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Abstract

Bell's polynomials have been used in many di�erent �elds, ranging from number theory to operators theory.
In this article we show a method to compute the Laplace Transform (LT) of nested analytic functions. To
this aim, we provide a table of the �rst few values of the complete Bell's polynomials, which are then used
to evaluate the LT of composite exponential functions. Furthermore a code for approximating the Laplace
Transform of general analytic composite functions is created and presented. A graphical veri�cation of the
proposed technique is illustrated in the last section.
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1. Introduction

The common view that there is no formula for the Laplace Transform (LT) of composite analytic functions
is disproved using Bell's polynomials [1, 5, 7, 10, 13], as in the case of the derivative of nested functions, for
which Bell's polynomials are exploited.

The Bell's polynomials are exploited in very di�erent �elds, ranging from number theory [11, 15, 16] to
operators theory [14], and from di�erential equations [10] to integral transforms [3, 12].

Email addresses: paoloemilio.ricci@uninettunouniversity.net (Paolo E. Ricci), d.caratelli@tue.nl (Diego
Caratelli), sandra.pinelas@gmail.com (Sandra Pinelas)

Received October 11, 2022; Accepted: January 04, 2023; Online: January 06, 2023.

Advances in the Theory of Nonlinear Analysis and its Applications 7 (2023) No. 1, 162�177.
https://doi.org/10.31197/atnaa.1187617

Available online at www.atnaa.org



The importance of the LT [8], and of the even more useful Fourier Transform [2], is well known and it is
not necessary to remind it here.

We use the classic de�nition

L(f) :=
∫ ∞

0
exp(−s t)f(t) dt = F (s) .

The LT converts a function of a real variable t (often representing the time) to a function of a complex
variable s (representing the complex frequency). The LT can be applied to locally integrable functions on
[0,+∞). It converges in each half plane Re(s) > a, where a is a constant (the so-called convergence abscissa),
depending on the behavior at in�nity of f(t).

Exploiting the Taylor's expansion of the considered analytic function, and expressing the coe�cients in
terms of Bell's polynomials computed at the initial point, we approximate the LT of nested functions by a
series expansion, which is certainly convergent, if the considered LT exists.
We start from the easier case of the LT of a nested exponential function. To this aim, we show the �rst few
values of the complete Bell's polynomials which are applied in this case. The result is a Laurent expansion
approximating the relevant LT.

Then we consider the case of the LT of general nested functions. The main problem is to provide a table
of Bell's polynomials, which exhibit a highly increasing number of addends, but their evaluation at a �xed
point is an easy matter, using a suitable computer code.

Only in very few cases our results can be compared with the LT of nested functions appearing in the
literature. This is shown in equations (17) and (20).

In the last section, the proposed technique was veri�ed also graphically, in the two cases of composed
functions whose transform and anti-transform are known (see [9]). All the numerical results were obtained
using the computer algebra program Mathematica c⃝.

The second-order Bell's polynomials Y
[2]
n , representing the derivatives of nested functions of the type

f(g(h(t)) are then introduced, and two LT examples of this type of function are given.
In the last Section the computer program used in the applications is shown, and a table of second-order

Bell's polynomials is reported.

2. De�nition of Bell's polynomials

The n-th derivative of the composite (di�erentiable) function Φ(t) := f(g(t)), as computed by using the
chain rule, can be expressed in terms of Bell's polynomials as follows

Φn := Dn
t Φ(t) = Yn(f1, g1; f2, g2; . . . ; fn, gn) =

n∑
k=1

Bn,k(g1, g2, . . . , gn−k+1) fk, (1)

where

fh := Dh
xf(x)|x=g(t), gk := Dk

t g(t). (2)

The coe�cients Bn,k, for all k = 1, . . . , n, are polynomials of the variables g1, g2, . . . , gn−k+1, that are ho-

mogeneous of degree k and isobaric of weight n (i.e. they are a linear combination of monomials gk11 gk22 · · · gknn
whose weight is constantly given by k1 + 2k2 + . . .+ nkn = n).

