

Niğde Ömer Halisdemir Üni**ver**sitesi Mühendislik Bilimleri Dergisi Niğde Ömer Halisdemir University Journal of Engineering Sciences

Araştırma makalesi / Research article

www.dergipark.org.tr/tr/pub/ngumuh / www.dergipark.org.tr/en/pub/ngumuh



# **Synthesis of MoS<sup>2</sup> thin films using the two-step approach**

**İki adımlı yaklaşım kullanılarak MoS<sup>2</sup> ince filmlerin sentezlenmesi**

**Serkan Erkan<sup>1</sup> [,](https://orcid.org/0000-0001-7249-6701) Ali Altuntepe<sup>2</sup> [,](https://orcid.org/0000-0002-6366-4125) Recep Zan3,\***

*1,2,3 Niğde Ömer Halisdemir University, Nanotechnology Application and Research Center, 51200, Niğde, Türkiye 1,3 Niğde Ömer Halisdemir University, Department of Pyhsics, 51200, Niğde, Türkiye*

# **Abstract Öz**

In this study,  $MoS<sub>2</sub>$  thin films were grown using two-step approach, which is based on employing both PVD and CVD techniques. The films were obtained initially by sputtering 1nm Mo film in the PVD system and followed by sulphurization of the film in CVD at 700°C. The grown films were optimized employing different sulphurization times. The main difference in our study from the current literature is using preheated CVD furnace (700°C) ahead of sulphurization. The films quality are then investigated using Raman and Photoluminance spectrometer as well as AFM measurements. The Raman spectrums indicate that two characteristic vibration modes of 2H-MoS<sub>2</sub> phase were observed in all samples, however, vibration modes of 1T-MoS<sup>2</sup> phase were also observed in some films at low sulphurization time. These results were also in line with PL measurements that confirm the direct band transition of the  $MoS<sub>2</sub>$  films. The surface topography of the films were investigated by AFM for  $MoS<sub>2</sub>$  films obtained by the sulfurization of 1 nm-thick Mo film in 15 minutes at  $700^{\circ}$ C which shows  $MoS<sub>2</sub>$  crystals in triangle shape.

Keywords: MoS<sub>2</sub>, Two-dimensional materials, PVD, CVD, Raman spectroscopy

# **1 Introduction**

Two-dimensional (2D) materials usually called one atomic thick materials such as graphene, carbon nanotube, molybdenum disulfide  $(MoS<sub>2</sub>)$  have attracted the attention of many researchers due to their superior structural and physical properties [1]. Transition metal dichalcogenides (TMDs) are the most popular materials in the family of 2D materials in that they have high transmittance, high durability and direct energy band gap. The generalized formula for TMDs is  $MX_2$ , where M is the transition metals (molybdenum, tungsten, vanadium) and X represents chalcogens (sulfur, tellurium and selenium)  $[2]$ . MoS<sub>2</sub> stands out among the TMDs due to its remarkable properties.  $MoS<sub>2</sub>$ has a hexagonal structure connected to each other (S-Mo-S) with covalent bonds. In addition,  $MoS<sub>2</sub>$  has 1.3 eV indirect band transition in its bulk form and 1.85 eV direct band gap transition in the single and multi-layer form  $[3, 4]$ . The band gap called "direct" is the top of the valence band and the bottom of the conduction band occur at the same value of the K-point of Brillouin Zone. Therefore, when an electron rises

