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Abstract

Let (X, d) be a quasi-metric space. A Rus-Hicks-Rhoades (RHR) map f : X → X is the one satisfying
d(fx, f2x) ≤ αd(x, fx) for every x ∈ X, where α ∈ [0, 1). In our previous work [37], we collected various
�xed-point theorems closely related to RHR maps. In the present article, we collect almost all the things
we know about RHR maps and their examples. Moreover, we derive new classes of generalized RHR maps
and �xed point theorems on them. Consequently, many of the known results in metric �xed point theory
are improved and reproved in an easy way.
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1. Introduction

The metric �xed point theory originates from Banach in 1922 on the study of the Banach contraction
f : X → X on a complete metric space (X, d) satisfying

d(fx, fy) ≤ αd(x, y) with α ∈ [0, 1)

for any x, y ∈ X. Since then there have appeared several hundreds of contractive type conditions and almost
one thousand spaces extending or modifying the complete metric spaces.

One of such extended contractive type conditions was due to Rus [46] in 1973 and Hicks-Rhoades [13] in
1979 as follows:

d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,
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where α ∈ [0, 1). Such f is called a Rus-Hicks-Rhoades map or an RHR map, and it has a large number of
closely related mapping classes; see [37-39]. An RHR map was later called a graphic contraction or an orbital
contraction by Rus [47] or Berinde-P curar [4], respectively.

Recall that the Banach contraction has thousands of related works, but its extended RHR maps have
only a few works and examples. For example, Suzuki extended the RHR map to its so-called τ -distance
version [49] and introduced particular types of RHR maps [50]. Many other authors called them the Suzuki
type, followed his method, and obtained results with quite complicated proofs. In the present article, we
show that Suzuki type maps in [50] and its many known variants are simply RHR maps.

Our main aim in this article is to collect almost all facts we know about the RHR maps. Moreover, we
derive new classes of generalized RHR maps and �xed point theorems on them. Consequently we give simple
proofs for such known results in previous works by many authors.

We organize this article as follows: Section 2 is for preliminaries and a basic �xed point theorem for
quasi-metric spaces. In Section 3, we introduce a general equivalent formulation of the Covitz-Nadler �xed
point theorem [9] based on our new 2023 Metatheorem in Ordered Fixed Point Theory [36]. One of the
equivalent forms of the Covitz-Nadler theorem gives a general �xed point theorem for the RHR maps. In
Section 4, we derive new versions of the Banach contraction principle or the RHR �xed point theorem for
quasi-metric spaces. Section 5 devotes to show various types of known examples of weakly Picard operators
or RHR type maps.

In Section 6, we recall some of previously known theorems related to the RHR maps. Section 7 devotes
to introduce new examples of recently appeared RHR maps. We show that many of them have assumed
redundant facts. In Section 8, we indicate how to get generalized forms of known RHR type theorems.
Finally, Section 9 devotes some conclusion.

2. Basic Fixed Point Principle

We recall the following:

De�nition 2.1. A quasi-metric on a non-empty set X is a function d : X ×X → R+ = [0,∞) verifying the
following conditions for all x, y, z ∈ X:

(a) (self-distance) d(x, y) = d(y, x) = 0⇐⇒ x = y;
(b) (triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

A metric in a set X is a quasi-metric satisfying that for all x, y ∈ X,

(c) (symmetry) d(x, y) = d(y, x).

The convergence and completeness in a quasi-metric space (X, d) are de�ned as follows:

De�nition 2.2. ([18]) Let (X, d) be a quasi-metric space and T : X → X a selfmap.

(1) A sequence {xn} in X converges to x ∈ X if limn→∞ d(xn, x) = limn→∞ d(x, xn) = 0. [If xn = x for
all n ∈ N, then d(x, x) = 0. Therefore, we need (a) (self-distance) in De�nition 2.1.]

(2) A sequence {xn} in (X, d) is right-Cauchy if for every ε > 0, there is a positive integer N = N(ε)
such that d(xn, xm) < ε for all m > n > N

(3) The orbit of T at x ∈ X is the set

OT (x) = {x, Tx, · · · , Tnx, · · · }.

(4) The space X is said to be T-orbitally complete if every right-Cauchy sequence in OT (x) is convergent
in X.
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(5) A selfmap T of X is said to be orbitally continuous at x0 ∈ X if

lim
n→∞

Tnx = x0 =⇒ lim
n→∞

Tn+1x = Tx0

for any sequence {Tnx} of X.

Note that every complete metric space is T -orbitally complete for all maps T : X → X. There exists a
T -orbitally complete metric space but it is not complete. Moreover, there exists an orbitally continuous map
but it is not continuous.

The following is the main result of our previous article [39]:

Theorem 2.3. Let T be a selfmap of a quasi-metric space (X, d) which is T-orbitally complete. Suppose
ϕ : X → [0,∞) is a function.

(1) If there exists a point x ∈ X satisfying

d(Tx, T 2x) ≤ ϕ(x)− ϕ(Tx),

then {Tn(x)} is a right-Cauchy sequence converging to an x0 ∈ X.

(2) T is orbitally continuous at x0 if and only if x0 is a �xed point of T.

3. A Form of Our New 2023 Metatheorem

Let (X, d) be a metric space and Cl(X) denote the family of all nonempty closed subsets of X (not
necessarily bounded). For A,B ∈ Cl(X), set

H(A,B) = max{sup{d(a,B) : a ∈ A}, sup{d(b, A) : b ∈ B}},

where d(a,B) = inf{d(a, b) : b ∈ B}. Then H is called a generalized Hausdor� metric since it may have
in�nite values.

Recently, as a basis of Ordered Fixed Point Theory [36], we obtained the new 2023 Metatheorem and
the following more general equivalent formulations of Nadler's �xed point theorem [27] in 1970 established
by Covitz-Nadler [9] in 1970.

