
Akdemir, JOTCSA. 2016; 3(3): 683-706.   RESEARCH ARTICLE 

683 
 

  

(This article was presented to the 28th National Chemistry Congress and submitted to JOTCSA 

as a full manuscript) 
 

Synthesis, Characterization, and Investigation of the Spectroscopic 
Properties of Novel Peripherally 2,3,5-trimethylphenoxy Substituted 
Cu and Co Phthalocyanines, Computational and Experimental Studies 

of 4-(2,3,5-trimethylphenoxy)phthalonitrile 
 

Nesuhi Akdemir1 
1Department of Chemistry, Amasya University, İpekköy, 05200, Amasya, Turkey 

 
Abstract: 4-(2,3,5-trimethylphenoxy)phthalonitrile (3) was prepared via aromatic nucleophilic 
substitution reaction and characterized by FT-IR, mass spectrometry, 1H and 13C NMR 
techniques. The molecular structure of compound (3) was optimized using Density Functional 
Theory (DFT/B3LYP) method with 6-311G(d,p) basis set in the ground state. The molecular 
geometric parameters which were obtained by X-ray single crystal diffraction method and the 
spectral results were compared with computed bond lengths and angles, vibrational 
frequencies, and 1H, 13C NMR chemical shifts values of compound (3). Also, Cu(II) and Co(II) 
phthalocyanines were synthesized by the treatment of dinitrile derivative with anhydrous CuCl2 
or CoCl2 under N2 atmosphere in dry n-pentanol at 140 °C. The new compounds have been 
determined by elemental analysis, FT-IR, and electronic absorption. The UV-Vis spectra of the 
Cu(II) and Co(II) phthalocyanines were recorded with different concentration in THF and also 
with different solvents as DMF, DMSO, DCM, CHCl3, toluene. 
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INTRODUCTION 

 

Phthalocyanines (Pcs), discovered accidentally in 1907 and characterized in 1930s, are 

synthetic heterocyclic aromatic compounds [1]. Pcs have high thermal and chemical stability 

along with their unique properties such as strong visible light absorption, high molar 

absorption coefficients, electron transfer abilities, and the flexibility involved in the synthesis of 

these compounds [2]. These features promote an extensive use of these molecules primarily 

as dyes and pigments. A minimum amount of 80.000 tons of Pcs are produced per year just 

for this purpose [3]. They have been also used in other applications such as liquid crystals [4, 

5], optical applications [6, 7], HIV inactivation [8, 9], electrochromism [10, 11], molecular 

solar cells [12, 13], chemical sensors [13, 14], semiconductors for organic field-effect 

transistors [16, 17], and photodynamic therapy [18, 19, 20].  

 

These applications of the phthalocyanines can not be achieved since many unsubstituted Pcs 

are not soluble neither in organic solvents nor in water. The solubility can be increased by 

adding substituents to the periphery, nonperiphery or axial position of phthalocyanines, and 

designing central metal ions differently. It is well known that tetrasubstituted phthalocyanines 

usually present a higher solubility than octasubstituted Pc derivatives [21, 22, 23]. 

 

Our earlier studies concentrated on synthesis and characterization of metal-free and 

metallophthalocyanines containing tetrathiaoxa [24], dithiaoxa [25], diazadithiaoxa 

macrocyclic moieties [26], N-(n-octyl)mercaptoacetamide groups [22], naphthalene-amide 

groups [27] and 3,5-dimethoxyphenol groups [28]. The present work introduces the 

preparation and characterization of Cu(II) and Co(II) phthalocyanines containing 2,3,5-

trimethylphenol moieties. Then UV-Vis spectra of these compounds were recorded in different 

solvents and different concentrations. Furthermore, molecular geometry parameters, 

vibrational frequencies and 1H, 13C NMR chemical shift values of the 4-(2,3,5-

trimethylphenoxy)phthalonitrile, which was reported the crystal structure of which was 

reported by our group in previous paper [29], were calculated and compared with the 

experimental specifications. 