Bu çalışmada, hem PVD hem de CVD tekniklerinin kullanılmasına dayanan iki aşamalı yaklaşım kullanılarak MoS2 ince filmler büyütülmüştür. Filmler ilk olarak 1 nm Mo filmin PVD sisteminde saçtırma yöntemiyle ve ardından filmin CVD' de 700°C' de sülfürlenerek elde edilmiştir. Büyütülmüş filmler, farklı sülfürizasyon süreleri kullanılarak optimize edilmiştir. Çalışmamızın güncel literatürden temel farkı, kükürtleme öncesinde önceden ısıtılmış CVD fırını (700°C) kullanılmasıdır. Filmlerin kalitesi daha sonra AFM ölçümlerinin yanı sıra Raman ve Fotolüminesans spektrometresi kullanılarak araştırılmıştır. Raman spektrumları, tüm örneklerde 2H-MoS<sub>2</sub> fazının iki karakteristik titreşim modunun gözlemlendiğini, ancak bazı filmlerde düşük sülfürizasyon süresinde  $1T-MoS<sub>2</sub>$  fazının titreşim modlarının da gözlendiğini göstermektedir. Bu sonuçlar ayrıca MoS<sub>2</sub> filmlerinin doğrudan bant geçişini doğrulayan PL ölçümleriyle de uyumludur. Filmlerin yüzey topografyası, 1 nm kalınlığında Mo filminin 700°C'de 15 dakikada sülfürlenerek elde edilen ve MoS2 kristallerini üçgen şeklinde gösteren  $MoS<sub>2</sub>$  filmleri için AFM ile incelenmiştir.

Anahtar kelimeler: MoS<sub>2</sub>, İki-boyutlu malzemeler, PVD, CVD, Raman spektroskopisi

from valance band to the conducting band, it does not need addition of phonon energy. When the conducting and valance bands do not have the same value with the K-point of Brillouin Zone, this is called "indirect" band gap. Thus, in order for an electron to move from valance band to the conducting band, it needs extra energy known as phonon energy to push the electron to the conducting band [5]. This restricts especially opto-electronic applications. In this respect, the transition from indirect to direct band structure when  $MoS<sub>2</sub>$  is thinned down creates an important advantage for the opto-electronic applications [6].

 $MoS<sub>2</sub>$  has commonly two typical phases called 2H and 1T. The 2H phase represents semiconductor while the 1T addresses metallic behavior. The structural difference between the 2H and 1T phases is due to the geometric arrangement of the S-atoms. Phase change/transformation can be made/done in the  $MoS<sub>2</sub>$  structure by applying annealing processes without the need for high pressure or doping [7-9].

<sup>\*</sup> Sorumlu yazar / Corresponding author, e-posta / e-mail: recep.zan@ohu.edu.tr (R. Zan)

Geliş / Recieved: 05.10.2022 Kabul / Accepted: 16.11.2022 Yayımlanma / Published: 15.01.2023 doi: 10.28948/ngmuh.1184705

There are a few different approaches regarding  $MoS<sub>2</sub>$ synthesis such as magnetron sputtering [10], chemical vapor deposition (CVD) [11, 12], hydrothermal synthesis [13] and electrochemical processes [14], which are considered to be more suitable and applicable techniques. The magnetron sputtering technique provides large-scale synthesis and is compatible with the existing industrial processes with low cost and easy control. However, the magnetron sputtering technique creates an obstacle in synthesizing TMDs, especially for  $MoS<sub>2</sub>$  and  $MoSe<sub>2</sub>$ , due to the difficulty of controlling stoichiometric ratio of S or Se [15].

In this study, large scale and homogeneous  $MoS<sub>2</sub>$  films were synthesized using both magnetron sputtering and CVD methods. Although, CVD provides many advantages in  $MoS<sub>2</sub>$  synthesis, this method includes many parameter optimizations such as; sulphurization time, gas flow ratio, pressure and etc. Mo films were first coated on the glass and Si/SiO<sub>2</sub> substrates by magnetron sputtering and then sulphurization was carried out in the preheated CVD at high temperature to obtain  $MoS<sub>2</sub>$  thin films with high homogeneity. We call this approach as a two-step approach, which is based on sputtering Mo films and the annealing them in sulfur atmosphere in the preheated CVD at high temperature to obtain  $MoS<sub>2</sub>$  thin films.

# **2 Method**

In this study, the glass and  $Si/SiO<sub>2</sub>$  substrates were cleaned using the standard cleaning procedures (5 minutes acetone, 5 minutes isopropanol alcohol and 10 minutes deionize water in ultrasonic bath) ahead of synthesis process. Mo was sputtered on these substrates to achieve 1 nm film thickness using 50 W RF power under 1.6x10<sup>-6</sup> Torr base pressure in a pure Ar gas atmosphere. Then, 1 nm thick Mo films were sulfurized in the CVD system applying different sulphurization times for the  $MoS<sub>2</sub>$  film synthesis. Sulphur powder (50 mg) and 50 sccm Ar gas flow ratio were used in the sulphurization process.