The Bell's polynomials satisfy the recursion
Y0 := f1;
Yn+1(f1, g1; . . . ; fn, gn; fn+1, gn+1) =

=

n∑
k=0

(
n

k

)
Yn−k(f2, g1; f3, g2; . . . ; fn−k+1, gn−k)gk+1.

(3)
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and are given explicitly by Faà di Bruno's formula (which has a high computational complexity)

Yn(f1, g1; f2, g2; . . . ; fn, gn) =
∑
π(n)

n!

r1!r2! . . . rn!
fr

[g1
1!

]r1[g2
2!

]r2
· · ·
[gn
n!

]rn
, (4)

where the sum runs over all the partitions π(n) of the integer n, ri denotes the number of parts of size i,
and r = r1 + r2 + · · ·+ rn is the number of parts of the considered partition [13].

The Bn,k coe�cients satisfy the recursion ∀n

Bn,1 = gn , Bn,n = gn1 ,

Bn,k(g1, g2, . . . , gn−k+1) =
n−k∑
h=0

(
n− 1

h

)
Bn−h−1,k−1(g1, g2, . . . , gn−k−h+1) gh+1 .

(5)

3. Laplace transform of composed functions

Let f(g(t)) be a composite function analytic in a neighborhood of the origin, whose Taylor's expansion
is given by

f(g(t)) =

∞∑
n=0

an
tn

n!
, an = Dn

t [f(g(t))]t=0 . (6)

According to the preceding equations, it results

a0 = f(
◦
g0) ,

an = Dn
t [f(g(t))]t=0 =

n∑
k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1)

◦
fk , (n ≥ 1) ,

(7)

where
◦
fk:= Dk

xf(x)|x=g(0),
◦
gh:= Dh

t g(t)|t=0. (8)

This expansion can be used in computing the LT of analytic composite functions.

Theorem 3.1. Consider a composed function f(g(t)), analytic in a neighborhood of the origin, and such that

its growth to in�nity is such that its LT exists. Let its Taylor series expansion be expressed by the equation

(6).
Then, for its LT the following equation holds∫ +∞

0
f(g(t))e−tsdt =

f(
◦
g0)

s
+

∞∑
n=1

(
n∑

k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1)

◦
fk

)
1

sn+1
. (9)

Proof. � We �rstly note that the convergence of the series in the second member of equation (9) is a direct
consequence of the existence of the integral in the �rst member, which is a prerequisite for our computational
approach. Furthermore, using the uniform convergence of Taylor's expansion, we can write∫ +∞

0
f(g(t))e−tsdt =

f(
◦
g0)

s
+

∞∑
n=1

∫ +∞

0

n∑
k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1)

◦
fk

tn

n!
e−tsdt =

=
f(

◦
g0)

s
+

∞∑
n=1

(
n∑

k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1)

◦
fk

) ∫ +∞

0

tn

n!
e−tsdt ,

(10)

so that the conclusion follows by using the LT of powers.
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4. The particular case of the exponential function

In the particular case where f(x) = ex, that is equivalent to considering the function eg(t) and assuming
g(0) = 0; we then have the more simple form

n∑
k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1)

◦
fk =

n∑
k=1

Bn,k(
◦
g1,

◦
g2, . . . ,

◦
gn−k+1) = Bn(

◦
g1,

◦
g2, . . . ,

◦
gn) , (11)

where Bn are the complete Bell's polynomials. It is B0(g0) := f(g0), and the �rst few values of Bn, for
n = 1, 2, . . . , 10, are given by

B1 = g1,
B2 = g21 + g2,
B3 = g31 + 3g1g2 + g3,
B4 = g41 + 6g21g2 + 4g1g3 + 3g22 + g4,
B5 = g51 + 10g31g2 + 15g1g

2
2 + 10g21g3 + 10g2g3 + 5g1g4 + g5,

B6 = g61 + 15g41g2 + 45g21g
2
2 + 15g32 + 20g31g3 + 60g1g2g3 + 10g23 + 15g21g4 + 15g2g4 + 6g1g5 + g6,