Theorem H. Let (X, d) be a complete metric space and 0 < h < 1. Then the following equivalent statements
hold:

(α) For a multimap T : X → Cl(X), there exists an element v ∈ X such that H(Tv, Tw) > hd(v, w) for
any w ∈ X\{v}.

(β) If F is a family of maps f : X → X such that, for any x ∈ X\{fx}, there exists a y ∈ X\{x}
satisfying d(fx, fy) ≤ hd(x, y), then F has a common �xed element v ∈ X, that is, v = fv for all f ∈ F.

(γ) If F is a family of maps f : X → X satisfying d(fx, f2x) ≤ hd(x, fx) for all x ∈ X\{fx}, then F
has a common �xed element v ∈ A, that is, v = fv for all f ∈ F.

(δ) Let F be a family of multimaps T : X → Cl(X) such that, for any x ∈ X\Tx, there exists y ∈ X\{x}
satisfying H(Tx, Ty) ≤ hd(x, y). Then F has a common stationary element v ∈ X, that is, {v} = Tv for all
T ∈ F.

(ε) If F is a family of multimaps T : X → Cl(X) satisfying H(Tx, Ty) ≤ hd(x, y) for all x ∈ X and any
y ∈ Tx\{x}, then F has a common stationary element v ∈ X, that is, {v} = Tv for all T ∈ F.

(η) If Y is a subset of X such that for each x ∈ X\Y there exists a z ∈ X\{x} satisfying H(Tx, Tz) ≤
hd(x, z) for some T : X → Cl(X), then there exists a v ∈ X ∩ Y = Y .
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Remark 3.1. (1) When F is a singleton, (β)-(ε) are denoted by (β1)-(ε1), respectively, They are also
logically equivalent to (α)-(η).

(2) Moreover, (δ1) and (ε1) implies the well-known theorems of Nadler [27] and Covitz-Nadler [9].
(3) Note that all ten statements in Theorem H are equivalent to the Covitz-Nadler theorem [9] in 1970

and Theorem H gives its elementary proof.

The following (γ1) of Theorem H is the basis in the present article:

Theorem H(γ1). Let X be a complete metric space and 0 < h < 1.

(γ1) If a map f : X → X satis�es d(fx, f2x) ≤ hd(x, fx) for all x ∈ X, then f has a �xed element
v ∈ X, that is, v = fv.

Consequently, all ten statements are close relatives of Theorems of Rus [46] and Hicks-Rhoades [13]. This
is rather surprising and all of them also extends the Banach contraction principle in 1922.

The origin of the RHR maps was given as follows by Rus [46] in 1971:

Corollary 3.2. (Rus) Let f be a continuous selfmap of a complete metric space (X, d) satisfying

d(fx, f2x) ≤ αd(x, fx) for every x ∈ X,

where 0 < α < 1. Then f has a �xed point.

The following is given by Hicks and Rhoades [13] in 1979 independently to Rus [46] in 1971:

Corollary 3.3. (Hicks-Rhoades) Let T be a nonexpansive selfmap of a complete metric space (X, d) satisfying

d(Tx, T 2x) ≤ αd(x, Tx) for all x ∈ X,

where 0 < α < 1. Then T has a �xed point.

Note that Theorem H(γ1) =⇒ Theorem 3.2 =⇒ Theorem 3.3. Therefore, the continuity in Theorem 3.2
and the nonexpansivity in Theorem 3.3 are redundant.

From now on, all RHR selfmaps on a complete metric space have a �xed point by Theorem H(γ1). Our
main aim in the present article is to �nd maps satisfying Theorem H(γ1) and their generaliations.

4. A Generalization of the RHR Theorem

Let us consider an RHR map T on a quasi-metric space (X, d). Let x0 ∈ X be arbitrary and form the
sequence {xn} by x1 = Tx0 and xn+1 = Txn for n ∈ N ∪ {0}. Then

d(xn, xn+1) = d(Txn−1, T
2xn−1) ≤ αd(xn−1, Txn−1)

= αd(xn−1, xn) ≤ · · · ≤ αnd(x0, x1).

For all m ≥ n, we have
d(xn, xm) ≤ d(xn, xn+1) + · · ·+ d(xm−1, xm)

≤ (αn+1 + · · ·+ αm−1)d(x0, x1) =
αn − αm

1− α
d(x0, x1)

<
αn

1− α
d(x0, x1)→ 0 as n→∞.

Hence {xn} is Cauchy (or T -orbitally Cauchy). Suppose X is complete (or T -orbitally complete). Then
there exists z ∈ X such that xn → z. If T is continuous (or T -orbitally continuous) at z ∈ X, then
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xn+1 = Txn → Tz and hence Tz = z. Conversely, if z is a �xed point of T , then it is orbitally continuous
at z.

This is why there are too many generalizations of the Banach contraction principle. We state only one
of them:

Theorem 4.1. Let T be an RHR map on a quasi-metric space (X, d).

(i) If X is T -orbitally complete, then, for each x0 ∈ X, there exists a point z ∈ X such that

lim
n→∞

Tn(x0) = z

and

d(Tn(x0), z) ≤
αn

1− α
d(x0, Tx0), n = 1, 2, · · · .

(ii) z is a �xed point of T if and only if T is orbitally continuous at z.

The following is our version of the Banach contraction principle:

Corollary 4.2. Let (X, d) be a quasi-metric space and let T : X → X be a contraction, that is,

d(Tx, Ty) ≤ αd(x, y) for every x, y ∈ X,

with 0 < α < 1. If (X, d) is T-orbitally complete, then T has a unique �xed point x0 ∈ X. Moreover, for
each x ∈ X,

lim
n→∞

Tn(x) = x0

and, in fact, for each x ∈ X,

d(Tnx, x0) ≤
αn

1− α
d(x, Tx), n = 1, 2, · · · .

Almost all text-books or monographs on topology or �xed point theory do not mention on quasi-metric
spaces relative to the Banach principle.