 

MATERIALS AND METHODS 

 
IR spectra was recorded on a Perkin Elmer Frontier FT-IR Spectrometer as KBr pellets. UV-Vis 

spectra were recorded on a Perkin Elmer Lambda 35 UV/Vis Spectrophotometer. 1H-NMR and 
13C-NMR spectra were recorded on an Agilent 600 MHz spectrometer (Çankırı Karatekin 

University NMR Laboratory). Mass spectra were measured on an Ab Sciex 3200 QTrap LC-

MS/MS (Amasya University-AUMAULAB). Elemental analyses were performed on a Leco 
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Truspect Micro Analyzer. 4-Nitrophthalonitrile was synthesized by following the procedure 

reported in [30]. All other reagents and solvents were of reagent-grade quality and were 

obtained from commercial suppliers. DMF was dried and purified as described by Armarego and 

Perrin [31]. The homogeneity of the products was tested by TLC (SiO2). 

 

Computational Details 

The crystal structure of the compound was (3) reported by Akbal et al. [29], so the molecular 

geometry was taken on the coordinates obtained from the X-ray single crystal diffraction data. 

The geometry optimization was carried out with DFT / B3LYP (Becke’s Three Parameter Hybrid 

Functional using the Lee, Yang, and Parr Correlation Functional) [32-34] method and 6-

311G(d,p) the basis set in the ground state. All the computational process was realized over 

the optimized structure and the same method. The harmonic vibrational frequencies were 

computed and multiplied by the scale factor 0.9682 [35] to eliminate systematic errors 

between the experimental values and theoretical values the frequencies. 1H and 13C-NMR 

chemical shift values were calculated according to GIAO (Gauge-Independent Atomic Orbital) 

method [36] and with respect to TMS (tetramethylsilane) an internal standard chemical shifts 

as solvent CDCI3. The predicted 1H-NMR and 13C-NMR chemical shifts were obtained from the 

equation δ=(ΣTMS-Σ), where δ is the chemical shift, Σ is the absolute shielding and ΣTMS is 

the absolute shielding of the standard (TMS), its values are 32.002 and 184.923 ppm, 

respectively. All the computational analysis on the structure have been performed with 

Gaussian 09W [37] electronic structure and GaussView 5.0 [38] graphical interface software 

on a Intel Core i5/3.2 GHz personal computer. 

 

Synthesis 

Synthesis of 4-(2,3,5-trimethylphenoxy)phthalonitrile (3): The compound (3) was 

synthesized according to the reported procedure [29]. FT-IR :vmax, cm-1 3091 (Ar-CH), 2965, 

2947, 2917, 2860 (CH3), 2231 (CN), 1597 (C=C), 1566 (C=C), 1495, 1454, 1408, 1380, 

1371, 1312, 1278 (C-O), 1244, 1199, 1162, 1133, 1088, 1069, 1022, 971, 946, 870, 856, 

842, 746, 717, 726, 661. 1H NMR (600 MHz, CDCl3, δ, ppm) 2.00 (s, 3H, methyl), 2.30 (s, 6H, 

methyl), 6.64 (s, 1H, Ar-H), 6.95 (s, 1H, Ar-H), 7,15 (s, 1H, Ar-H), 7.17 (d, J = 1.6, 1H, Ar-

H), 7.69 (d, J = 8.2, 1H, Ar-H). 13C NMR (151 MHz, CDCl3):δ, ppm 11.82 (CH3), 19.96 (CH3), 

20.83 (CH3), 108.14, 115.08, 115.49 (CN), 117.60 (CN), 118.92, 120.52, 120.64, 125.55, 

128.91, 135.35, 137.24, 139.54, 151.18, 162.05. MS m/z [M+H+] 262.8 

 