In the  $MoS<sub>2</sub>$  synthesis procedure, the Mo coated substrate was placed in the quartz tube and exposed to 700 °C directly in the preheated CVD furnace. In other words, samples were not placed in quartz tube during the heating process of the furnace. The temperature of the samples in the furnace was increased rapidly with a ramping rate of 1.67 °C/s, which was measured using thermocouple. As for the sulphurization temperature, it was kept constant at 700 °C for all the investigated samples according our many runs and literature [16, 17].

Sulphurization time is an important parameter to enhance MoS<sup>2</sup> film quality. So different dwell times were applied to determine the optimum sulphurization time, which were 5-, 10-, 15- and 20-minutes. This process was carried out in the CVD furnace at 700 °C. The structural properties of the synthesized  $MoS<sub>2</sub>$  films were characterized by Raman and Photoluminescence (PL) Spectrometer and Atomic Force Microscope (AFM) measurements.

The reason why Raman spectroscopy was employed for characterization is because it is one of the essential and straightforward characterization tools to determine MoS<sub>2</sub> film quality.  $MoS<sub>2</sub>$  shows two characteristic modes (two

peaks) in Raman spectrum, which are  $A_{1g}$  and  $E_{2g}^1$ ;  $A_{1g}$  mode is related to out-of-plane vibration of S atoms and  $E_{2g}$ <sup>1</sup> mode is associated with in-plane vibration of Mo and S atoms [18]. The frequency difference (peak positions) between these two modes in Raman spectrum is increasing with the increase of the film thickness along with shifting PL emission to longer wavelengths [19, 20]. Additionally, if the frequency difference between the two modes in Raman spectrums is around or below  $20 \text{ cm}^{-1}$ , the films tend to become thinner towards a single layer [21-24].

# **3 Result and discussions**

Raman spectrum of  $MoS<sub>2</sub>$  films obtained with different sulphurization times of 1 nm thick Mo films is presented in Figure 1.  $MoS<sub>2</sub>$  structure was not obtained when 5 minutes dwell time was applied. This can be attributed to the S atoms, which do not have enough time to penetrate into Mo film at 700 °C. MoS<sub>2</sub> structure was first obtained for 10 minutes dwell time. Characteristic modes of  $MoS<sub>2</sub>$  in the Raman spectrum, which are  $A_{1g}$  and  $E_{2g}$ <sup>1</sup>, were determined around  $386 \text{ cm}^{-1}$  and  $410 \text{ cm}^{-1}$ , respectively for the film obtained in 10 minutes dwell time. These peaks also underline the presence of 2H-MoS<sub>2</sub> phase, which is the so-called semiconductor phase exhibiting semiconductor properties. Additionally, this film has another three characteristics Raman modes named  $J_1$  (156 cm<sup>-1</sup>),  $J_2$  (220 cm<sup>-1</sup>),  $J_3$  (290- $304 \text{ cm}^{-1}$ ). These modes are related to the 1T-MoS<sub>2</sub> phase, which is metallic. Therefore, the  $MoS<sub>2</sub>$  film can also exhibit metallic properties as well as semiconducting properties  $(2H-MoS<sub>2</sub> phase)$  at the same time  $[25, 26]$ . The 1T-MoS<sub>2</sub> phase occurs due to the failure of S atoms to settle in the structure within a sufficient time phase. This was also applied in our case for the sample obtained in 10 minutes dwell times, which is not sufficient for S atoms to penetrate into Mo structure [7, 27, 28]. When the dwell time increased from 10 to 15 minutes, the  $1T-MoS<sub>2</sub>$  phase evolved to  $2H$ - $MoS<sub>2</sub> phase [29-32]$ . Upon increasing the dwell time to 15 minutes, previously seen  $J_1$ ,  $J_2$  and  $J_3$  modes disappeared, and the characteristic modes of 2H phases were observed at around  $384 \text{ cm}^{-1}$  and  $409 \text{ cm}^{-1}$ , respectively. In brief, S atoms could penetrate to the Mo structure and 1T phase evolved to 2H phase in 15 minutes dwell time. However, higher dwell time (20 minutes) affected the  $MoS<sub>2</sub>$  film quality seriously and no  $MoS<sub>2</sub>$  film was obtained at all. These results can be ascribed to the defect formation in the  $MoS<sub>2</sub>$  film structure by the increase in the dwell time due to the rise in the amount of S atoms in the vicinity [33].

