
INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Supersingular Isogeny-based Ring Signature

Maryam Sheikhi Garjan1 , N. Gamze Orhon Kılıç2, Murat Cenk2

1IT University of Copenhagen, Copenhagen, Denmark
2Middle East Technical University, Ankara, Turkey

Corresponding Author: mashe@itu.dk

Research Paper Received: 14.10.2022 Revised: 04.01.2023 Accepted: 29.01.2023

Abstract—The increasing demand for secure and anonymous transactions raises the popularity of ring signatures, which is a

digital signature scheme that allows identifying a group of possible signers without revealing the identity of the actual signer. This

paper presents efficient supersingular isogeny-based ring signature and linkable ring signature schemes that will find potential

applications in post-quantum technologies. We develop the ring signature scheme by applying the Fiat-Shamir transform on the

sigma protocol for a ring which we obtain from the supersingular isogeny-based interactive zero-knowledge identification scheme

by adapting the scheme for a ring. We also extend our ring signature protocol with an additional parameter, i.e., a tag that provides

to detect if a signer issues two signatures concerning the same ring by preserving anonymity and linkable anonymity. The signature

size of our ring signature protocols increases logarithmically in the size of the ring thanks to the Merkle trees. We show the security

proofs and efficiency analyses of the protocols offered. Moreover, we provide the implementation results of the supersingular

isogeny-based ring signature, which offers small signature sizes for NIST post-quantum security levels.

Keywords—linkable ring signature, post-quantum cryptography, ring signature, supersingular isogeny

1. Introduction

Rivest, Shamir, and Kalai introduced the ring
signatures at ASIACRYPT [1] in 2001. A ring
signature is a digital signature scheme produced by
a member of a ring (a group of people), which does
not reveal the signer’s identity. Ring signatures are
very similar to group signatures. However, they dif-
fer from group signatures in some points, such that
there are no group managers, coordination, setup,
and revocation procedures in ring signatures. A
signer can select a set of potential signers, including
herself, and sign a message with her secret key and
other signers’ public keys. This scenario does not
require the approval of the other signers.

Besides correctness, two main features must be
satisfied in terms of security by a ring signature: un-
forgeability and anonymity. A ring signature scheme
is unforgeable if that scheme does not allow anyone
to generate a signature on behalf of an honest ring
of signers without knowing the secret key of at least
one member of the ring. For a given ring signature,
anonymity is satisfied if no one can distinguish
which member of the ring generated the signature,
even with the information of all secret keys of the
ring. Furthermore, there is no cooperation or group
secret among the ring members in ring signature
schemes. Therefore, choosing the ring members can
be done in an ad-hoc way.

32

https://doi.org/10.55859/ijiss.1187756
https://orcid.org/0000-0003-3915-7059
https://orcid.org/0000-0002-8582-2075
https://orcid.org/0000-0003-4941-8734

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Whistleblowing was the original motivation of the
ring signatures [1], where the leaking person’s iden-
tity can be hidden by choosing a ring of people who
have access to this specific leaked message while
convincing the recipient about the authenticity of
the leaked message. Recently, ring signatures have
found many applications such as cryptocurrency
technologies for secure and anonymous transactions
and e-voting [2], [3]. For instance, in cryptocurren-
cies like Monero, known as a fungible currency,
a user issues a ring signature on the transaction
using a ring of public keys in the blockchain and
generates a confidential transaction. A signer who
generates a ring signature can hide her identity as
an actual signer among the ring of public keys by
ensuring that her identity is indistinguishable from
other ring members’ identities. In such applications,
a public verification property that determines if the
same signer has issued two signatures is crucial
since it could prevent double-spending attacks and
double-voting problems. Linkable ring signatures
are introduced to address these problems. A linkable
ring signature is an extension of the ring signatures
that allows a verifier to determine whether the same
signer has signed more than one message. In the
e-voting schemes, as an application of linkable ring
signatures, a voter can sign a vote concerning a
ring of all eligible voters while using the linkability
property. One can verify that each person in the
ring has voted only once, and the voter’s identity
is protected by the anonymity property of the ring
signatures.