General procedure for the synthesis of copper and cobalt phthalocyanines: The 

mixture of 4-(2,3,5-trimethylphenoxy)phthalonitrile (0.75 g, 2.88 mmol), the related 

anhydrous metal salt [CuCl2 (0.15 g, 1,12 mmol) for compound 4, CoCl2 (0.14 g, 1.06 mmol) 

for compound 5] and 0.5 mL DBU was heated at 140 °C with dry n-pentanol (10 mL) and 

stirred for 28 h in a nitrogen atmosphere. Then, the mixture was cooled to room temperature, 



Akdemir, JOTCSA. 2016; 3(3): 683-706.   RESEARCH ARTICLE 

686 
 

precipitated by adding methanol and filtered off. The green products were washed with hot 

methanol, hot ethanol, diethyl ether, and water. They were washed with methanol for 24 h in 

the soxhlet apparatus and dried in vacuo. 

 

2(3), 9(10), 16(17), 23(24)-Tetrakis-(2,3,5-trimethylphenoxy) copper(II) 

phthalocyanine (4) 

The product is soluble in DMF, DMSO, DCM, toluene, CHCl3, and THF. Yield: 0.689 g (86%); 

mp> 250oC; anal. calcd. for C68H56N8O4Cu: C, 73.40; H, 5.07; N, 10.07%. Found: C, 73.45; H, 

5.08; N, 10.11%. FT-IR :vmax, cm-1 3064 (Ar-CH), 2916, 2859, 1611, 1575, 1506, 1470, 1403, 

1342, 1294, 1268, 1224, 1174, 1133, 1120, 1094, 1076, 1049, 948, 970, 853, 823, 747, 666.  

 

2(3), 9(10), 16(17), 23(24)-Tetrakis-(2,3,5-trimethylphenoxy) cobalt(II) 

phthalocyanine (5) 

The product is soluble in DMF, DMSO, DCM, toluene, CHCl3, and THF. Yield: 0.459 g (58%); 

mp > 250oC; anal. calcd. for C68H56N8O4Co: C, 73.70; H, 5.09; N, 10.11%. Found: C, 73.75; 

H, 5.10; N, 10.06%. FT-IR :vmax, cm-1 3064 (Ar-CH), 2918, 2863, 1612, 1575, 1524, 1473, 

1408, 1332, 1294, 1269, 1226, 1177, 1123, 1094, 1078, 970, 955, 855, 824, 752, 665.  

 

RESULTS AND DISCUSSION 

 

Synthesis and characterization 

Scheme 1 shows the synthetic route to tetrakis(2,3,5-trimethylphenoxy) Cu and Co 

phthalocyanines. 4-(2,3,5-trimethylphenoxy)phthalonitrile (3) was firstly prepared by treating 

4-nitrophthalonitrile (2) with 2,3,5-trimethylphenol in DMF using K2CO3 as the base for 

nucleophilic displacement reaction and gave high yield (74 %) [29]. Copper(II) and cobalt(II) 

phthalocyanines (4 and 5) were synthesized by the treatment of compound 3 with anhydrous 

CoCl2 and CuCl2 in n-pentanol in the presence of 0,5 mL 1,8-diazabicyclo[5.4.0]undec-7-ene 

(DBU) as a strong base at 140 °C for 28 h in a nitrogen atmosphere. The yields of compounds 

4 and 5 were 86% and 58%, respectively.  
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Scheme 1. Synthetic route for compounds (4 and 5) i: DMF, K2CO3, N2, 40oC, 48h ii: n-

pentanol, DBU, CuCl2 or CoCl2, N2, 24h, 140oC. 

 

The phthalocyanines showed high solubility in organic solvents such as DMF, DMSO, DCM, 

toluene, CHCl3, and THF, but they are insoluble in methanol, ethanol, and diethyl ether. The 

products having been washed consequently with different solvents were obtained in sufficient 

purity. All new compounds were characterized by UV-Vis, FT-IR, 1H NMR, 13C NMR, MS spectra, 

and elemental analysis. All the results were in very good agreement with targeted structures. 