From now on, Fix(T ) denotes the set of �xed points of a map T .

5. Weakly Picard Operators

In 2022, Berinde and P curar [4] stated that the Picard iteration with a contraction T on a complete
metric space (X, d), i.e., the sequence {xn} de�ned by xn+1 = Txn, n ≥ 0, for some x0 ∈ X, is an
approximate �xed point sequence with respect to T . The map T is called a weakly Picard operator, see for
example [3], if

(p1) Fix(T ) 6= ∅;
(p2) the Picard iteration {xn}∞n=0 de�ned by xn+1 = Txn, n = 0, 1, 2, . . . converges to some p ∈ Fix(T ),

for any x0 ∈ X.

If T is a weakly Picard operator and Fix(T ) = {p}, then T is called a Picard operator.

Berinde and P curar [4] gave a list of Picard operators due to previous authors as follows:

(1) Banach (1922)
(2) Kannan (1969)
(3) �iri¢-Reich-Rus (1971)
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(4) Bianchini (1972)
(5) Chatterjea (1972)
(6) Zam�rescu (1972)
(7) Maia (1968)
(8) �iri¢ (1971)

Note that all results due to (1)�(8) are RHR maps. See also our previous work [37].

One of the most interesting generalizations of the Banach contraction principle was given by Hardy-Rogers
[12] in 1973:

Theorem 4.1. (Hardy-Rogers) Let (X, d) be a complete metric space. The map T : X → X is called an
interpolative Hardy-Rogers type contraction if there exist positive reals α, β, γ, δ > 0, with α+ β + γ + δ < 1,
such that

d(Tx, Ty) ≤ αd(x, y) + βd(x, Tx) + γd(y, Ty) +
δ

2
(d(x, Ty) + d(y, Tx))

for each x, y ∈ X K Fix(T ). Then, the map T has a unique �xed point in X.

Note that, for y = Tx, the Hardy-Rogers contraction condition implies

d(Tx, T 2x) ≤ (α+ β)d(x, Tx) + γd(Tx, T 2x) +
δ

2
(d(x, Tx) + d(Tx, T 2x)).

Then d(Tx, T 2x) ≤ c d(x, Tx) for some c ∈ (0, 1), that is, T is an RHR map.

Therefore all maps in this section are RHR selfmaps on a complete metric space and have a �xed point
by Theorem H(γ1).

6. Known Basic Theorems

In this section, we introduce some of previously known theorems related to the RHR maps. Some of
them extend known theorems for RHR maps.

6.1. Park [30] in 1980

Park gave a Banach type �xed point theorem with respect to contraction pairs of selfmaps on complete
metric spaces in [36]:

Theorem C. Let g and h be selfmaps of a metric space X. If there exists a sequence {ui : i ∈ ω} in X such
that

u2i+1 = gu2i, u2i+2 = hu2i+1 for i ∈ ω
and {ui} is complete, and if there exists a λ ∈ [0, 1) such that

d(gx, hy) ≤ λd(x, y) (1)

holds for any distinct x, y ∈ {ui} satisfying either x = hy or y = gx, then either

(i) g or h has a �xed point in {ui}, or
(ii) {ui} converges to some ξ ∈ X, and

d(ui, ξ) ≤
λi

1− λ
d(u0, ui) for i > 0.

Further, if one of g or h is continuous at ξ and (1) holds for any distinct x, y ∈ {ui}, then ξ is a common
�xed point of g and h.

This seems to be arti�cial, but this was made to include as many as existing results of similar nature. In
fact, by putting h = g and y = gx, (1) becomes d(gx, g2x) ≤ λ d(x, gx). Hence g is an RHR map.
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6.2. Park [33] in 1983

We proved the following generalization of the Caristi �xed point theorem:

Proposition 7. Let A be a set, X a complete metric space, f, g : A→ X such that

(i) f is surjective, and
(ii) there exists a lower semicontinuous function φ : X → [0,∞) satisfying

d(fx, gx) ≤ φ(fx)− φ(gx) for each x ∈ A.

Then f and g have a coincidence point.

Later in 1988, Park and Rhoades [42] showed that the �rst four theorems of Wang-Li-Gao-Iséki [52] are
all consequences of the above Proposition. These are for expansion type surjections f : X → X with a real
a > 1 satisfying

d(fx, f2x) ≥ ad(x, fx) for each x ∈ X.

In this case f is not necessarily continuous. Such map f can be called an anti RHR map and may deserve
to be studied. In fact, such type of maps was studied by Shobkolaei et al. [48] in 2013.

6.3. Suzuki [49] in 2001

Suzuki gave a result on an RHR type map as follows:

Theorem 1. (Suzuki) Let X be a complete metric space and let T be a mapping from X into itself. Suppose
that there exist a τ -distance p on X and r ∈ [0, 1) such that p(Tx, T 2x) ≤ rp(x, Tx) for all x ∈ X. Assume
that either of the following holds:

(i) If limn sup{p(xn, xm) : m > n} = 0, limn p(xn, Txn) = 0, and limn p(xn, y) = 0, then Ty = y;
(ii) If {xn} and {Txn} converge to y, then Ty = y;
(iii) T is continuous.

Then there exists x0 ∈ X such that Tx0 = x0 and p(x0) = x0.

As we have seen in Theorem H(γ1), (i)�(iii) are not necessary when p is a metric.

7. New Examples of RHR maps

In this section, we introduce new examples of recently appeared RHR maps which can be applied Theorem
H(γ1). The numbers attached to De�nitions, Theorems, or Corollaries appeared in this section are the same
ones in the original sources.

We note that many results were given under some redundant assumptions. In this section, the present
author's opinion is expressed in slant type sentences.