Since 2001, a huge number of ring signature
schemes on various hardness assumptions such as
the integer factorization [1], [4], [5], discrete log-
arithm [2], [6], [7], [8], [9] and pairing-based [3],
[10], [11], [12] have been proposed. The security of
the pairing-based ring signatures could be proven
without using a random oracle. Furthermore, effi-

cient and short ring signatures that rely on pairing-
based cryptography are introduced in [10], [13],
[3]. In [6], [8], the signature size increases linearly
in the size of the ring, and [11] gives a constant
size ring signature, while the signature size in [7],
[14] is logarithmic in the number of ring mem-
bers. The ring signature sizes in [4], [5] based
on RSA accumulators is independent of the ring
size. Most recently, ring signatures that rely on
the post-quantum assumptions like hash-based [15],
[16] multivariate [17], [18] and (one-time) lattice-
based [19], [20], [21], [22], [23] are introduced.

Recently, Beullens et al. presented linkable ring
signature schemes in [20], based on logarithmic
OR-proof with binary challenges for Commuta-
tive Supersingular Isogeny Diffie-Hellman (CSIDH)
group action and Module Learning with Errors
(MLWE) group action. The CSIDH group action is
adapted from the Couveignes-Rostovtsev-Stolbunov
scheme by substituting supersingular elliptic curves
over Fp for ordinary elliptic curves to improve
the efficiency of the scheme. The CSIDH group
action is commutative since the subring of Fp-
rational endomorphisms is an order in an imaginary
quadratic field. The security of the CSIDH-based
linkable ring signature is based on the Group Action
Inverse Problem (GAIP) and Squaring Decisional
CSIDH (sdCSIDH) Problem. The best-known quan-
tum algorithm to solve GAIP and its variants has
subexponential complexity. Nevertheless, there is
no ring signature scheme based on supersingular
isogenies to the best of our knowledge. The design
of the SIDH (Supersingular Isogeny Diffie-Hellman)
scheme addressed the security weakness of the
isogeny-based schemes by using supersingular el-
liptic curves defined over Fp2 . The endomorphism
rings of these curves are non-commutative and
therefore provide exponential security. We should
emphasize that SIDH is not similar to CSIDH in

33

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

security, construction, key size, and performance.
SIDH has notable advantages over CSIDH by pro-
viding high security and computational efficiency.

This paper presents a post-quantum version of the
sigma protocol for a ring that proves membership
in the ring. In our sigma protocol, we apply the
OR-proof with binary challenges for a group ac-
tion proposed in [20] to the SIDH identification
protocol given in [24], which does not follow the
group action property. We give the proof of the
correctness, 2-special soundness, and honest-verifier
zero-knowledge (HVZK) properties of the proposed
protocol. Moreover, the fast-known quantum at-
tacks against these assumptions are still exponential.
Thus, we present a ring signature scheme based
on the post-quantum assumptions, i.e., supersingular
isogeny problems. The construction proposed in this
paper provides a ring signature scheme, where the
signature size grows logarithmically in the number
of users in the ring. Also, we show that this scheme
is correct, anonymous, and existentially unforgeable
under an adaptive chosen message attack in the
random oracle model. Furthermore, we extend our
construction to the linkable ring signatures, where
the ring signatures that are signed using the same
secret signing key can be linked. We give the
implementation results of the supersingular isogeny-
based ring signature.

Supersingular isogeny-based ring signature
(SIRS) protocol offered in this paper provides
small signature sizes in most cases compared to
other post-quantum ring signature schemes in the
literature. We compare SIRS with the schemes
in a parameter set that achieves NIST security
levels. For a ring with n = 23, our ring signature
size increases by 13.5 KB compared to 20 KB
of the Falafl given in [20], transmission from
the post-quantum security of NIST 1 to NIST
2. For the same ring size, namely n = 23 and

n = 26, our scheme roughly saves 11 KB and 8
KB, respectively, in the security level NIST 2. For
SIRS scheme, a signature for ring size n = 1024

is approximately 27% (17% Falafl) larger than
a signature for ring size n = 23. However, our
signature size for n = 1024 is 51 KB instead of 54
KB in the security level NIST 2. SIRS provides the
smallest signature size for the security level NIST
5. Furthermore, SIRS offers efficient signature
generation and verification, making it preferable
for post-quantum applications.