 

In the FT-IR spectrum of starting compound (3), aromatic CH, aliphatic CH, nitrile C≡N, 

aromatic C=C, ether Ar-O-Ar stretching vibrations appeared at 3091, 2964, 2231, 1597, and 

1278 cm-1, respectively. While the strong -C≡N band appeared at 2231 cm-1, this band 
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completely disappeared after conversion to compounds (4 and 5). The FT-IR spectra 

phthalocyanines are very similar with the exception of small stretching shifts. 1H NMR and 13C 

NMR spectra of phthalocyanines (4 and 5) could not be measured due to the paramagnetic 

cobalt(II) and copper(II) centers. 

 

Ground state electronic absorption spectra 

The phthalocyanines can be characterized by recording UV-Vis spectra. These compounds have 

two strong absorption regions, one of them in the UV region at ca. 275-400 nm (B band) and 

the other in the visible region at 600-700 nm (Q band) [2]. The UV-Vis spectra of the 

phthalocyanines (4, 5) were recorded in different solvents (Figures 1 and 2). The data were 

presented in Table 1. 

 

 

Figure 1. Absorption spectra of the compound (4) (CuPc) in different solvents. 
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Figure 2. Absorption spectra of the compound (5) (CoPc) in different solvents. 

 

The phthalocyanines (4, 5) showed monomeric behavior in different solvents, evidenced by a 

single (narrow) Q-band at 678-685 nm for 4, 663-675 nm for 5, confirming non-aggregation. 

However compound (4) showed aggregation in DMSO (Figure 1). B-Band absorptions in 

different solvents were observed at 339-348 nm for 4 and 326-335 nm for 5.  

 

Figures 2 and 4 show electronic absorption spectra of Pcs (4 and 5) in the concentration range 

2x10-6 - 1.20x10-5 M in THF. As shown in the Figures 3 and 4, the Q band increases in intensity 

with increasing concentration of phthalocyanines (4 and 5) and no new band was observed 

due to the aggregated species [39, 40]. Beer’s law was obeyed for (4) and (5) in the 

concentration range 2x10-6 - 1.20x10-5 M.  
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Table 1. UV-Vis spectral data for phthalocyanines (4 and 5) in various solvents at a 
concentration of 1x10-5 M 

Compound Solvent 
Q-Band B-Band 

λmax (nm) ɛ (dm3 mol-1 cm-1) λmax (nm) ɛ (dm3 mol-1 cm-

1) 
4 DMF 680, 612 67880; 14690 346 41930 
4 DMSO 681, 613 32630; 13620 340 43640 
4 DCM 683, 614 82930; 20920 339 37480 
4 CHCl3 685, 616 98130; 22150 339 41080 
4 Toluene 682, 613 94860; 18930 348 27980 
4 THF 678, 610 84600; 16810 346 32370 
5 DMF 666, 605 90500; 26370 329 69040 
5 DMSO 663, 603 85070; 28070 335 75500 
5 DCM 675, 608 69280; 20100 328 53310 
5 CHCl3 675, 609 88700; 22660 326 50320 
5 Toluene 675, 608 88680; 24020 334 47740 
5 THF 665, 603 85890; 21770 330 60360 

 

 

Figure 3. Absorption spectra of the compound (4) (CuPc) in THF at different concentrations. 
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Figure 4. Absorption spectra of the compound (5) (CoPc) in THF at different concentrations. 

 

Optimized Structure 

The experimental geometric structure with the atom-mumbering scheme [29] and the 

optimized structure of the compound (3) are shown in Figure 5. The crystal structure of the 

compound (3) has an orthorhombic crystal system and Pbcaspace group with a=7.8929 (8) Å, 

b=29.415 (4) Å, c=12.4679 (14) Å, V=2894.7 (6)  Å3 and Z=8 unit cell parameters [31]. 