PL characterization is essential to determine band transition in  $MoS<sub>2</sub>$  structure. PL spectra of  $MoS<sub>2</sub>$  films obtained with different dwell times are given in Figure 2, which also verifies the Raman measurements regarding the formation of metallic and semiconductor phase of  $MoS<sub>2</sub>$ structure. PL spectra of the  $MoS<sub>2</sub>$  film obtained in 10 minutes dwell time show a peak at 972 nm, which corresponds to a band gap of 1.27 eV. This gap indicates an indirect band gap transition in addition to metallic phase, which is confirmed by Raman measurements. On the other hand, when the dwell time was changed from 10 to 15 minutes, two PL emission peaks were determined at 972 nm and 687 nm and these



**Figure 1.** Raman spectrum of MoS<sub>2</sub> film obtained with different sulphurization times (5-, 10-, 15- and 20-minutes) of 1 nm thick Mo layers

correspond to a band gap of 1.27 and 1.80 eV, respectively. This is highly related to the metallic phase that converted into semiconductor phase with increasing dwell time. However, rising the dwell time from 15 minutes to 20 minutes destroyed the  $MoS<sub>2</sub>$  structure due to higher interaction of Mo film with more S atoms in high temperature [8, 34].

Figure 3 shows the AFM image (1 $\mu$ m x 1 $\mu$ m) of MoS<sub>2</sub> film obtained on the  $Si/SiO<sub>2</sub>$  substrate by sulfurization 1nmthick Mo film in 15 minutes at 700 °C. The film exhibits similar surface morphology across the film, which is the confirmation of high coverage and homogeneity of the film.

We observed that the AFM images of the synthesized film is a few-layer, homogenous with  $< 0.5$  nm surface (RMS) roughness and these results are in line with those obtained through the Raman measurements.

### **4 Conclusions**

In the present study,  $2D-MoS<sub>2</sub>$  films were synthesized using a two-step method. The first step included the synthesis of 1nm-thick Mo film using magnetron-sputtering system while the second step concerned the sulphurization



**Figure 3.** The AFM image (1µm x 1µm) of MoS2 film obtained on the Si/SiO2 substrate by sulfurization 1nmthick Mo film in 15 minutes at 700 °C



**Figure 2.** PL spectrum Raman spectrum of MoS2 film obtained with different sulphurization times (5-, 10-, 15- and 20minutes) of 1 nm thick Mo layers

of the Mo films with different dwell times in the CVD system. According to the Raman and PL spectroscopy measurements of  $MoS<sub>2</sub>$  films, 10 minutes of dwell time was found to be insufficient for the formation of single phase  $MoS<sub>2</sub>$  as the obtained film showed metallic phase. With the increase of dwell time from 15 to 20 minutes, the metallic phase changed to the semiconductor phase and the indirect band transition evolved to a direct band transition. However, we observed that the  $MoS<sub>2</sub>$  structure could not be obtained when the dwell time was increased to 20 minutes and the optimum dwell time for the HT method was set to 15 minutes. Hence, we conclude that the two-step approach is highly effective to synthesize high quality  $MoS<sub>2</sub>$  films by the sulfurization of 1 nm-thick Mo film in 15 minutes at  $700^{\circ}$ C. These results enable the use of  $MoS<sub>2</sub>$  films in optoelectronic applications.