The rest of the paper is organized as follows:
In Section 2, we provide the background required
by the offered schemes. In Section 3, we propose
the supersingular isogeny-based sigma protocol and
Merkle tree adaptation, followed by supersingular
isogeny-based ring signatures in Section 4. We show
the linkable version of the supersingular isogeny-
based ring signature in Section 5. We present the
efficiency analyzes and implementation results in
Section 6 and conclude our paper in Section 7. In
Appendices, we give the algorithms of supersingu-
lar isogeny-based sigma protocol for a ring, ring
signature, and linkable ring signature.

2. Background

This section briefly provides some required infor-
mation related to the elliptic curve isogenies [25],
[24], [26], computational problems of supersingular
isogenies [24], [27], [28], ring signatures [2], [10],
[14], linkable ring signatures [2], [3], [9], and super-
singular isogeny-based zero-knowledge proofs [27],
[29], [30].

2.1. Elliptic Curve Isogenies

We consider the elliptic curves defined over a
finite field Fq of characteristic p > 3. For an elliptic

34

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

curve E : y2 = x3 + ax+ b over Fq, the j-invariant
of E is denoted by

j(E) = 1728
4a3

4a3 + 27b2
.

For a given j ∈ Fq with j ̸= 0 and j ̸= 1728, there
is an elliptic curve,

y2 = x3 +
3j

1728− j
x+

2j

1728− j
,

whose j-invariant is j. Two elliptic curves E and
E ′ are isomorphic over Fq if only if they have
the same j-invariant. Isomorphism maps between
elliptic curves are invertible algebraic maps over al-
gebraic closure Fq and can be efficiently computed.

The n-torsion group of E, denoted by E[n],
contains the set of all points P ∈ E(Fq) such that
nP = OE , where OE is the identity element. For
n, with p ∤ n, we have E[n] ∼= Z/nZ⊕ Z/nZ.

The elliptic curves defined over a field of charac-
teristic p can be classified according to the structure
of their p-torsion group. The elliptic curves with
E[p] ≃ Z/pZ are called ordinary while the curves
E[p] ≃ O are called supersingular.

An isogeny φ : E → E ′ is a non-constant
morphism from E to E ′ that preserves the identity
element. The degree of an isogeny is its degree as a
morphism. If φ is separable, then degφ = #ker(φ).
The curves E and E ′ are isogenous if there is
a separable isogeny between them. Due to Tate’s
theorem, E and E ′ are isogenous over Fq if and
only if #E(Fq) = #E ′(Fq). The isogeny φ can be
explicitly obtained by using Vélu’s formulae [31].
An isogeny of degree d is called a d-isogeny. Every
isogeny of smooth degree d > 1 can be computed
as a composition of isogenies of prime degree
d =

∏m
i=1 ℓ

ei
i over Fq where ℓi are small primes

and ei are integers.

An isogeny is a group homomorphism and can
be uniquely identified with its kernel (up to isomor-

phism). Given G ⊆ E, there exists a unique curve
EG (up to isomorphism) and a unique separable
isogeny (up to automorphism of E) φG : E →
EG
∼= E/G such that ker(φG) = G. For a given

prime ℓ, there exists exactly ℓ+ 1 cyclic subgroups
of order ℓ that each defines different ℓ-isogenies.
Φℓ(x, y) ∈ Z[x, y] is a symmetric modular poly-
nomial of degree ℓ + 1 in both x and y, and
Φℓ(j1, j2) = 0 if and only if there is an ℓ-isogeny
between two elliptic curves with j-invariants j1
and j2. Moreover, for a given j, the roots of the
univariate equation Φℓ(x, j) = 0 are the j-invariants
of curves which are ℓ-isogenous to curves with j-
invariant j. For each ℓ-isogeny φ : E → E ′, there
exists a unique dual ℓ-isogeny φ̂ : E ′ → E such
that φ̂oφ = [ℓ] gives the multiplication-by-ℓ map on
E and φoφ̂ = [ℓ] gives the multiplication-by-ℓ map
on E ′.