Some selected optimized structure parameters such as bond lengths and angles, torsion angles 

were compared with experimental values and the results were tabulated in Table 2. 
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Figure 5. Top: An ORTEP-III view of the structure of the compound (3), showing 30% 
probability displacement ellipsoids and the atom-mumbering scheme [31]. Bottom: The 

optimized geometric structure of the compound (3) with DFT/B3LYP method and 6-
311G(d,p) basis set. 

  



Akdemir, JOTCSA. 2016; 3(3): 683-706.   RESEARCH ARTICLE 

693 
 

 

Table 2. Some experimental and optimized geometrical parameters of the compound (3). 

Parameters 
Experimental Values  

Ref.[31] 
Theoretical Values 

DFT/B3LYP/6-311G(d,p) 
Bond lengths (Å) 

C1—N1 1.142(2) 1.155 
C1—C2 1.433(3) 1.426 
C7— C8 1.439(2) 1.430 
C8—N2 1.134(2) 1.154 
C2—C3 1.393(2) 1.402 
C3—C4 1.371(2) 1.382 
C5—O1 1.362(19) 1.359 
C9—O1 1.410(19) 1.403 

C11—C15 1.508(2) 1.509 
C13—C16 1.520(3) 1.509 
C14—C17 1.503(3) 1.507 

Bond angles (o) 
N1—C1—C2 179.27(2) 178.42 
N2—C8—C7 179.12(2) 178.50 
C5—O1—C9 118.22(12) 120.05 
C4—C5—O1 116.14(14) 115.99 
C10—C9—O1 116.97(18) 117.99 
C9—C14—C17 121.25(18) 121.60 
C10—C11—C15 121.71(2) 121.27 

Torsion angles (o) 
N1—C1—C2—C3 -122.21(17) 0.384 
N2—C8—C7—C6 -66.13(14) -0.030 
C4—C5—O1—C9 -179.82(16) -172.13 
C10—C9—O1—C5 96.18(18) 77.32 

 

As seen in Table 2, C1-N1, C8-N2 bond lengths are 1.142, 1.134 Å accordingly X-ray analysis 

data, 1.155, 1.154 Å for DFT/B3LYP/6-311G(d,p) method. These lengths were stated as 1.142 

Å experimentally, 1.162 Å for 6-31G(d) [41], 1.138 experimentally, 1.146 Å for 6-31G(d,p) 

basis sets [42] in other DFT studies containing phthalonitrile group, and results are in 

agreement with typical carbon-nitrogen triple bond (about 1.16 Å). The lengths of carbon-

oxygen bond which serves as a bridge between phthalonitrile and trimethylbenzene groups are 

1.359 and 1.403 Å, theoretically, 1.36, 1.44 Å for 6-31G(d) basis set in another study [43]. 

Also N1-C1-C2, N2-C8-C7 bond angles of phthalonitrile are 178.42, 178.50˚ while these values 

are recorded 178.24, 178.51˚for 6-311+G(d,p) basis set in a similar paper [44]. 

 

When the experimental values compared with theoretical values, minor discrepancy are 

observed between them, because compound is accepted in the gas phase during theoretical 

calculation process, whereas it is solid phase in the experimental analysis. Even so, correlation 

coefficient is 0.9984 for bond lengths, 0.9996 for bond angles and according to these values it 

can be said that it showed a good correlation. Also, an atom-by-atom superimposition of the 

structure the compound (3) as established by DFT/B3LYP/6-311G(d,p) and X-ray data is 

shown in Figure 6 and RMSE value is 0.277 Å. 
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Figure 6. Atom-by-atom superimposition of the calculated structure (DFT/B3LYP76-311G(d,p) 
(red) on the X-ray structure (black) of the compound (3). 