# **Acknowledgment**

The authors gratefully acknowledge funding from Niğde Ömer Halisdemir University Scientific Projects Unit under a project number of FMT 2021/4-ÖNAP.

# **Conflict of interest**

The author declares that there is no conflict of interest.

# **Similarity rate (iThenticate):** 7%

# **References**

- [1] A.K. Geim, K.S. Novoselov, The rise of graphene, in: Nanoscience and technology: a collection of reviews from nature journals, World Scientific, pp. 11-19, 2010. https://doi.org/10.1063/1.5091753.
- [2] H.-P. Komsa, S. Kurasch, O. Lehtinen, U. Kaiser, A.V. Krasheninnikov, From point to extended defects in two-dimensional MoS2: Evolution of atomic structure under electron irradiation, Physical Review B, 88 035301(2013).

https://doi.org/10.1103/PhysRevB.88.035301.

- [3] J.W. Park, H.S. So, S. Kim, S.-H. Choi, H. Lee, J. Lee, C. Lee, Y. Kim, Optical properties of large-area ultrathin  $MoS<sub>2</sub>$  films: Evolution from a single layer to multilayers, Journal of Applied Physics, 116 183509(2014). https://doi.org/10.1063/1.4901464.
- [4] H. Nan, Z. Wang, W. Wang, Z. Liang, Y. Lu, Q. Chen, D. He, P. Tan, F. Miao, X. Wang, Strong photoluminescence enhancement of  $MoS<sub>2</sub>$  through defect engineering and oxygen bonding, ACS nano, 8 5738-5745(2014). https://doi.org/10.1021/nn500532f.
- [5] S. Zhang, Z. Yan, Y. Li, Z. Chen, H. Zeng, Atomically thin arsenene and antimonene: semimetal– semiconductor and indirect–direct band‐gap transitions, Angewandte Chemie, 127 3155- 3158(2015). https://doi.org/10.1002/ange.201411246.
- [6] S. Tongay, J. Zhou, C. Ataca, K. Lo, T.S. Matthews, J. Li, J.C. Grossman, J. Wu, Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe<sub>2</sub> versus MoS<sub>2</sub>, Nano letters, 12 5576-5580(2012). https://doi.org/10.1002/ange.201411246.
- [7] A. Ambrosi, Z. Sofer, M. Pumera, 2H→ 1T phase transition and hydrogen evolution activity of  $MoS<sub>2</sub>$ ,  $MoSe<sub>2</sub>, WS<sub>2</sub> and WS<sub>2</sub> strongly depends on the MX<sub>2</sub>$ composition, Chemical Communications, 51, 8450- 8453(2015). https://doi.org/10.1039/C5CC00803.
- [8] A.N. Enyashin, L. Yadgarov, L. Houben, I. Popov, M. Weidenbach, R. Tenne, M. Bar-Sadan, G. Seifert, New route for stabilization of  $1T-WS_2$  and  $MoS_2$  phases, The Journal of Physical Chemistry C, 115 24586- 24591(2011). https://doi.org/10.1021/jp2076325.
- [9] S. Presolski, M. Pumera, Covalent functionalization of MoS<sub>2</sub>, Materials Today, 19 140-145(2016). https://doi.org/10.1021/jp2076325.
- [10] C. Muratore, J. Hu, B. Wang, M.A. Haque, J.E. Bultman, M.L. Jespersen, P. Shamberger, M. McConney, R. Naguy, A. Voevodin, Continuous ultrathin  $MoS<sub>2</sub>$  films grown by low-temperature physical vapor deposition, Applied Physics Letters, 104 261604(2014). https://doi.org/10.1063/1.4885391.
- [11] Y. Zhan, Z. Liu, S. Najmaei, P.M. Ajayan, J. Lou, Large‐area vapor‐phase growth and characterization of MoS<sup>2</sup> atomic layers on a SiO<sup>2</sup> substrate, Small, 8 966- 971(2012). https://doi.org/10.1002/smll.201102654.
- [12] B. Zheng, Y. Chen, Controllable growth of monolayer  $MoS<sub>2</sub>$  and  $MoSe<sub>2</sub>$  crystals using three-temperature-zone furnace, in: Materials Science and Engineering Conference Series, pp. 012085, 2017. https://doi.org/10.1088/1757-899X/274/1/012085.
- [13] Y. Liu, L. Ren, X. Qi, L. Yang, G. Hao, J. Li, X. Wei, J. Zhong, Preparation, characterization and photoelectrochemical property of ultrathin MoS<sub>2</sub> nanosheets via hydrothermal intercalation and exfoliation route, Journal of alloys and compounds, 571 37-42(2013). https://doi.org/10.1016/j.jallcom.2013.03.031.
- [14] D. Song, Y. Wang, X. Lu, Y. Gao, Y. Li, F. Gao, Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer  $MoS<sub>2</sub>$  nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides, Sensors and Actuators B: Chemical, 267 5- 13(2018). https://doi.org/10.1016/j.snb.2018.04.016.
- [15] L. Li, R. Long, O.V. Prezhdo, Why chemical vapor deposition grown  $MoS<sub>2</sub>$  samples outperform physical vapor deposition samples: time-domain ab initio analysis, Nano letters, 18 4008-4014(2018), https://doi.org/10.1021/acs.nanolett.8b01501.
- [16] S. Ghosh, S.S. Withanage, B. Chamlagain, S.I. Khondaker, S. Harish, B.B.J.E. Saha, Low pressure sulfurization and characterization of multilayer  $MoS<sub>2</sub>$ for potential applications in supercapacitors, 203 117918(2020),