B7 = g71 + 21g51g2 + 105g31g
2
2 + 105g1g

3
2 + 35g41g3 + 210g21g2g3 + 105g22g3 + 70g1g

2
3 + 35g31g4+

105g1g2g4 + 35g3g4 + 21g21g5 + 21g2g5 + 7g1g6 + g7,
B8 = g81 + 28g61g2 + 210g41g

2
2 + 420g21g

3
2 + 105g42 + 56g51g3 + 560g31g2g3 + 840g1g

2
2g3 + 280g21g

2
3+

280g2g
2
3 + 70g41g4 + 420g21g2g4 + 210g22g4 + 280g1g3g4 + 35g24 + 56g31g5 + 168g1g2g5+

56g3g5 + 28g21g6 + 28g2g6 + 8g1g7 + g8,
B9 = g91 + 36g71g2 + 378g51g

2
2 + 1260g31g

3
2 + 945g1g

4
2 + 84g61g3 + 1260g41g2g3 + 3780g21g

2
2g3+

1260g32g3 + 840g31g
2
3 + 2520g1g2g

2
3 + 280g33 + 126g51g4 + 1260g31g2g4 + 1890g1g

2
2g4+

1260g21g3g4 + 1260g2g3g4 + 315g1g
2
4 + 126g41g5 + 756g21g2g5 + 378g22g5 + 504g1g3g5+

126g4g5 + 84g31g6 + 252g1g2g6 + 84g3g6 + 36g21g7 + 36g2g7 + 9g1g8 + g9,
B10 = g101 + 45g81g2 + 630g61g

2
2 + 3150g41g

3
2 + 4725g21g

4
2 + 945g52 + 120g71g3 + 2520g51g2g3+

12600g31g
2
2g3 + 12600g1g

3
2g3 + 2100g41g

2
3 + 12600g21g2g

2
3 + 6300g22g

2
3 + 2800g1g

3
3+

210g61g4 + 3150g41g2g4 + 9450g21g
2
2g4 + 3150g32g4 + 4200g31g3g4 + 12600g1g2g3g4+

2100g23g4 + 1575g21g
2
4 + 1575g2g

2
4 + 252g51g5 + 2520g31g2g5 + 3780g1g

2
2g5 + 2520g21g3g5+

2520g2g3g5 + 1260g1g4g5 + 126g25 + 210g41g6 + 1260g21g2g6 + 630g22g6 + 840g1g3g6+
210g4g6 + 120g31g7 + 360g1g2g7 + 120g3g7 + 45g21g8 + 45g2g8 + 10g1g9 + g10 .

The values of the complete Bell's polynomials for particular parameter choices can be found in [11].
The complete Bell's polynomials satisfy the identity (see e.g. [10])

Bn+1(g1, . . . , gn+1) =

n∑
k=0

(
n

k

)
Bn−k(g1, . . . , gn−k) gk+1. (12)

In this case equation (9) reduces to∫ +∞

0
exp(g(t)) e−tsdt =

exp(
◦
g0)

s
+

∞∑
n=1

Bn(
◦
g1,

◦
g2, . . . ,

◦
gn)

1

sn+1
. (13)

In what follows we evaluate the approximation of the LT of nested functions. The reported results have
been obtained using the computer algebra program Mathematica c⃝.

4.1. Examples

We start considering the case of the LT of nested exponential functions
• Let f(x) = ex and g(t) = sin t. Then g1 = 1, g2 = 0, g3 = −1, g4 = 0, and in general g2h = 0, g2h+1 =

(−1)h, h = 1, 2, 3, . . . .
According to the above table of Bn, it results

B1(1) = 1, B2(1, 0) = 1, B3(1, 0,−1) = 0, B4(1, 0,−1, 0) = −3, B5(1, 0,−1, 0, 1) = −8 .
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Then ∫ +∞

0
exp(sin t) e−tsdt =

1

s
+

1

s2
+

1

s3
− 3

s5
− 8

s6
+O

(
1

s7

)
. (14)

• Consider the complete elliptic integral of the second kind g(t) := E(t) and the LT of the corresponding
exponential function. We �nd∫ +∞

0
exp(E(t)) e−tsdt =

eπ/2

s
− π

8s2
+

π2 − 3π

64s3
− π3 − 9π2 + 30π

512s4
+

π4 − 18π3 + 147π2 − 525π

4096s5
+O

(
1

s6

)
.