7.1. �iri¢ [7] in 1974

The non-unique �xed point theorem of �iri¢ [7] is as follows:

Theorem 1. ([16]) Let T be an orbitally continuous selfmap on the T-orbitally complete standard metric
space (X, d). If there is k ∈ [0, 1) such that

min{d(Tx, Ty), d(x, Tx), d(y, Ty)} −min{d(x, Ty), d(Tx, y)} ≤ kd(x, y),

for all x, y ∈ X, then for each x0 ∈ X the sequence {Tnx0}n∈N converges to a �xed point of T .

For y = Tx, the condition implies min{d(Tx, T 2x), d(x, Tx)} ≤ kd(x, Tx). Hence T is an RHR map
(which seems to be the oldest.)
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7.2. Suzuki [50] in 2008

Suzuki generalized the Banach contraction principle as follows:

Theorem 2. ([50]) Let (X, d) be a complete metric space and T be a mapping on X. De�ne a nonincreasing
function θ from [0, 1) onto (1/2, 1] by

θ(r) =


1 if 0 ≤ r ≤ (

√
5− 1)/2,

(1− r)r−2 if (
√

5− 1)/2 ≤ r ≤ 2−1/2,

(1 + r)−1 if 2−1/2 ≤ r < 1.

(2)

Assume there exists r ∈ [0, 1) such that

θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X. Then there exists a unique �xed point z of T. Moreover limn T
nx = z for all x ∈ X.

This means T is an RHR map and a Picard operator, hence Theorem 2 follows from Theorem H(γ1).
From now T is called the Suzuki type as its many followers used it.

Suzuki noted that the following theorem says that θ(r) is the best constant for every r ∈ [0, 1).

Theorem 3. ([50]) De�ne a function θ as in Theorem 2. Then for each r ∈ [0, 1), there exist a complete
metric space (X, d) and a mapping T on X such that T does not have a �xed point and

θ(r)d(x, Tx) < d(x, y) implies d(Tx, Ty) ≤ rd(x, y)

for all x, y ∈ X.

Note that θ(r)d(x, Tx) < d(x, y) means T can not have a �xed point x = y = Tx.

Kikkawa-Suzuki [22] in 2008 stated the following is in Suzuki [50]:

Corollary 1. ([22]) For a metric space (X, d), the following are equivalent:

(i) X is complete.

(ii) Every mapping T on X satisfying the following has a �xed point:
• There exists r ∈ [0, 1) such that θ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y)
for all x, y ∈ X.

(iii) There exists r ∈ (0, 1) such that every mapping T on X satisfying the following has
a �xed point:
• 1

10000d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ rd(x, y) for all x, y ∈ X.

This can be extended as follows:

(i) ⇐⇒ Theorem H(γ1) ⇐⇒ (ii) ⇐⇒ (iii).

Recall that there are hundreds of equivalent conditions for metric completeness, e.g. Kirk [24], Park [34],
Cobza³ [8] as typical examples. Comments for them are given by Park and Rhoades [41] in 1986.
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7.3. Kikkawa and Suzuki [22] in 2008

In this paper, it is noted that d(Tx, Ty) ≤ rd(x, y) in the original Suzuki type map in [50] can be replaced
by one of the following:

d(Tx, Ty) ≤ rmax{d(x, Tx), d(y, Ty)},
d(Tx, Ty) ≤ max{αd(x, Tx), βd(y, Ty)}, α, β ∈ [0, 1).

Similarly, it can be replaced by the Hardy-Rogers condition.

They also generalized Kannan mappings as follows:

Theorem 1. ([22]) Let T be a mapping on complete metric space (X, d) and let ϕ be a non-increasing
function from [0, 1) into (1/2, 1] de�ned by

ϕ(r) =

{
1, if 0 ≤ r ≤ 1√

2
,

1
1+r , if 1√

2
≤ r < 1.

(3)

Let α ∈ [0, 1/2) and r = α/(1− α) ∈ [0, 1). Suppose that

ϕ(r)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + αd(y, Ty)

for all x, y ∈ X. Then, T has a unique �xed point z, and limn T
nx = z holds for every x ∈ X.

This is also an example of RHR maps. In fact, they gave various examples of RHR type maps in spaces
more general than metric spaces.

7.4. Enjouji, Nakanishi, and Suzuki [10] in 2009

In order to observe the condition of Kannan mappings, the authors prove a generalization of Kannan's
�xed point theorem. Their theorem involves constants and they obtain the best constants to ensure a �xed
point. They consider �αd(x, Tx) + βd(y, Ty)� instead of �αd(x, Tx) + αd(y, Ty).�

Let ∆ = {(α, β) : α ≥ 0, β ≥ 0, α + β < 1}. De�ne a nonincreasing function ψ : ∆ → (1/2, 1]. Let T be
a map on a complete metric space such that there exists α, β ∈ ∆ satisfying

ψ(α, β)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ αd(x, Tx) + βd(y, Ty)

for all x, y ∈ X.
Note that T is an RHR map and that the condition ψ(α, β)d(x, Tx) < d(x, y) in Theorem 4,1 implies

nonexistence of a �xed point of T .

7.5. Nakanishi and Suzuki [28] in 2010

In this paper, in order to observe the condition of Kannan maps more deeply, they prove a generalization
of Kannan's �xed point theorem.

Moreover, the authors assumed something like θ(α)d(x, Tx) < d(x, y), which is false for x = y = Tx.
Hence, from the beginning, such T can not have a �xed point.

Further, for (α, β) ∈ ∆ = [0, 1)2 and a function ϕ : ∆→ (1/2, 1], let T be a selfmap of a complete metric
space (X, d) satisfying

ϕ(α, β)d(x, Tx) ≤ d(x, y) implies d(Tx, Ty) ≤ max{αd(x, Tx), βd(y, Ty)},

for all x, y ∈ X.

Note that T is an RHR map and that the condition ϕ(α, β)d(x, Tx) < d(x, y) does not hold for x = y =
Tx.
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7.6. Altun and Erduran [1] in 2011

The authors present a �xed-point theorem for a single-valued map in a complete metric space using
implicit relation, which is a generalization of several previously stated results including that of Suzuki [50]
in 2008.