 

Vibrational Spectral Analysis 

The scaled harmonic vibrational frequencies of the compound (3) were calculated with 

DFT/B3LYP/6-311G(d,p) basis set. The compound (3), which has 34 atoms and 96 

fundamental vibrational frequencies, consisting of phthalonitrile and trimethylbenzene groups. 

The theoretical vibrational assignments in these groups were designated with Gauss View 

interface program [38] and compared with spectral values and the results were tabulated in 

Table 3. Also, the FT-IR spectrum which was plotted on the transmittance (%) against the 

wavenumber (cm-1) is shown in Figure 7. 

 

Figure 7. The FT-IR spectrum of compound (3). 

The vibrational spectra of the compound (3) has some characteristic bands of the stretching 

vibrations such as C-H, C≡N, C=C, and C-O. The C-H are recorded at 3091.44-2860.18 cm-1 in 

the FT-IR spectrum, 3117.05-2927.15 cm-1 in the theoretical IR spectrum of the compound (3) 

as a result of characteristic feature C-H stretching bands are assigned at 3100-3000 cm-1 

region in aromatic groups, at 3000-2700 cm-1 in aliphatic groups [45]. The asymmetric and 

symmetric C-H stretching vibrations modes were recorded at 3039.62-2970.46 cm-1 and 
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2931.38-2927.15 cm-1, respectively. These assignments are compatible with the knowledge 

which defines C-H asymmetric and symmetric stretching vibrations for methyl groups occur at 

3091.44 and 2860.18-2964.81 cm-1 [46]. In the other studies, strong C≡N stretching band, 

characteristic of the vibrations of phthalonitrile moiety, is observed 2234.13, 2258.71 cm-1 for 

6-31G(d) [41], 2234.65, 2260.14 cm-1 for 6-31G(d) [47], 2923-2243 cm-1, 2928-2264 cm-1 for 

6-31G(d) [43] while this band is recorded at 2230.76 and 2264.60 cm-1 in this study, as 

experimental and computed values, respectively. This mode was observed about 2232-2237 

cm-1 and 2230 cm-1 as experimentally in phthalonitrile groups [48, 49]. The C=C stretching 

modes belong to aromatic groups are appeared at 1400-1600 cm-1 bandwidth, and in 

accordance with this information these modes are recorded 1597.30, 1605.78 cm-1 in 

trimethylbenzene and 1566.41, 1584.88, experimentally and theoretically, respectively, for the 

compound (3). The CAr-O stretching vibration mode of the ether group is observed at 1311.58, 

1278 cm-1 as experimental and as theoretical 1227.18 cm-1, so these values are agreement 

with the literature that recorded about 1300-1000 cm-1 [50]. Some of the C-H in-plane and 

out-of plane bending vibrations bands and the deformation modes on the functional groups are 

shown in Table 3. 

 

The selected vibrational frequencies have a good correlation with corresponding spectral values 

and similar studies in literature. And the correlation graphic (R2 value is 0.9987) is shown in 

Figure 8. 

 

Figure 8. The correlation plot for experimental and theoretical wavenumbers of the 
compound (3). 
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Table 3. The comparison of the observed and calculated vibrational 
spectra of the compound (3). 

Assignments 
Experimental FT-IR 

 (cm-1) with KBr 

Calculated (cm-1) 

DFT/B3LYP/6-311G(d,p) 

νsC–H(phthalonitrile) 3091.44 3117.05 

νasC–H(phthalonitrile) - 3093.85 

νsC–H(trimethylbenzene) - 3076.86 

νasC–H3(trimethylbenzene) - 3039.62-2970.46 

νsC–H3(trimethylbenzene) 2964.81-2917.12 2931.38-2927.15 

νC≡N 2230.76 2264.60 

νC=C(trimethylbenzene) 1597.30 1605.78 

νC=C(phthalonitrile) 1566.41 1584.88 

νC–C(phthalonitrile) - 1543.31 

γC-H(phthalonitrile) - 1471.73 

ωC–H3(trimethylbenzene) 1380.52 1378.05 

νC–O 1278 1227.18 

δC–H(phthalonitrile) 946.20 949.40 

θ(phthalonitrile) - 715.40 

βccc - 561.89 

Vibrational modes:ν;stretching (s; symmetric, as; asymmetric), γ; rocking, ω; wagging, 

δ; twisting, β; deformation in-plane, θ; ring breathing. 