(15)

5. The general case

Examples of the proposed method for approximating the LT of general nested functions are reported in
what follows.

• Assuming f(x) = arctan(x), g(t) = log(1 + t), it results∫ +∞

0
arctan[log(1 + t)] e−tsdt =

1

s2
− 1

s3
+

6

s5
− 22

s6
− 30

s7
+

952

s8
− 5656

s9
+

9952

s10
− 508320

s11
+O

(
1

s12

)
.

(16)

A lot of further examples can be constructed using the above method and the most of them have not a
close expression in terms of special functions.

5.1. Graphical display in two known cases

• Test case #1

Considering the composed function cosh(νarcsinh(t)), it results [9]

L(s) =

∫ +∞

0
cosh(νarcsinh(t)) e−tsdt =

S1,ν(s)

s
, ℜs > 0 . (17)

where S1,ν denotes a special case of the Lommel function Sµ,ν [6].
Assuming ν = π, and using our approximation we have found∫ +∞

0
cosh[πarcsinh(t)] e−tsdt =

1

s
+

π2

s3
+

π2(π2 − 4)

s5
+

π2(π4 − 20π2 + 64)

s7
π2(π6 − 56π4 + 784π2 − 2304)

s9
+

π2(π8 − 120π6 + 4368π4 − 52480π2 + 147456)

s11
+O

(
1

s13

)
.

(18)

so that, by inverse Laplace transformation, one can readily conclude that

l̃(t) ≃
(
1 +

π2

2!
t2 +

π2(π2 − 4)

4!
t4 +

π2(π4 − 20π2 + 64)

6!
t6+

π2(π6 − 56π4 + 784π2 − 2304)

8!
t8 +

π2(π8 − 120π6 + 4368π4 − 52480π2 + 147456)

10!
, t10H(t) ,

(19)
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with H(·) denoting the classical Heaviside distribution.
The distributions of L(s) and L̃(s) along the cut sections ω = ℑs = 1 and σ = ℜs = 5 are reported in
Figures 1 and 2, respectively. As it can be noticed, the agreement between the exact transform (17) (for
ν = π) and the relevant approximation (18) is very good especially as s → +∞. Conversely, the functions
l(t) and l̃(t) tend to match for t → 0+ as one would expect from theory (see Figure 3).

(a) (b)

Figure 1: Magnitude (a) and argument (b) of the Laplace transform of l(t) = cosh[πarcsinh(t)] as evaluated through the
approximant L̃(s) and the rigorous analytical expression L(s) for s = σ + iω with ω = 1.

(a) (b)

Figure 2: Magnitude (a) and argument (b) of the Laplace transform of l(t) = cosh[πarcsinh(t)] as evaluated through the
approximant L̃(s) and the rigorous analytical expression L(s) for s = σ + iω with σ = 5.

Figure 3: Distribution of l(t) = cosh[πarcsinh(t)] and the relevant approximant l̃(t).
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• Test case #2

Considering the composed function Jν(a sinh(t)) with ℜa > 0,ℜν > −1, it results [9]

L(s) =

∫ +∞

0
Jν(a sinh(t)) e

−tsdt = J ν+s
2

(
a
2

)
K ν−s

2

(
a
2

)
, ℜs > −1

2 , (20)

where Jν and Kν are Bessel functions.
Assuming ν = 0, and a = 1, we �nd the LT

L(s) =

∫ +∞

0
J0(sinh(t)) e

−tsdt = J s
2

(
1
2

)
K− s

2

(
1
2

)
, ℜs > −1

2 . (21)

Using our approximation, we have found

L(s) ≃ L̃(s) =

∫ +∞

0
J0(sinh(t))e

−tsdt =
1

s
− 1

2s3
− 13

8s5
− 13

16s7
+

9827

128s9
+

309649

256s11
+O

(
1

s13

)
,

(22)

so that, by inverse Laplace transformation, one can readily conclude that:

l̃(t) ≃
(
1− 1

4
t2 − 13

192
t4 − 13

11520
t6 +

9827

5160960
t8 +

309649

928972800
t10
)
H(t) , (23)

with H(·) denoting the classical Heaviside distribution.