The aim of this paper is to generalize the above results using the implicit relation technique in such a
way that

F (d(Tx, Ty), d(x, y), d(x, Tx), d(y, Ty), d(x, Ty), d(y, Tx) ≤ 0,

for x, y ∈ X, where F : [0,∞)6 → R is a function as given as follows:
Let Ψ be the set of all continuous functions F : [0,∞)6 → R satisfying the following conditions:

F1: F (t1, . . . , t6) is nonincreasing in variables t2, . . . , t6,
F2: there exists r ∈ [0, 1), such that F (u, v, v, u, u+v, 0) ≤ 0 or F (u, v, 0, u+v, u, v) ≤ 0 or F (u, v, v, v, v, v) ≤

0 implies u ≤ rv,
F3: F (u, 0, 0, u, u, 0) > 0, for all u > 0.

From this, the authors showed d(Tx, T 2x) ≤ d(x, Tx), that is, T is a variant of the RHR maps.

7.7. Khojasteh, Abbas and Costache [19] in 2014

In this paper, the next theorem was shown:

Theorem 2. Let (X, d) be a complete metric space and T a mapping from X into itself satisfying the
following condition:

d(Tx, Ty) ≤ d(y, Tx) + d(x, Ty)

d(x, Tx) + d(y, Ty) + 1
d(x, y)

for all x, y ∈ X. Then

(i) T has at least one �xed point z ∈ X,

(ii) {Tnx} converges to a �xed point for all x ∈ X, and

(iii) if z and w are distinct �xed points of T, then d(z, w) ≥ 1/2.

For y = Tx, we have

d(Tx, T 2x) ≤ d(x, T 2x)

d(x, Tx) + d(Tx, T 2x) + 1
d(x, Tx).

From this Amen et al. showed that T is an RHR map.

7.8. Karapinar [15] in 2018

Abstract : We revisited the well-known �xed point theorem of Kannan under the aspect of interpolation.
By using the interpolation notion, we propose a new Kannan type contraction to maximize the rate of
convergence.

De�nition 2.1. Let (X, d) be a metric space. We say that a selfmap T : X → X is an interpolative Kannan
type contraction, if there exist a constant λ ∈ [0, 1) and α ∈ (0, 1) such that

d(Tx, Ty) ≤ λ[d(x, Tx)]α[d(y, Ty)]1−α

for all x, y ∈ X with x 6= Tx.

Theorem 2.2. Let (X, d) be a complete metric space and T be an interpolative Kannan type contraction.
Then T has a unique �xed point in X.

By putting y = Tx, [d(Tx, T 2x)]α ≤ k[d(x, Tx)]α, that is,

d′(Tx, T 2x) ≤ kd′(x, Tx) with dα = d′.

Therefore, T is an RHR map. The uniqueness in Theorem 2.2 is removed in the next article.



S. Park, Adv. Theory Nonlinear Anal. Appl. 7 (2023), 455�472. 465

7.9. Karapinar, Agarwal, and Aydi [17] in 2018

Abstract: By giving a counter-example, we point out a gap in the paper by Karapinar [15] in 2018 where
the given �xed point may be not unique and we present the corrected version. We also state the celebrated
�xed point theorem of Reich-Rus-�iri¢ in the framework of complete partial metric spaces, by taking the
interpolation theory into account. Some examples are provided where the main result in papers by Reich
(1971, 1971, 1972) is not applicable.

As a correction of Theorem 1 (that is, Theorem 2.2 in Karapinar [15] in 2018), the authors should state

Theorem 2. Let (X, ρ) be a complete metric space. A self-map T : X → X possesses a �xed point in X, if
there exist constants λ ∈ [0, 1) and α ∈ (0, 1) such that

ρ(Tζ, Tη) ≤ λ[ρ(ζ, T ζ)]α · [ρ(η, Tη)]1−α

for all ζ, η ∈ X\Fix(T ).

The following theorem was proved by Reich, Rus and �iri¢ (1971�1979) independently to combine and
improve both Banach and Kannan �xed point theorems.

Theorem 3. In the framework of a complete metric space (X, ρ), if T : X → X forms a Reich-Rus-�iri¢
contraction map, i.e.,

ρ(Tζ, Tη) ≤ λ[ρ(ζ, η) + ρ(ζ, T ζ) + ρ(η, Tη)]

for all ζ, η ∈ X, where λ ∈ [0, 1/3), then T possesses a unique �xed point.

Notice that several variations of Reich contractions can be stated. We may state the following:

ρ(Tζ, Tη) ≤ aρ(ζ, η) + bρ(ζ, T ζ) + cρ(η, Tη),

where a, b, c ∈ (0,∞) such that 0 ≤ a+ b+ c < 1.
In this paper, we shall investigate the validity of the interpolation approach for Reich contractions in the

context of partial metric spaces that was introduced by Matthews (1994).
The main contribution of the paper to ensure the existence of �xed points for interpolative Reich-Rus-

�iri¢ type contraction mappings on partial metric spaces.
In this paper, we can �nd some RHR maps.

7.10. Karapinar, Alqahtani, and Aydi [18] in 2018

The authors introduced the following notion of interpolative Hardy-Rogers type contraction.

Theorem 1.4. Let (X, d) be a complete metric space. The mapping T : X → X is called an interpolative
Hardy-Rogers type contraction if there exist λ ∈ [0, 1) and positive reals β, α, γ > 0, with β+α+ γ < 1, such
that

d(Tx, Ty) ≤ λ([d(x, y)]β · [d(x, Tx)]α · [d(y, Ty)]γ · [1/2(d(x, Ty) + d(y, Tx))]1−α−β−γ

for each x, y ∈ X K Fix(T ). Then the mapping T has a �xed point in X.

