which routing 

hardware is distinguished from the control plane. It 

significantly simplifies network management while 

facilitating innovation and evolution. Network intelligence is 

centralized in the software-based control plane. The network 

devices become simple programmable packet routing 

devices, forming the data plane [173]. NFV implements the 

network functions via software virtualization techniques and 

executes them on commodity hardware. These virtual 

appliances eliminate both the cost of dedicated hardware and 

energy reasons why running a separate device for each 

function in various parts of the network. In this way, NFV is 

an innovative step towards the implementation of the lower-

cost agile network infrastructure [174]. However, one of the 

major barriers in NFV is ensuring that the network 

performance becomes as good as the purpose-built hardware 

implementations. Virtualization can cause unusual latency 

and throughput instability even when network infrastructure 

is not used at full capacity [175]. The agility provided by a 

programmable network infrastructure under central control, 

the fast updating and the easy maintenance facilitate the 

implementation of virtualized network functions. In this 

respect, SDN and NFV are complementary technologies 

[172]. 

Some security vulnerabilities may arise in network 

components of SDN architecture and in their relationships 

due to natural changes [176]. Introducing new interfaces and 

protocols also leads to the occurrence of new attack 

interfaces and exploitable targets. The network structure 

created with SDN may be insecure in case of not taking 

precautions against the security threats originating from 

SDN architecture [177]. The determination of preservation 

architectures for the control channel or another interface in 

SDN architecture must be made by considering services and 

protocols that use the channel. The traffic on the 

communication channels may be intercepted, and this traffic 

data may be used by the attackers to compromise the assets 

in the network when the channels and interfaces used for data 

exchange are not sufficiently secured [178, 179]. 

Adoption of using cloud infrastructure and virtualization 

of network functions contributes to the improvement of SDN 

security by ensuring integration of different security 

functions. The hardware-based security functions such as 

IDS, IPS or firewalls begin to be implemented as software-

based network functions on commodity hardware by 

virtualizing in SDN intertwined with NFV technology [180]. 

Whereas these security services can run anywhere in the 

network topology, they can also be shared and moved 

between different security clouds. Accordingly, virtualized 

security contributes to the scalability of SDN security. The 

network elements avoid the additional resource cost required 

to run complicated and resource-consuming security 

functions with the help of this approach. There is a reduction 

in the controller processing load when the processing of 

security functions is transferred to the external data 

processing systems. This contributes to improve SDN 

performance [172]. 

DPI techniques are widely used in IDS applications 

created to ensure network security in SDN. In addition to the 

studies that present the systems created by applying DPI 

engines that perform signature detection on SDN controllers 

[181-183], there are also some studies supported by an 

anomaly-based IDS to determine unknown or zero-day 

attacks such as the studies numbered [13] and [184]. In the 

study numbered [13], which points to the use of the DPI 

technique as a security solution for smart grids, a SDN-based 

security monitoring framework by using a hybrid model of 

the DL approach and DPI technique is presented. A hybrid 

system design for the classification of QoS categories is also 

presented in the study numbered [185] different from the 

studies which purpose of network security. In this study, a 

SDN flow classification framework by using DPI and ML-

based classifiers is proposed. DPI technique is used to label 

flows with specific applications to create a partially labeled 

dataset. Then, the classifier is trained with this dataset and 

used to identify QoS categories corresponding to different 

application flows. 

In traditional networks, DPI engines implemented in the 

hardware MBs can be virtualized and dynamically deployed 

as parts of the software on the commodity hardware by using 

software-defined networks intertwined with NFV 

technology. Using such virtual DPI engines is costly from 

the point of license fee and power consumption [172]. 

Accordingly, it is important to design low-cost DPI engine 
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deployment strategies that supply with cybersecurity 

operational constraints. In order to that, a method based on 

genetic algorithms and optimizing the cost of DPI engine 

deployment is proposed in the study numbered [186]. In this 

direction, an approach reduces the DPI engine number, the 

global network load, and the number of unanalyzed flows. 

As a result of analyzes performed with different traffic types, 

the cost can be reduced up to 58% with this multi-purpose 

optimization approach. However, this approach is not 

scalable for the larger networks. Therefore, his problem is 

handled with the integer linear programming (ILP) method 

in the study numbered [187]. The validity of designed 

centrality-based greedy algorithm is evaluated by comparing 

with the ILP solution, and the complexity in the study 

numbered [186] is reduced. The experiments using real 

traffic data show that the proposed approach is 20-25 times 

faster than ILP, and it is a scalable solution that can be 

applied for large networks. The proposed cost-optimization-

based approaches determine the number and location of DPI 

engines to be deployed to the network. This method can also 

be used at runtime to dynamically adapt DPI features. 

4.2 IoT security with DPI 

IoT composes large number of interconnected devices. 