(a) (b)

Figure 4: Magnitude (a) and argument (b) of the Laplace transform of l(t) = J0(sinh(t)) as evaluated through the approximant
L̃(s) and the rigorous analytical expression L(s) for s = σ + iω with ω = 1.

The distributions of L(s) and L̃(s) along the cut sections ω = ℑs = 1 and σ = ℜs = 5 are reported in
Figures 4 and 5, respectively. As it can be noticed, the agreement between the exact transform (21) and the
relevant approximation (22) is very good especially as s → +∞. Conversely, the functions l(t) and l̃(t) tend
to match for t → 0+ as one would expect from theory (see Figure 6).
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(a) (b)

Figure 5: Magnitude (a) and argument (b) of the Laplace transform of l(t) = J0(sinh(t)) as evaluated through the approximant
L̃(s) and the rigorous analytical expression L(s) for s = σ + iω with σ = 5.

Figure 6: Distribution of l(t) = J0(sinh(t)) and the relevant approximant l̃(t).

6. An extension of the Bell's polynomials

We consider the second-order Bell's polynomials, Y
[2]
n (f1, g1, h1; f1, g1, h1; . . . ; fn, gn, hn), de�ned by the

n-th derivative of the composite function Φ(t) := f(g(h(t))).
Consider the functions x = h(t), z = g(x), and y = f(z), and suppose that h(t), g(x), and f(z) are n

times di�erentiable with respect to their variables, so that the composite function Φ(t) := f(g(h(t))) can be
di�erentiated n times with respect to t, by using the chain rule.

We use, as before, the following notations:

Φj := Dj
tΦ(t), fh := Dh

yf(y)|y=g(x), gk := Dk
xg(x)|x=h(t), hr := Dr

th(t).

Then the n-th derivative can be represented by

Φn = Y [2]
n (f1, g1, h1; f2, g2, h2; . . . ; fn, gn, hn) = Y [2]

n ([f, g, h]n) ,

where the Y
[2]
n are de�ned as the second order Bell's polynomials.
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The �rst few polynomials are as follows.

Y
[2]
1 ([f, g, h]1) = f1g1h1;

Y
[2]
2 ([f, g, h]2) = f1g1h2 + f1g2h

2
1 + f2g

2
1h

2
1;

Y
[2]
3 ([f, g, h]3) = f1g1h3 + f1g3h

3
1 + 3f1g2h1h2 + 3f2g1g2h

3
1 + f3g

3
1h

3
1;

Y
[2]
4 ([f, g, h]4) = f4g

4
1h

4
1 + 6f3g

2
1g2h

4
1 + 3f2g

2
2h

4
1 + 4f2g1g3h

4
1 + f1g4h

4
1 + 6f3g

3
1h

2
1h2+

+ 18f2g1g2h
2
1h2 + 6f1g3h

2
1h2 + 3f2g

2
1h

2
2 + 3f1g2h

2
2 + 4f2g

2
1h1h3 + 4f1g2h1h3 + f1g1h4;

Y
[2]
5 ([f, g, h]5) = f5g

5
1h

5
1 + 10f4g

3
1g2h

5
1 + 15f3g1g

2
2h

5
1 + 10f3g

2
1g3h

5
1 + 10f2g2g3h

5
1+

+ 5f2g1g4h
5
1 + f1g5h

5
1 + 10f4g

4
1h

3
1h2 + 60f3g

2
1g2h

3
1h2 + 30f2g

2
2h

3
1h2 + 40f2g1g3h

3
1h2+

+ 10f1g4h
3
1h2 + 15f3g

3
1h1h

2
2 + 45f2g1g2h1h

2
2 + 15f1g3h1h

2
2 + 10f3g

3
1h

2
1h3 + 30f2g1g2h

2
1h3+

+ 10f1g3h
2
1h3 + 10f2g

2
1h2h3 + 10f1g2h2h3 + 5f2g

2
1h1h4 + 5f1g2h1h4 + f1g1h5 .