https://doi.org/10.1016/j.energy.2020.117918.

[17] R. Shahzad, T. Kim, S.-W.J.T.S.F. Kang, Effects of temperature and pressure on sulfurization of molybdenum nano-sheets for  $MoS<sub>2</sub>$  synthesis, 641 79-86(2017),

https://doi.org/10.1016/j.energy.2020.117918.

[18] B.R. Carvalho, L.M. Malard, J.M. Alves, C. Fantini, M.A. Pimenta, Symmetry-dependent exciton-phonon coupling in  $2D$  and bulk  $MoS<sub>2</sub>$  observed by resonance Raman scattering, Physical review letters, 114 136403(2015),

https://doi.org/10.1103/PhysRevLett.114.136403.

- [19] H. Li, Q. Zhang, C.C.R. Yap, B.K. Tay, T.H.T. Edwin, A. Olivier, D. Baillargeat, From bulk to monolayer MoS<sub>2</sub>: evolution of Raman scattering, Advanced<br>Functional Materials, 22 1385-1390(2012), Functional Materials, 22 1385-1390(2012), https://doi.org/10.1002/adfm.201102111.
- [20] K.-K. Liu, W. Zhang, Y.-H. Lee, Y.-C. Lin, M.-T. Chang, C.-Y. Su, C.-S. Chang, H. Li, Y. Shi, H. Zhang, Growth of large-area and highly crystalline  $MoS<sub>2</sub>$  thin layers on insulating substrates, Nano letters, 12 1538- 1544(2012), https://doi.org/10.1021/nl2043612.
- [21] I. Bilgin, F. Liu, A. Vargas, A. Winchester, M.K. Man, M. Upmanyu, K.M. Dani, G. Gupta, S. Talapatra, A.D. Mohite, Chemical vapor deposition synthesized atomically thin molybdenum disulfide with optoelectronic-grade crystalline quality, ACS nano, 9 8822-8832(2015),

https://doi.org/10.1021/acsnano.5b02019.