An endomorphism is an isogeny from E to itself.
The set of all endomorphisms of the elliptic curve
E, including the zero map, is denoted by End(E).
Moreover, it has a ring structure under point-wise
addition and composition operations. The End(E)
over the algebraic closure field is isomorphic with
an order in a quadratic imaginary field or a maximal
order in a quaternion algebra. An elliptic curve
whose End(E) is an order in a quadratic imaginary
field is called ordinary. The curve with End(E) as
a maximal order in a quaternion algebra is called
the supersingular elliptic curve. Up to isomorphism,
all supersingular elliptic curves over the finite field
Fq of characteristic p can also be defined over Fp2 .
Indeed, the motivation for using the supersingular
isogenies in cryptography is based on the hardness
of computing the endomorphism of a randomly
chosen supersingular elliptic curve. The best quan-
tum algorithm to solve this problem has O(p1/4)

running time with only a quadratic improvement
over classical algorithms.

35

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

2.2. Computational Problems of Supersingular
Isogenies

Let p = ℓe11 ℓ
e2
2 f ± 1 be a prime number where

ℓ1 ̸= ℓ2 are small primes, ℓe11 ≈ ℓe22 , and f is an
integer cofactor. Let E be a supersingular elliptic
curve over Fp2 . Fix {P1, Q1} and {P2, Q2} as bases
of torsion groups E[ℓe11] and E[ℓe22], respectively.
Computing the endomorphism ring of E is called
the endomorphism ring problem. We state the com-
putational problems that form security assumptions
of the supersingular isogeny-based protocols given
in [24], [27].

• Let m1 and m2 are randomly chosen integers
modulo ℓe11 , and not both divisible by ℓ1. Let
φ : E → E ′ be an ℓe11 -isogeny whose kernel
generated by R = [m1]P1 + [m2]Q1. For given
{E ′, φ(P2), φ(Q2)}, computational supersingu-
lar isogeny (CSSI) problem is to compute a
generator of the kernel φ.

• Let φ : E → E ′ and ψ : E → E ′′ be
secret isogenies whose kernels are generated
by random points R ∈ ⟨P1, Q1⟩ and S ∈
⟨P2, Q2⟩, respectively. Supersingular Compu-
tational Diffie-Hellman (SSCDH) problem is
finding the j-invariant of E/⟨R, S⟩ for given
{E ′, E ′′, φ(P2), φ(Q2)}, {ψ(P1), ψ(Q1)}.

• Let φ : E → E ′ and ψ : E → E ′′

be isogenies whose kernels are generated by
random points R ∈ E[ℓe11] = ⟨P1, Q1⟩ and
S ∈ E[ℓe22] = ⟨P2, Q2⟩, respectively. One of
the following tuple is sampled with probability
1/2:

(E′, E′′, {φ(P2), φ(Q2)}, {ψ(P1), ψ(Q1)}, E/⟨R,S⟩),

(E′, E′′, {φ(P2), φ(Q2)}, {ψ(P1), ψ(Q1)}, E/⟨T ⟩)

where T ∈ E[ℓe11 ℓ
e2
2] and is randomly chosen.

Supersingular Decision Diffie-Hellman (SS-
DDH) problem is to determine from which

distribution this tuple is sampled.
• Let φ : E → E ′ be an isogeny whose kernel

is generated by a secret point R ∈ E[ℓe11] =

⟨P1, Q1⟩. Suppose that E[ℓe22] = ⟨P2, Q2⟩ and
(E,E ′, P2, Q2, φ(P2), φ(Q2)) are given. Con-
sider the following distributions of (E,E ′):

– (E1, E
′
1), where E1 = E/⟨S⟩ generated by

S ∈ E[ℓe22] and E ′
1 = E ′/⟨φ(S)⟩.