These applieances accessed over the internet are 

interconnected by sensing, communication and computing 

capabilities. There are many terms that form the basis of IoT 

i.e machine-to-machine (M2M) communication and sensor 

networks. These terms are a form of communication that 

machines interact with each other without any human 

interaction [188]. The importance of security and privacy for 

providers and end-users increases the interest in the 

classification of the network traffic in IoT. The classification 

of the network traffic also consists of many solutions for the 

other fields i.e intelligent home systems and health care [10]. 

The scale of network traffic generated is much larger than 

in other scenarios because the IoT network has a great 

number of devices. The variety of services that led to this 

large scale also caused the traffic flows to grow rapidly. In 

addition, new obfuscation techniques resulting in more 

sophisticated and malware traffic allow malware to reach 

their targets in less time. For these reasons, the traffic in IoT 

is more complicated than other types of network traffic. This 

causes great difficulties in the examination of the network 

traffic [189]. 

IoT devices in large-scale network traffic are faced with 

serious security problems. The security violations on 

interconnected IoT devices can expose confidential 

information such as audio and video recording, email and 

passwords. Moreover, poorly designed devices allow various 

commands to be executed on them and reconfiguration of the 

firmware [190]. IoT devices have a wide distribution and 

interact with each other. Therefore, such malicious behavior 

may endanger the security of the entire network. Mirai is an 

example of IoT-specific developed malware [191]. This 

cyber-attack leads to a large-scale DDoS attack by using 

compromised IoT devices. 

The host-based security solutions are inadequate to 

protect themselves for most smart devices. These 

shortcomings arise from a lack of physical resources i.e 

power and computational resources. One of the essential 

solutions that preserve IoT devices from cyber attacks is 

network-based security solutions. However, the 

implementation of these security solutions involves many 

difficulties due to the structure of IoT networks [10]. 

It is very difficult to gather and identify signatures from 

all device actions and interactions owing to the 

heterogeneous and large-scale structure of IoT networks. 

Additionally, the firmware releases can affect signatures and 

behaviors generated by IoT devices. This makes it difficult 

to identify and filter malicious activity in network traffic for 

IDS. However, implementing complex IDSs is difficult due 

to the resource and energy constraints of IoT devices. The 

low-cost and the low-quality sensor nodes have inflexible 

constraints i.e computing capacity, memory and energy. 

Most of the existing IDSs cause a high computational cost 

and memory requirements for data analysis and storage. 

Reducing resource consumption by reducing the memory 

used for storage and computation to more reasonable levels 

is an important starting point in the researches conducted for 

IDSs [10, 166]. Developing an IDS that can protect a high 

detection rate whereas keeping the false alarm rate not high 

is another challenge. Accordingly, determining the normal 

behaviors for large-scale sensor applications is an extremely 

difficult task [192]. 

The sensor nodes in IoT networks are sensitive to 

environmental influences. Therefore, the data collected from 

the sensor nodes for analysis is often insecure. In large-scale 

IoT networks, a great number of sensor nodes are distributed 

in harsh and unattended environments that are not easily 

accessible. The data which is noisy, erroneous, inaccurate, or 

unnecessary may occur as a result of these nodes running out 

of battery power or fault. This leads to the insecurity of 

analyzes performed with low-quality data. Also, a sensor 

network deployed for long periods in unattended 

environments is susceptible to dynamic network topology. 

IoT devices may attach or leave the network from anywhere. 

A network topology becomes dynamic with the ability to add 

and remove devices regardless of time or location. It is 

difficult to adapt to such sudden network topology changes 

for IDSs. The sensor nodes with different sensing and 

processing capabilities may move between different 

locations. In fact, each sensor node may contain a different 

number and type of sensors. This dynamism and 

heterogeneity increase the complexity in designing and 

applying analysis techniques [193]. 

Similar to SDN, the DPI method may also be applied to 

IDSs in IoT networks, either alone [194-196] or as a 

component of a hybrid system. Enabling anomaly detection 

technique on every resource-constrained IoT device results 

in high energy consumption, so it is necessary to balance 

between accuracy detection and energy consumption. The 

ability of responding to unknown attacks besides increasing 

the accuracy in detecting known attacks is one of the 

important goals of hybrid NIDS. For this reason, many 

hybrid studies use anomaly detection technique to detect the 

unknown attack signatures whereas the DPI-based technique 

is used for known attack types [169, 170, 197, 198].  
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Figure 7. Implementation challenges for DPI systems 

In addition, the study numbered [13] which proposes a 

hybrid model of the ML approach and DPI technique 

presents a security monitoring framework in which IoT and 

SDN architectures are combined with each other. 

5 Challenges and open issues in implementing DPI 

systems 

Designing efficient DPI mechanisms can be 

accomplished by individually evaluating and optimizing all 

processes from acquisition to inspection of network traffic. 