Note that

Case 1: d(x, Tx) ≤ d(Tx, T 2x) implies [d(Tx, T 2x)]α+β ≤ λ[d(x, Tx)]α+β.

Case 2: (Tx, T 2x) ≤ d(x, Tx) implies d(Tx, T 2x) ≤ λd(x, Tx).

Hence, T is an RHR map.
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7.11. Aouiney and Aliouche [2] in 2021

Abstract: We prove unique �xed point theorems for a self-mapping in complete metric spaces and that
the �xed point problem is well-posed. Examples are provided to illustrate the validity of their results and we
give some remarks about some previous papers. Afterwards, they apply their result to study the possibility
of optimally controlling the solution of an ordinary di�erential equation via dynamic programming.

The main result of Khojasteh et al. [19] is extended to the following example and others:

Theorem 4. Let (X, d) be a complete metric space and T a mapping from X into itself satisfying the
following condition

d(Tx, Ty) ≤ d(x, Ty) + d(y, Tx)

d(x, Tx) + d(y, Ty) + 1
max{d(x, Tx), d(y, Ty)}.

for all x, y ∈ X. Then

a) T has a unique �xed point z ∈ X,

b) for any sequence {yn} in X such that limn→∞ d(Tyn, yn) = 0, we have limn→∞ d(yn, z) = 0, and

c) T is continuous at z.

Some applications are added. Note that T is an RHR map and that c) seems to hold for any x ∈ X.

7.12. Ye³ilkaya [53] in 2021

Abstract: In this paper, we obtain a �xed point theorem ω-ψ-interpolative Hardy-Rogers contractive of
Suzuki type mappings. In the following, we present an example to illustrate the new theorem is applicable.
Subsequently, some results are given. These results generalize several new results present in the literature.

Describe using Ψ the set of all nondecreasing self-mappings ψ on [0,∞) such that
∑∞

n=1 ψ
n(t) < ∞ for

each t > 0. Regard that for ψ ∈ Ψ, we have ψ(0) = 0 and ψ(t) < t for each t > 0.

Corollary 2.5. Let (X, d) be a complete metric space, λ ∈ [0, 1), and T be a self mapping on X such that
1
2d(x, Tx) ≤ d(x, y) implies

d(Tx, Ty) ≤ λ[d(x, y)]β · [d(x, Tx)]α · [d(y, Ty)]γ · [12(d(x, Ty) + d(y, Tx))]1−α−β−γ)

for each x.y ∈ X\Fix(T ), where ψ ∈ Ψ and positive real β, α, γ > 0, with β + α + γ < 1. Then T posses a
�xed point.

Note that T is an RHR map as in Theorem 1.4 of Karapinar et al. [18] in 2018.

7.13. Chandra, Joshi, and Joshi [5] in 2022

Let (M,d) be a metric space, and T : M →M . Then for all x, y ∈M , we denote

m(Tx, Ty) = ad(x, y) + bmax{d(x, Tx), d(y, Ty)}+ c[d(x, Ty) + d(y, Tx)],

where a, b and c are non-negative reals such that a + b + 2c = r with r ∈ [0, 1). Now, we consider the
following generalized contractive condition

θ(r) min{d(x, Tx), d(x, Ty)} ≤ d(x, y) implies d(Tx, Ty) ≤ m(Tx, Ty).

(Here, θ is as in Suzuki [50] in 2008.) It is remarkable that this condition is a generalization of the condition
(22) and several other conditions mentioned in Transaction Paper of Rhoades [43].

Note that T is an RHR map.
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7.14. Romaguerra [45] in 2022

For a selfmap F of a quasi-metric space (X, ρ), c ∈ (0, 1) and x, y ∈ X, one of the following conditions
hold:

ρ(x, Fx) ≤ 2ρ(x, y) =⇒ ρ(Fx, Fy) ≤ cρ(x, y),

min ρ(x, Fx), ρ(y, Fy) ≤ 2ρ(x, y) =⇒ ρ(Fx, Fy) ≤ cρ(x, y),

min{ρ(x, Fx), ρ(y, Fy), ρ(Fy, y)} ≤ 2ρ(x, y) =⇒ ρ(Fx, Fy) ≤ cρ(x, y).

Note that such F ′s are RHR maps.

7.15. Fierro and Pizarro [11] in 2023

Let (X, d) be a complete metric space. The authors state that the following corollary is an equivalent
version of the main result of Hicks and Rhoades [13]:

Corollary 3.3. Let ξ : X → X be a function and k ∈ [0, 1). Suppose there exists x0 ∈ X such that, for all
x ∈ O(x0, ξ), d(ξ(x), ξ2(x)) ≤ kd(x, ξ(x)). Then, there exists x∗ ∈ X such that the following two conditions
hold:

(i) limn→∞ d(x∗, ξn(x0)) = 0 and
(ii) d(x∗, ξn(x0)) ≤ kn

1−kd(x0, ξ(x0)), for all n ∈ N.

Moreover, x∗ = ξ(x∗), if and only if, the function x ∈ X 7→ d(x, ξ(x)) ∈ R is (x0, ξ)-orbitally lower
semicontinuous at x∗.

This is almost same to our Theorem 2.3 in Section 2. It is possible to unify this with Theorem 2.3.

7.16. Pant and Khantwa [29] in 2023

Abstract: We present some new existence results for single and multivalued mappings in metric spaces on
very general settings. Some illustrative examples are presented to validate our theorems. Finally, we discuss
an application to the Volterra-type integral inclusions.

Let ψ : [0,∞)→ [0,∞) be upper semi-continuous from the right such that ψ(t) < t for all t > 0.

Theorem 2.2. Suppose (E, ρ) is a metric space. Let f : E → E a mapping such that for some v0 ∈ E,

1

2
ρ(x, f(x)) ≤ ρ(x, y) =⇒ ρ(f(x), f(y)) ≤ ψ(N(x, y)) for all x, y ∈ O(v0, f) with x 6= y,

where N(x, y) = max{ρ(x, y), ρ(x, f(x)), ρ(y, f(y)), 12 [ρ(y, f(x)) + ρ(x, f(y))].