NMR Spectral Analysis 

Spectral and theoretical 13C-NMR and 1H-NMR chemical shift values of the compound (3) were 

recorded within the range of 162.05-11.82 ppm, 171.80-13.69 ppm and 7.69-2.00 ppm, 7.94-

1.86 ppm respectively, and results are shown in Table 4. 
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Table 4. Experimental and theoretical 13C NMR and 1H NMR 
isotropic chemical shift values for the compound (3). 

Atom 

Experimental 

chemical shift values 

(ppm) 

Theoretical 

chemical shift values 

 (ppm) 

C1 117.60 121.86 

C2 108.14 113.66 

C3 135.35 143.85 

C4 120.52 129.19 

C5 162.05 171.80 

C6 120.64 125.20 

C7 115.08 123.95 

C8 115.49 121.50 

C9 151.18 158.70 

C10 118.92 125.25 

C11 139.54 149.28 

C12 128.91 135.14 

C13 134.24 145.93 

C14 125.55 135.45 

C15 19.96 23.59 

C16 20.83 23.32 

C17 11.82 13.69 

H3 7.69 7.94 

H4 7.17 7.70 

H6 7.15 6.69 

H10 6.64 6.82 

H12 6.95 7.38 

H15a 2.30 2.35 

H16a 2.30 2.36 

H17a 2.00 2.11 

Note: The atom numbering according to Fig.5 used in the assignment of chemical 
shifts. a Average 

 
 

As it can be seen in Table 4, C5 atom has the highest chemical shift values in the downfield 

observed at 162.05 ppm, 171.80 ppm for as experimental, theoretical, respectively. Another 

the highest chemical shift value is stated as 151.18 and 158.70 ppm for C9 atom. It has less 

chemical shift value than C5 atom by reason of the effect of electron withdrawing substituent. 
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The aromatic carbon atoms have chemical shift values special to aromatic ring carbon atoms 

(100-150 ppm) [51] and these were recorded 108.14-115.08 ppm experimentally, 113.66-

123.95 ppm theoretically for phthalonitrile ring atoms, 118.92-134.24 ppm for experimentally, 

and 125.25-145.93 for theoretically calculated benzene ring atoms. C1 and C8 atoms have 

typical triple bond with nitrogen chemical shift values, and were observed 117.60-115.49 ppm 

and 121.86-121.50 ppm as experimental and theoretical. sp3 hybridized C15, C16, C17 atoms 

of the methyl groups have low chemical shift values in the upfield, these values confirm that 

information sp3 hybridized methyl group protons are assigned at 0-30 ppm [50]. 

 

The chemical shift values belong to aromatic hydrogen atoms-H3, H4, H6, H10 and H12 

atoms- are 7.69-6.95 ppm as spectral values, 7.94 and 6.82 ppm as computed values GIAO 

method. These resonance values are in concert with the literature [43, 52] that indicates as 

6.0-8.5 ppm for aromatic protons. And the chemical shift values of the methyl protons, H15, 

H16 and H17, are assigned 2.30, 2.00 ppm as experimental and 2.35, 2.36, 2.11 ppm average 

values as theoretical.  

 

Both spectral and theoretical chemical shift values are in agreement with literature values and 

with each other. The experimental 13C-NMR and 1H-NMR spectra are shown in Figure 9. To 

compare the experimental and theoretical values, the correlation coefficients and graphics 

were examined, R2 value is 0.9992 for 13C-NMR, 0.9849 for 1H-NMR, and they are shown in 

Figure 10. 
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Figure 9. Top)1H NMR spectrum, bottom)13C NMR spectrum (APT) of compound (3) 
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Figure 10. Correlation graphics between the experimental and theoretical Top) 13C-NMR, 
bottom)1H-NMR chemical shift values of the compound (3). 