A review on DPI implementation challenges is presented in 

this section [1, 10, 11, 16]. Figure 7 summarizes the factors 

affecting system performance in the entire DPI process. In 

addition to the application difficulties of the DPI technique, 

the research issues of the field are discussed in this section. 

5.1 Challenges obtaining network traffic 

Performing data analysis on modern communication 

systems and networks includes challenges such as ensuring 

accuracy and efficient analysis of big data in real-time. 

Especially in the cellular networks, traffic pattern exhibits 

complex behavior due to the varied factors i.e device 

mobility and network heterogeneity. The aforementioned 

difficulties are related to main difficulties such as the 

volume, speed, accuracy and diversity of data encountered in 

the process of obtaining valuable information from the 

structure called big data [1, 115]. The collection and 

evaluation of this heterogeneous network traffic resulting 

from increasing network complexity require efficient 

mechanisms created by designing scalable and distributed 
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applications that perform the real-time analysis of large 

amounts of data. Some platforms developed for processing 

big data are presented in the studies numbered [199], [200] 

and [201]. On the other hand, it is unclear whether NTMA 

applications fully benefit from big data solutions [115]. 

5.2 Challenges with signature patterns 

The increasing number of new systems, services and 

applications containing malware result in the growth of 

signature sets that need to be examined by DPI. Although the 

large signature sets are important for traffic identification, 

this degrades the overall performance of DPI systems [11]. 

Also, DPI applications have more complicated signature 

datasets compared to the others. For instance, the rules of 

Snort which are the implementation of DPI are more 

complex than a XML filter using RE for pattern detection 

[202]. Accordingly, reducing the computational complexity 

and memory requirement for DPI applications developed by 

using complex and databases with many signatures rank 

among the important research topic. On the other hand, 

signature-based systems cannot be used for the detection of 

unknown attacks or zero-day attacks. Therefore, it is 

necessary to create hybrid systems that can respond to 

unknown attacks while aiming to increase accuracy in 

detecting known attacks. In addition, these hybrid systems 

allow the updating of databases used for signature-based 

detection by detecting new signatures. 

5.3 Hardware and OS related challenges 

In the process of obtaining network packets, there are 

many factors that limit performance associated with an 

operating system such as problems with the use of main 

memory, spinlocks, context switches, inefficient memory 

accesses or serialization problem in accessing network traffic  

[16]. In section 2, the problems encountered in receiving 

network packets from NIC and processing are detailed, and 

solutions developed for these problems are presented. In 

addition, the hardware factors such as processor, memory, 

hard disk and their communication over the system bus also 

affect the processing performance. Most of the devices are 

not physically linked to each other. In this case, main 

memory becomes the common interface between devices for 

data communication. The latency in situations that occurs 

when DMA structure cannot be used, and data must be 

transmitted from the main memory causes bottlenecks. The 

time of the NIC is not performing DMA to GPU memory is 

counted as an example of this situation. If data has to be 

transmitted from the main memory, a bottleneck may be 

occurred even though the bus is fast enough [11, 203]. 

Moreover, the bottlenecks may be occurred in the transfer 

process of packets due to the limited PCIe bandwidth for the 

hardware-based solutions. This bottleneck can be reduced by 

the use of a pre-filtering mechanism that prevents all packets 

from being forwarded to the hardware for processing. 

5.4 Challenges arising from the architecture of the 

network structure 

Contemporary architectures such as IoT or SDN have 

many difficulties in ensuring security. The resource and 

energy constraints of the devices in IoT networks make it 

difficult to implement complex IDSs on these devices, and 

the host-based security solutions are insufficient to secure 

these devices. The poor design of devices causes security 

vulnerabilities leaving them vulnerable to any cyber attack. 

Considering the span of IoT devices and their interaction 

with each other, such malicious behavior may have negative 

effects on the security of the entire network [10, 166, 191]. 

The security threats originating from SDN architecture may 

cause insecurity of network structure created by the 

architecture. The new interfaces and protocols may lead to 

the occurrence of new attack interfaces and exploitable 

targets. Accordingly, the network traffic on the 

communication channels can be accessed by the attackers, 

and this traffic data can be used to endanger the assets in the 

network when channels and interfaces used for information 

exchange are not secure enough [177-179]. Therefore, it is 

extremely important to develop security strategies on SDN 

and IoT architectures which security threats affect a wide 

area. Designing deployment strategies of the DPI engine 

which is costly in terms of the license fees and power 

consumption is another challenge arising from the SDN 

architecture in the development of security strategies [172]. 

On the other hand, the implementation of DPI engines as 

virtualized network functionality on SDN architecture may 

lead information leakage during the implementation of 

security functions such as IDS, IPS or firewalls [129]. 