If E is f -orbitally complete then the sequence of iterations (fn(v0)) is Cauchy in E and converges to the
unique �xed point of f in O(v0, f).

Easily we can show ρ(f(x), f2(x)) ≤ ψ(ρ(x, f(x)) and f is an RHR map.

8. Generalizations of the RHR maps

From the late 1970's to the early 1990's we had engaged to study the metric �xed point theory. Especially,
in 1979-1993, we made eleven joint papers with Billy E. Rhoades. In [35], we collected brie�y the contents
of all of the joint papers. As he recalled �Our collaboration has ceased only because our research interests
have moved in di�erent directions."
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8.1. Rhoades [44] in 2007

Billy E. Rhoades recalled the contents of his historical Transactions paper [43] and gave comments on
our works as follows ([44], pp.12�13):

�Sehie Park also observed that �xed point theorems for many contractive de�nitions used the same proof
technique. In 1980 [30] he proved the following two theorems, where O(u) := {u, Tu, T 2u, . . . }.

Theorem 3.1. ([30]) Let T be a selfmap of a metric space (X, d). If there exists a point u ∈ X and a
λ ∈ [0, 1) such that O(u) complete and

(∗) d(Tx, Ty) ≤ λd(x, y)

holds for any x, y = Tx in O(u), then {Tnu} converges to some ξ ∈ X, and

d(T iu, ξ) ≤ λi

1− λ
d(u, fu) for i ≥ 1.

Further, if f is orbitally continuous at ξ or if (∗) holds for any x, y ∈ O(u), then ξ is �xed point of T .

Theorem 3.2. ([30]) Let T be a selfmap of a metric space (X, d). If
(i) there exists a point u ∈ X such that the orbit O(u) has a cluster point ξ ∈ X,
(ii) T is orbitally continuous at ξ and Tξ, and
(iii) T satis�es

d(Tx, Ty) < d(x, y)

for each x, y = Tx ∈ O(u), x 6= y,
then ξ is a �xed point of T.

These theorems contain as special cases a number of papers involving contractive conditions not covered
by my Transaction paper."

And then Billy E. Rhoades added an example of an application of Theorem 3.1, not previously published.
He continues as follows:

�In 1980 Sehie Park [31] constructed a table of contractive conditions of Meir-Keeler type, which extended
the list in my Transactions paper."

Let f be a selfmap of a metric space (X, d). Given x ∈ X, let O(x) = {fnx : n ∈ N} and O(x) be its
closure. A point x ∈ X is said to be regular for f if diamO(x) <∞. Given x, y ∈ X, let

m(x, y) = max{d(x, y), d(x, fx), d(y, fy), d(x, fy), d(y, fx)},

δ(x, y) = diam{O(x) ∪O(y)} whenever x and y are regular.

We list contractive type conditions to be considered.

(A) For any x, y ∈ X,x 6= y,
(Ad) d(fx, fy) < d(x, y). [Edelstein]
(Am) d(fx, fy) < m(x, y) . [Rhoades]
(Aδ) if x and y are regular, d(fx, fy) < δ(x, y).

(B) Given ε > 0, there exists δ > 0 such that for any x, y ∈ X,
(Bd) ε ≤ d(x, y) < ε+ δ implies d(fx, fy) < ε. (Meir-Keeler)
(Bm) ε ≤ m(x, y) < ε+ δ implies d(fx, fy) < ε.
(Bδ) ε ≤ δ(x, y) < ε+ δ implies d(fx, fy) < ε.

(C) Given ε > 0, there exist ε0 > 0 and δ0 > 0 such that for any x, y ∈ X,
(Cd) ε ≤ d(x, y) < ε+ δ0 implies d(fx, fy) ≤ ε0.
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(Cm) ε ≤ m(x, y) < ε+ δ0 implies d(fx, fy) ≤ ε0.
(Cδ) ε ≤ δ(x, y) < ε+ δ0 implies d(fx, fy) ≤ ε0. (Hegedüs-Szilágyi).

(D) There exists a nondecreasing right continuous function φ : [0,∞) → [0,∞) such that φ(t) < t for
t > 0 and, for any x, y ∈ X,

(Dd) d(fx, fy) ≤ φ(d(x, y)). (Browder)
(Dm) d(fx, fy) ≤ φ(m(x, y)). (Danes)
(Dδ) d(fx, fy) ≤ φ(δ(x, y)) if x, y are regular. (Kasahara)

(E) There exists α ∈ [0, 1) such that for any x, y ∈ X,
(Ed) d(fx, fy) ≤ αd(x, y). (Banach)
(Em) d(fx, fy) ≤ αm(x, y). (�iri¢, Massa)
(Eδ) d(fx, fy) ≤ αδ(x, y) if x, y are regular. (Hegedüs)

Then we have the following diagram:

(Ad) ⇐ (Bd) ⇐ (Cd) ⇐ (Dd) ⇐ (Ed)
⇓ ⇓ ⇓ ⇓ ⇓

(Am) ⇐ (Bm) ⇐ (Cm) ⇐ (Dm) ⇐ (Em)

⇓ ⇓ ⇓ ⇓ ⇓
(Aδ) ⇐ (Bδ) ⇐ (Cδ) ⇐ (Dδ) ⇐ (Eδ)

Let M(X) denote the set of all metrics on X that are topologically equivalent to d for a given metric
space (X, d).

Theorem 3.3. ([31]) Let f be a continuous compact selfmap of a metric space X satisfying (Aδ). Then f has
a unique �xed point, and furthermore, for any α ∈ (0, 1) there exists a metric ρ in M(X) relative to which f
satis�es (Ed) with the Lipschitz constant α.