– (E1, E
′
1), where E1 is a random curve and

isogenous to E, and E ′
1 is generated by a

random point R′ ∈ E1[ℓ
e1
1].

Decisional Supersingular Product (DSSP) prob-
lem is to determine from which distribution the
tuple (E1, E

′
1) is sampled.

The following two problems were stated in [32],
[33], which are the modified versions of CSSI and
SSDDH, respectively. There are no auxiliary image
points in these problems, but one of the secret
kernels is given.

• Modified Computational Supersingular Isogeny
(MCSSI) problem is to compute ERS for the
given curves ES , ER, and the kernel ⟨S⟩.

• Modified Supersingular Decision Diffie-
Hellman (MSSDDH) problem is to determine
whether ET = ERS for given ES , ER, ET , and
⟨S⟩.

2.3. Ring Signatures

A ring signature (RS) scheme for given pub-
lic parameters pp(λ) consists of a triple of
PPT (probabilistic polynomial-time) algorithms
(Kgen, SigRS,VerRS), for generating keys, signing a
message, and verifying the ring signature respec-
tively.

• Kgen(pp, rnd): Outputs public and secret keys
(pki, ski) of user i with respect to pp and a
random number rnd.

36

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

• SigRS(pp, Lpk, skr,m): Let Lpk =

{pk1, pk2, . . .} be a list of public keys.
SigRS takes a message m, the secret key skr of
the signer, and Lpk. It selects a ring R with
n members, including the signer’s public key
pkr ∈ R, and outputs a signature σ on message
m with respect to the ring R.

• VerRS(pp,R, σ,m): Takes a signature σ, mes-
sage m, and a ring R = {pk1, . . . , pkn} as in-
put, outputs 1 for accepting and 0 for rejecting.

2.3.1 Security of Ring Signatures

The conditions correcness, anonymity, and un-
forgeability must be satisfied by a ring signature
scheme.

A ring signature σ is said to satisfy the correctness
condition if for every public information pp, n =

poly(λ), message m, R ⊆ Lpk where (pki, ski) ←
Kgen(pp, rndi) for every i ∈ {1, 2, . . . , n}, the
signature σ ← SigRS(pp, Lpk, skr,m) for pkr ∈ R,
1 ≤ r ≤ n always holds Pr[VerRS(pp,R, σ,m) =

1] = 1.

GRSano(A, C):

• C runs {pki, ski} ← KgenRS(pp, rndi) with the random
coins rndi for i = 1, . . . , n.

• C sends Lpk = {pki}ni=1 and rnd = {rndi}ni=1 to A so
that A can reconstruct each ski.

• A requests a signature on the query (pka0, pka1,R,m)
where pka0, pka1 ∈ R ⊆ Lpk.

• C flips a random bit b ∈ {0, 1}, computes the signature
σ ← SigRS(pp,R, Sib,m), and sends σ to A.

• A makes a guess b′ and wins if b′ = b.

Figure 1. Anonimity game for a ring signature.

A ring signature σ is called anonymous if for
every public parameter pp, message m, and n =

poly(λ), any PPT adversaryA has at most negligible
advantage in the anonymity game GRSano between A
and a challenger C. The game is given in Figure 1

GRSunf (A, C):

• C generates the key pairs {pki, ski} ← KgenRS(pp, rndi)
with the random coins rndi for i = 1, . . . , q.

• C sends Lpk = {pkii}qi=1 to A and initializes the empty
sets LC and Σ.

• After A recieves Lpk, the following conversation between
A and C can start:
A : makes the (sign, i,R,m) request to get a signature

of m for pki with respect to the ring R.
C : if pki ∈ Lpk, computes the signature σ ←

SigRS(pp,R, ski,m), and returns it. C adds σ to Σ.
A : requests the randomness generating pki with the

query (corrupt, i).
C : returns rndi to A and saves pki to LC .

• Finally, A outputs the transcript (σ∗,R∗,m∗).
• C checks the following:

– R∗ ⊆ Lpk\LC ,
– (sign, .,R∗,m∗) ∈ Σ,
– VerRS(pp, σ

∗,m∗) = 1.
• If all checks are successful, C returns 1.