5.5 Challenges during implementation of DPI techniques 

Nowadays, almost all network traffic is encrypted due to 

security and privacy concerns. Therefore, it is important to 

evaluate the DPI technique over encrypted traffic. In this 

direction, the difficulties encountered in the application of 

DPI techniques are examined in this section. The application 

of DPI techniques in analyzing encrypted network traffic 

requires cryptographic computations. This requirement 

causes additional overhead for DPI systems. In addition, the 

intensive computation required in process of matching 

complex patterns on plaintext data increases this overhead 

[11]. Additively, the requirement of reducing memory space 

required for algorithms that are applied in the pattern 

matching process is an important research topic about DPI 

applications that use hardware such as GPUs that accelerate 

the processing of network packets, especially with parallel 

computing capabilities. Accordingly, it is a great challenge 

to develop well-performed systems for DPI applications with 

high computational complexity and memory space 

requirement [98]. As summarized in Figure 5, the methods 

that apply DPI by decoding encrypted traffic and perform an 

inspection on fully encrypted traffic are discussed together 

for an accurate comparison. In this direction, the inspection 

techniques are evaluated in terms of security, performance 

and functionality. 

5.5.1 Security 

The successful side-channel attacks on the Intel SGX 

used in the TH approach and attacks on the SE technique 

such as inference attack, leakage-abuse attack, 

reconstruction attacks and passive attacks require further 

research on the security of these techniques. AC technique 

provides more flexibility in protecting the confidentiality of 
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data compared to the MITM technique. However, setting 

access policies and monitoring network traffic for both 

MITH and AC techniques are the significant security 

challenge in a large network with heterogeneous network 

devices. Moreover, the main concern of techniques that 

perform inspection by decrypting network traffic on MBs in 

insecure cloud environments is the risk of information 

leakage [130, 131]. The main concern of the ML technique 

which does not decrypt the network traffic is whether it fully 

meets security requirements [127]. The fact that almost all of 

today's network traffic is encrypted causes attackers to use 

encrypted channels to hide themselves [165]. The 

inspections of headers and metadata only are insufficient to 

detect whether a packet contains malware. 

5.5.2 Performance 

The most important factor limiting performance for the 

SE technique is the additional cryptographic calculations at 

the setup phase. The research focus of schemas 

implementing this technique is to increase efficiency by 

reducing computations. In the TH technique, one of the most 

important factor limiting the performance is the secure 

enclave which is limited in terms of memory, storage space 

and computational capability [131]. Therefore, future 

researches in this area must focus on balancing storage and 

performance. Also, all network traffic that routes to the 

secure enclave causes inspection on all packets. An efficient 

pre-filtering mechanism enables a more efficient mechanism 

without unnecessary investigations on the resource-

constrained region. 

For ML-based models that need to be retrained frequently 

due to security breaches or network behavior changes, the 

high complexity in the training phase consumes lots of 

resources and time, limiting performance [1]. Accordingly, 

the optimization of ML models from the point of the time 

complexity and the resource consumption is required. 

5.5.3 Functionality 

In MITH, AC, TH, and some SE schemas [133, 139, 

144], performing inspections on the decrypted data means 

full control over communication between two endpoints. 

This provides full functionality for NTMA applications. For 

ML-based schemas in which inspections are performed on 

the encrypted traffic, the main challenge is to create ML 

models that enable the successful implementation of NTMA 

applications without examining the packet payload. Also, 

ML technique does not require any changes on the existing 

setup compared to AC technique that changes TLS protocol, 

or MITH, SE, and TH techniques that require changes in the 

client and the server settings. Accordingly, ML technique 

offers the most advantageous solution in terms of application 

settings [131]. 

6 Conclusion 

In this paper, a comprehensive review of DPI 

implementation challenges is made for the scenarios that 

generate state-of-the-art network traffic. A detailed analysis 

is presented as regards the determination and the 

improvement of the parameters that limit the performance in 

all processes from the collection of the network traffic to the 

analysis with DPI. The structures of the frameworks 

containing DPI techniques in the current literature are 

examined. In addition, this paper points the other techniques 

that complement the DPI technique instead of focusing only 

on this technique in determining the procedures to be applied 

in future mechanisms. The discussion of the application 

based on DPI technique in the network security field and the 

analysis of this technique over encrypted traffic fulfil an 

important deficiency in the literature toward the increasing 

concerns about security and privacy. For this reason, the 

security issues of the current architectures such as IoT and 

SDN, whose main focus is security concerns, are discussed, 

and DPI implementation difficulties on these architectures 

are evaluated. In addition, a classification of the proposed 

methods is presented to perform an inspection on encrypted 

traffic, and the advantages and disadvantages of the 

techniques that directly use or do not use the DPI approach 

or limit the usability of this approach are discussed. In 

conclusion, the aim of this paper is to evaluate integration of 

DPI technique into mechanisms aiming to analyze network 

traffic efficiently by determining the requirements of state-

of-the-art network traffic. 
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