Theorem 3.4(Cδ). ([31]) Let f be a selfmap of a metric space X. Suppose there exists a regular point u ∈ X
such that (1) O(u) has a regular cluster point p ∈ X, and (2) the condition (Cδ) holds on O(u)∪O(p). Then
f has a unique �xed point p in O(u) and fnu→ p.

Theorem 3.5(Cδ). ([31]) Let f be a selfmap of a complete metric space X. If (Cδ) holds for all regular points
x, y ∈ X, then f has a unique �xed point p ∈ X, and fnx→ p for any regular point x ∈ X.

Jungck �rst gave a �xed point theorem for commuting selfmaps f and g of a complete metric space X
satisfying the conditions gX ⊂ fX, f is continuous, and

(Ed)′ d(gx, gy) ≤ αd(fx, fy), α ∈ [0, 1).

Similarly, we can consider other conditions ( )′ just imitating (Ed)′.

In 1999, Liu [26] stated as follows:

� On the other hand, the following open questions were raised by Park [31]:

1. Are there other counterexamples of the implications between various conditions in (Ed)-(Aδ)?
2. Are there any extensions of Theorem 3.4 (Cδ) to the conditions (Bm) and (Bδ)?"

From his Summary: �We answer two �xed-point questions of Park by constructing ten nontrivial exam-
ples and prove some �xed-point theorems for general contractive type mappings which, in turn, generalize,
improve, and unify some results due to Fisher, Hegedüs, Hegedüs and Szilágyi, Hikida, Kasahara, Park, Park
and Rhoades, and others."
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8.2. Park and Rhoades [40] in 1980

In this paper we established several �xed point theorems involving hypotheses weak enough to include a
number of known theorems as special cases.

Let f be a selfmap of a topological space X. The orbit O(x) of x ∈ X under f is de�ned by O(x) =
{x, f(x), f2(x), . . . }. A function G : X → [0,∞) is said to be f -orbitally lower semicontinuous at a point
p ∈ X if, for every x0 ∈ X, xnk

→ p implies G(p) ≤ lim infkG(xnk
) where {xnk

}∞k=1 is a subsequence of
{xn}∞n=1, which is de�ned by xn+1 = f(xn), i.e. {xn}∞n=1 = O(x0).

Theorem 1. Let d be a nonnegative real valued function de�ned on X ×X such that d(x, y) = d(y, x) and
d(x, y) = 0 i� x = y. If there exists a point u ∈ X such that limn d(fn+1(u), fn(u)) = 0, and if {fn(u)} has
a convergent subsequence with limit p ∈ X, then p is a �xed point of f i� G(x) = d(x, f(x)) is f -orbitally
lower semicontinuous at p.

Theorem 2. Let f be a selfmap of a metric space (X, d) satisfying:

(i) δ(O(x)) <∞ for each x ∈ X, where δ denotes the diameter.

(ii) There exists a u ∈ X such that O(u) has a cluster point p ∈ X.

(iii) There exists a function ϕ : [0,∞) → [0,∞) which is nondecreasing, continuous from the right and
satis�es φ(t) < t for each t > 0 and the inequality

d(f(x), f2(x)) ≤ ϕ(δ(O(x) ∪O(f(y)))) for each x, y ∈ X.

Then p is the unique �xed point of f and limn f
n(u) = p.

These results extend works of Pal-Maiti, Park, Hegedüs and Dane�s. A 2-metric space version of Theorem
2 is added in [40].

Here we add new information related to the above theorems:

Kirk-Saliga [25] in 2001 and Chen-Cho-Yang [6] in 2002 introduced the following concept: We say that
ϕ : M → R is lower semicontinuous from above if given any sequence {xn} in M , the conditions limn xn = x
and {ϕ(xn)} ↓ r ⇒ ϕ(x) ≤ r.

This concept can be applied to improve Theorem 2.

8.3. Generalized RHR maps

In the previous subsections, some of the results can be extended to the RHR type maps. Actually, in
Subsection 8.1, Theorem 3.1 is for RHR maps. Moreover, if y = fx, m(x, y) and δ(x, y) become

m(x, fx) = max{d(x, fx), d(fx, f2x), d(x, f2x)},

δ(x, fx) = diamO(x) whenever x is regular.

Then Theorems 3.3�3.5 reduce as follows:

Theorem 3.3.′ Let f be a continuous compact selfmap of a metric space X satisfying

(Aδ′) if x is regular, d(fx, f2x) < δ(x, fx) = diamO(x).

Then f has a unique �xed point, and furthermore, for any α ∈ (0, 1) there exists a metric % in M(X)
relative to which f satis�es (Ed) with the Lipschitz constant α.

Theorem 3.4(Cδ′). Let f be a selfmap of a metric space X. Suppose there exists a regular point u ∈ X such
that

(1) O(u) has a regular cluster point p ∈ X, and
(2) the following condition holds on x ∈ O(u) ∪O(p):
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(Cδ′) ε < δ(x, fx) < ε+ δ0 implies d(fx, f2x) ≤ ε0.

Then f has a unique �xed point p in O(u) and fnu→ p.

Theorem 3.5(Cδ′). Let f be a selfmap of a complete metric space X. If (Cδ′) holds for all regular points
x ∈ X, then f has a unique �xed point p ∈ X, and fnx→ p for any regular point x ∈ X.

9. Conclusion

The RHR maps properly include the Banach contraction and many of its extensions or modi�cations.
In this article we collected many new results related to the RHR maps as a continuation of our previous
[37]-[39]. Especially, we showed that the Suzuki type maps [50] in 2008 and its many modi�cations are RHR
maps. Hence they need not their traditional complicated proofs of the Suzuki type maps.

Since there are thousands of results related to the Banach contraction, we anticipate many new results
related to the RHR maps and their generalizations. We are encouraging the appearances of useful results on
the class of generalized RHR maps, but not for arti�cial spaces or contractive conditions.
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