 

CONCLUSION 

 

Cu(II) and Co(II) phthalocyanines containing 2,3,5-trimethylphenoxy on the periphery were 

successfully prepared. Structures of all synthesized compounds were determined by elemental 

analyses, UV-Vis, 1H-NMR, 13C-NMR, Mass spectra, and FT-IR spectroscopy. The 

phthalocyanines showed excellent solubility in general organic solvents such as DCM, THF, 

chloroform, DMF, DMSO, and toluene. The absorption spectra of the new phthalocyanines were 

recorded in different solvents. The aggregation behaviors of compound (4) and (5) were 

investigated at different concentrations in THF. Also, computational studies on compound (3) 

were performed with DFT/B3LY/6-311G(d,p) basis set over the ground state and gas phase. So 

as to support that, the results of experimental were compared molecular structure parameters, 

vibrational frequencies, 1H-NMR and 13C-NMR chemical shift values. In comparison 

experimental with theoretical values, it is seen that most of the parameters are slightly 

different, as experimental results over the solid state, theoretical ones over the gas phase. 

And, correlation coefficients which were obtained indicate in compliance with results of both 
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spectral and modelling that is not only among themselves but also other phthalonitrile studies. 

The author hopes that these consequences will be created an infrastructure for researchers 

carrying out similar studies and can be used for the further analysis. 
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Türkçe Öz ve Anahtar Kelimeler 

Yeni, Periferal Konumlarda 2,3,5-Trimetilfenoksi Sübstitüe Cu ve Co 
Ftalosiyaninlerin Sentezi, Karakterizasyonu ve Spektroskopik 

Özelliklerinin İncelenmesi, 4-(2,3,5-trimetilfenoksi)ftalonitrilin 
Hesaplamalı ve Deneysel Çalışmaları 

 
Nesuhi Akdemir1 

 
Öz: 4-(2,3,5-trimetilfenoksi)ftalonitril (3) nükleofilik aromatik sübstitüsyon ile hazırlanmış ve 
FT-IR, kütle spektrometrisi, 1H ve 13C-NMR teknikleriyle karakterize edilmiştir. 3 bileşiğinin 
moleküler yapısı Yoğunluk Fonksiyonel Teorisi (DFT/B3LYP) yöntemiyle temel halde 6-
311G(d,p) taban seti ile en uygun hale getirilmiştir. X-ışını tek kristal saçılması yöntemiyle 
moleküler geometrik parametreler elde edilmiştir, spektral sonuçlar hesaplanan bağ uzunlukları 
ve açıları, titreşim frekansları ve 1H ile 13C kimyasal kaymaları ile karşılaştırılmıştır. Bunun 
dışında, dinitril türevinin susuz CuCl2 veya CoCl2 ile azot atmosferinde kuru n-pentanol içinde 
140 °C’de tepkimeye sokulmasıyla karşılık gelen Cu(II) ve Co(II) ftalosiyaninler elde edilmiştir. 
Yeni bileşikler elementel analiz, FT-IR ve elektronik soğurma spektrumu ile belirlenmiştir. 
Cu(II) ve Co(II) ftalosiyaninlerin UV-Vis spektrumları THF içinde farklı derişimlerde kaydedilmiş 
ve ayrıca başka çözücüler de (DMF, DMSO, DCM, CHCl3 ve toluen) denenmiştir.  
 
Anahtar kelimeler: Ftalosiyaninler; ftalonitril; 2,3,5-trimetilfenol; DFT. 
 

Sunulma: 04 Temmuz 2016. Kabul: 02 Kasım 2016.  
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