- [22] M.S. Kim, G. Nam, S. Park, H. Kim, G.H. Han, J. Lee, K.P. Dhakal, J.-Y. Leem, Y.H. Lee, J. Kim, Photoluminescence wavelength variation of monolayer  $MoS<sub>2</sub>$  by oxygen plasma treatment, Thin Solid Films, 590 318-323(2015), https://doi.org/10.1016/j.tsf.2015.06.024.
- [23] C.-H. Lee, G.-H. Lee, A.M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, T.F. Heinz, Atomically thin p–n junctions with van der Waals heterointerfaces, Nature nanotechnology, 9 676(2014), https://doi.org/10.1038/nnano.2014.150.
- [24] N. Choudhary, J. Park, J.Y. Hwang, W. Choi, Growth of large-scale and thickness-modulated  $MoS<sub>2</sub>$ nanosheets, ACS applied materials & interfaces, 6 21215-21222(2014), https://doi.org/10.1021/am506198b.
- [25] M. Kan, J. Wang, X. Li, S. Zhang, Y. Li, Y. Kawazoe, Q. Sun, P. Jena, Structures and phase transition of a MoS<sup>2</sup> monolayer, The Journal of Physical Chemistry C, 118 1515-1522(2014), https://doi.org/10.1021/jp4076355.
- [26] Y. Tian, X. Song, J. Liu, L. Zhao, P. Zhang, L. Gao, Generation of Monolayer  $MoS<sub>2</sub>$  with 1T Phase by Spatial‐Confinement‐Induced Ultrathin PPy Anchoring

for High‐Performance Supercapacitor, Advanced Materials Interfaces, 6 1900162(2019), https://doi.org/10.1002/admi.201900162.

- [27] C. Guo, J. Pan, H. Li, T. Lin, P. Liu, C. Song, D. Wang, G. Mu, X. Lai, H. Zhang, Observation of superconductivity in  $1T'$ -MoS<sub>2</sub> nanosheets, Journal of Materials Chemistry C, 5 10855-10860(2017), https://doi.org/10.1039/C7TC03749J.
- [28] U. Gupta, B. Naidu, U. Maitra, A. Singh, S.N. Shirodkar, U.V. Waghmare, C. Rao, Characterization of few-layer 1T-MoSe<sup>2</sup> and its superior performance in the visible-light induced hydrogen evolution reaction, APL Materials, 2 092802(2014), https://doi.org/10.1063/1.4892976.
- [29] L. Jiang, S. Zhang, S.A. Kulinich, X. Song, J. Zhu, X. Wang, H. Zeng, Optimizing hybridization of 1T and 2H phases in MoS<sup>2</sup> monolayers to improve capacitances of supercapacitors, Materials Research Letters, 3 177- 183(2015),

https://doi.org/10.1080/21663831.2015.1057654.

- [30] L. Liu, J. Wu, L. Wu, M. Ye, X. Liu, Q. Wang, S. Hou, P. Lu, L. Sun, J. Zheng, Phase-selective synthesis of 1T′ MoS<sup>2</sup> monolayers and heterophase bilayers, Nature materials, 17 1108-1114(2018), https://doi.org/10.1038/s41563-018-0187-1
- [31] Y. Yu, G.-H. Nam, Q. He, X.-J. Wu, K. Zhang, Z. Yang, J. Chen, Q. Ma, M. Zhao, Z. Liu, High phasepurity 1T′-MoS 2-and 1T′-MoSe 2-layered crystals, Nature chemistry, 10 638-643(2018), https://doi.org/10.1038/s41557-018-0035-6.
- [32] J. Zhu, Z. Wang, H. Yu, N. Li, J. Zhang, J. Meng, M. Liao, J. Zhao, X. Lu, L. Du, Argon plasma induced phase transition in monolayer  $MoS<sub>2</sub>$ , Journal of the American Chemical Society, 139 10216-10219(2017), https://doi.org/10.1021/jacs.7b05765.
- [33] F. Chen, W. Su, S. Ding, L. Fu, Growth and optical properties of large-scale MoS2 films with different thickness, Ceramics International, 45 15091- 15096(2019),

https://doi.org/10.1016/j.ceramint.2019.04.248.

[34] S.-H. Su, W.-T. Hsu, C.-L. Hsu, C.-H. Chen, M.-H. Chiu, Y.-C. Lin, W.-H. Chang, K. Suenaga, -.H. He Jr, L.-J. Li, Controllable synthesis of band-gap-tunable and monolayer transition-metal dichalcogenide alloys, Frontiers in Energy Research, 2 27(2014), https://doi.org/10.3389/fenrg.2014.00027.