(24)

A more extended table is given in the last Section.
The connections to the ordinary Bell's polynomials are expressed below.

Theorem 6.1. For every integer n, the polynomials Y
[2]
n are represented in terms of the ordinary Bell's ones

by the following equation

Y
[2]
n (f1, g1, h1; . . . ; fn, gn, hn) =

= Yn (f1, Y1(g1, h1); f2, Y2(g1, h1; g2, h2); . . . ; fn, Yn(g1, h1; g2, h2; . . . ; gn, hn))
(25)

Proof. � Using induction, we have that (28) is true for n = 1, since

Y
[2]
1 (f1, g1, h1) = f1 g1 h1 = f1 Y1(g1, h1) = Y1 (f1, Y1(g1, h1)) .

Then assuming that equation (28) is true for n, it follows that

Y
[2]
n+1(f1, g1, h1; . . . ; fn+1, gn+1, hn+1) = Dt Y

[2]
n (f1, g1, h1; . . . ; fn, gn, hn) =

= Dt Yn (f1, Y1(g1, h1); . . . ; fn, Yn(g1, h1; g2, h2; . . . ; gn, hn)) =

= Yn+1 (f1, Y1(g1, h1); . . . ; fn+1, Yn+1(g1, h1; g2, h2; . . . ; gn+1, hn+1)) .

(26)

Consequently, we have the following theorem:

Theorem 6.2. The second-order Bell's polynomials verify the recursion

Y
[2]
0 = f1;

Y
[2]
n+1(f1, g1, h1; . . . ; fn+1, gn+1, hn+1) =

n∑
k=0

(
n

k

)
Y

[2]
n−k (f2, g1, h1; f3, g2, h2; . . .

. . . ; fn−k+1, gn−k, hn−k)Yk+1(g1, h1; . . . ; gk+1, hk+1).

(27)

Proof. � By means of (28) we express Y
[2]
n+1(f1, g1, h1; . . . ; fn+1, gn+1, hn+1) in terms of

Yn+1 (f1, Y1(g1, h1); . . . ; fn+1, Yn+1(g1, h1; . . . ; gn+1, hn+1)). Then, by using the recurrence relation (3) and
again (28), we obtain the expansion (30).
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7. Laplace transform of nested functions

Let be f(g(h(t))) be a composite function analytic in a neighborhood of the origin, so that it is expressed
by the Taylor's expansion

f(g((h(t))) =
∞∑
n=0

an
tn

n!
, an = Dn

t [f(g((h(t)))]t=0 . (28)

According to the preceding equations, it results

a0 =
◦
f0= f(g(h(0)) ,

an = Dn
t [f(g((h(t)))]t=0 = Y

[2]
n (

◦
f1,

◦
g1,

◦
h1; . . . ;

◦
fn,

◦
gn,

◦
hn) , (n ≥ 1) ,

(29)

where

◦
fh:= Dh

xf(y)|y=g(0),
◦
gk:= Dk

t g(x)|x=h(0),
◦
hr:= Dr

th(t)|t=0 (30)

This expansion can be used in computing the LT of analytic nested functions.

Theorem 7.1. Considering a nested function f(g((h(t))), which is analytic in a neighborhood of the origin,

and can be represented by the Taylor's expansion in (31). For its LT the following expression holds∫ +∞

0
f(g((h(t)))e−tsdt =

◦
f0

s
+

∞∑
n=1

Y [2]
n (

◦
f1,

◦
g1,

◦
h1; . . . ;

◦
fn,

◦
gn,

◦
hn)

tn

n!
e−tsdt =

=

◦
f0

s
+

∞∑
n=1

Y [2]
n (

◦
f1,

◦
g1,

◦
h1; . . . ;

◦
fn,

◦
gn,

◦
hn)

1

sn+1
.