Figure 2. Unforgeability game for a ring signa-
ture.

and shows that even in the case of full key exposure,
a ring signature must leak no information about the
identity of the exact signer.

A ring signature σ is called unforgeable under
insider corruption if for every public parameter pp
and n = poly(λ), any PPT adversary A has at most
a negligible advantage in the unforgeability game
GRSunf against a challenger C given in Figure 2.
The advantage of A in the unforgeability game is
denoted as ξunf = Pr[A wins].

2.4. Linkable Ring Signatures

An extended version of the ring signatures with
one additional property of having linkability is
called a linkable ring signature (LRS). Linkability
provides to determine whether the same ring mem-
ber signs two signatures issued within the same ring
without revealing the signer’s identity.

A linkable ring signature consists of a PPT algo-
rithm (LverLRS) which provides a linkable verifica-

37

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

tion and also three PPT algorithms that a ring signa-
ture scheme consists, as (KgenLRS, SigLRS, VerLRS).
For given two signatures σ0 and σ1, the algorithm
1/0 ← LverLRS(σ0, σ1) outputs 1 if they are signed
by the same secret key and 0 if not.

A linkable ring signature must satisfy correctness,
linkability, linkable anonymity, non-frameability
and unforgeability properties. Note that unforge-
ability can be obtained from linkability and non-
frameability properties.

Let n ≥ 1, pp(λ) be the public keys, Lpk

be the list of public parameters then for all
message m ∈ {0, 1}∗, ring R ⊆ Lpk, and
key pair (skr, pkr) such that pkr ∈ R, the
linkable ring signature satisfies correctness since
Pr [VerLRS(pp,R, σ,m) = 0 | σ ← SigLRS(pp, Lpk, skrm)]

≤ negl(λ).

Let A be any PPT algorithm, and pp and Lpk

are given. A outputs a set {(σi,Ri,mi)}n+1
i=1 such

that for all 1 ≤ i ≤ n + 1, R ⊆ Lpk and VerLRS
(pp,R, σi,mi) = 1. The linkable ring signature
provides linkability since for all i, j ∈ [1, n + 1]

with i ̸= j, Pr[LverLRS(σi, σj) = 0 | σi, σj ∈
{(σi,Ri,mi)}n+1

i=1] ≤ negl(λ).

Let A be any PPT algorithm, pp, pk, L =

{(pki, ski) | pki ∈ R − {pk0, pk1}} be given,
and let σ ← SigLRS(pp, Lpk, skr,m) where pkr ∈
{pk0, pk1} ⊆ R. Linkable ring signatures provide
linkable anonymity since |Pr [A(m,R, L, σ) = r]−
1/2| ≤ negl(λ).

Let A be any PPT algorithm and is given pp,
Lpk. Also, A has access to Squeri and Cqueri

queries. Let LSqueri = {σ ← Squeri(i,R,m) |
pki ∈ R} be a list of signing query and
LCqueri = {ski ← Cqueri(i, pki)} be a list of
corruption query made by A. Then, A outputs
(σ∗,R∗,m∗) such that VerLRS(σ∗,R∗,m∗) = 1 and
(.,R∗,m∗) ̸∈ LSqueri. The linkable ring signature

satisfies the non-frameability property since
Pr

[
LverLRS(σ

∗, σ) = 1 | ∀σ(i,R,m) ∈ LSqueri, ski ̸∈ LCqueri

]
≤ negl(λ).