(31)

Proof. � It is a straightforward application of the de�nition of second-order Bell's polynomials.

7.1. Example 1

• Assuming f(x) = ex−1, g(y) = cos(y), h(t) = sin(t), it results∫ +∞

0
exp[cos(sin(t))− 1] e−tsdt =

1

s
− 1

s3
+

8

s5
− 127

s7
+

3523

s9
− 146964

s11
+O

(
1

s13

)
. (32)

The corresponding inverse LT is approximated by

l̃(t) ≃
(
1− 1

2
t2 +

1

3
t4 − 127

720
t6 +

3523

40320
t8 − 12247

302400
t10
)
H(t) , (33)

with H(·) denoting the classical Heaviside distribution.

7.2. Example 2

• Assuming f(x) = log
(
1 + x

2

)
, g(y) = cosh(y)− 1, h(t) = sin(t), it results∫ +∞

0
log

[
1 +

cosh(sin(t))− 1

2

]
e−tsdt =

1

2s3
− 9

4s5
− 27

2s7
+

1169

8s9
− 5869

2s11
+O

(
1

s13

)
. (34)

The corresponding inverse LT is approximated by

l̃(t) ≃
(
1

4
t2 − 3

32
t4 +

3

160
t6 − 167

46080
t8 +

5869

7257600
t10
)
H(t) , (35)

with H(·) denoting the classical Heaviside distribution.
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7.3. Example 3

• Assuming f(x) = ex, g(y) = J1(y), h(t) = sin(t), it results∫ +∞

0
exp[J1(sin(t)] e

−tsdt =
1

s
− 1

2s2
+

1

4s3
− 3

4s4
− 27

16s5
+

77

32s6
+

+
1227

64s7
+

385

128s8
− 82663

256s9
− 439229

512s10
+

6754489

1024s11
+O

(
1

s12

)
.

(36)

The corresponding inverse LT is approximated by

l̃(t) ≃
(
1 +

1

2
t+

1

8
t2 − 1

8
t3 − 9

128
t4 +

77

3840
t5 +

409

15360
t6 +

11

18432
t7−

11809

1474560
t8 − 62747

26542080
t9 +

964927

530841600
t10
)
H(t) ,

(37)

with H(·) denoting the classical Heaviside distribution.

7.4. Example 4

• Assuming f(x) = arctan(x), g(y) = y1/3, h(t) = cosh(t), it results∫ +∞

0
arctan[(cosh(t))1/3] e−tsdt =

π

4s
+

1

6s3
− 1

3s5
+

43

18s7
− 338

9s9
+

18523

18s11
+O

(
1

s13

)
. (38)

The corresponding inverse LT is approximated by

l̃(t) ≃
(
π

4
+

1

12
t2 − 1

72
t4 +

43

12960
t6 − 169

181440
t8 +

18523

65318400
t10
)
H(t) , (39)

with H(·) denoting the classical Heaviside distribution.
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8. The used Mathematica c⃝ code and Y [2]
n polynomials up to n = 9

8.1. An example of the used Mathematica c⃝ code

Here we report the Mathematica c⃝ code used to evaluate the approximation of the LT of composite
functions through Bell's polynomials.
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8.2. Table of second-order Bell's polynomials
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9. Conclusion

We have presented a method for approximating the integral of analytic composite functions. We started
from the Taylor expansion of the considered function in a neighborhood of the origin. Since the coe�cients con
be expressed in terms of Bell's polynomials, the integral is reduced to the computation of an approximating
series, which obviously converges if the integral is convergent. Then this methodology has been applied to
the case of the LT of an analytic composite function, starting from the case of analytic nested exponential
functions. The relevant Mathematica c⃝ code is provided. In the last Section the LT of analytic nested
functions is considered, and the second-order Bell's polynomials used in this approach are reported. We
want to stress that, even if we dealt with a basic subject, we have not found in the literature any general
method for approximating this type of LTs, a gap which, in our opinion, has been now �lled up. A graphical
veri�cation of the proposed technique, performed in the case when both the analytical forms of the transform
and anti-transform are known, proved the correctness of our results.
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