2.5. Supersingular Isogeny-Based Zero-
Knowledge Proof

A supersingular isogeny-based zero-knowledge
proof of identity is presented in [27]. This protocol
is computationally zero-knowledge and works as
follows: Assume that Peggy (prover) wants to prove
to Victor (verifier) that she knows the secret kernel
⟨S⟩ of the isogeny φ : E → ES without revealing
it. Let ℓp = ℓe11 , ℓv = ℓe22 , f be a small integer,
p be a prime such that p = ℓpℓvf ± 1, E(Fp2) be
a supersingular elliptic curve. The points P,Q, S

are on the curve E such that E[ℓv] = ⟨P,Q⟩ and
S ∈ E[ℓp]. Let {p, E,ES, P,Q, φ(P), φ(Q)} be
publicly known, and S be the secret information.
Peggy selects a random cyclic subgroup V ∈ E[ℓv],
computes isogenies ψ : E → EV and ψ′ : ES →
ESV , whose kernels are generated by V and φ(V),
respectively. Peggy then publishes EV and ESV as
commitment. Victor chooses a random challenge
b ∈ {0, 1} and sends it to Peggy. Peggy responds
with {V, φ(V)} upon receiving the challenge b = 0,
or responds with ψ(S) for challenge b = 1. Victor
accepts if the response generates the isogenies that
connect the corresponding curves. For λ-bit security,
this interactive process should be run λ times, and
Peggy successfully proves her knowledge of the
secret kernel S if the verifier accepts the responses
of all λ times of interaction. An interactive zero-
knowledge proof can be transformed into a non-
interactive signature scheme as given in [29], [30].

38

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

3. Supersingular Isogeny-Based Sigma
Protocol for a Ring

In this section, we propose a supersingular
isogeny-based sigma protocol for a ring that forms
the basis of the supersingular isogeny-based ring
signature scheme given in Section 4. The proposed
sigma protocol is derived from the interactive zero-
knowledge proof of identity proposed by De Feo,
Jao, and Plût [24]. This section presents the pro-
posed sigma protocol in detail, proves its security,
and provides a Merkle tree application.

3.1. Sigma Protocol for a Ring

Let R be a ring chosen by Peggy with n members
and r be an integer with 1 ≤ r ≤ n. Peggy wants
to convince Victor that she knows a secret key ⟨Sr⟩
that generates one of the public keys (i.e., ESr) inR,
without revealing the secret key and the particular
public key in the ring R. A supersingular isogeny-
based interactive zero-knowledge proof takes over
R as follows:

1 For a security parameter λ, let the public param-
eters be a prime number p = ℓpℓvf ± 1 where
ℓp ≈ ℓv are smooth numbers, a supersingular
elliptic curve E(Fp2), two points P and Q that
are the generators of the ℓv-torsion group E[ℓv].

2 Every user in the system has public and secret
keys for given security parameter λ. For the ith

user, Si is the secret key and (ESi
, Pi, Qi) is

the public key where Si ∈ E[ℓp], generating the
kernel of a secret ℓp-isogeny αi : E → ESi

,
and Pi = αi(P), Qi = αi(Q) as the images of
ℓv-torsion generators ⟨P,Q⟩.

3 Peggy picks a ring R = {(ESi
, Pi, Qi)}ni=1

of n public keys where Peggy’s public key
pkr ∈ R. She chooses a random integer ω ∈
Z/ℓvZ, then computes V = P + [ω]Q ∈ E[ℓv]

and αi(V) = Pi + [ω]Qi defining the ker-
nels of the isogenies given in Figure 3. In
this scheme, β : E → E/⟨V ⟩ = EV and
βi : ESi

→ ESi
/⟨αi(V)⟩ = ESiV are ℓv-

isogenies defined by V and αi(V), respec-
tively. Peggy applies a random permutation τ

on
[
j(EV), j(ES1V), . . . , j(ESnV)

]
and obtains

the commitment X = [ji1 , ji2 , . . . , jin+1]. She
sends the commitment X to Victor.

4 Victor sends a challenge b ∈ {0, 1} to Peggy.
5 Peggy reveals the response resp, based on the

challenge. If b = 1 then, resp = (ω, τ). If
b = 0 then resp = (j(EV), β(Sr)) where
⟨β(Sr)⟩ is the kernel of the isogeny α′

r : EV →
EV /⟨β(Sr)⟩ = EV Sr .

6 If b = 1 and resp = (ω, τ), Victor verifies
whether ω generates the elliptic curve points of
order ℓv that define the kernels of the isogenies
(shown in Figure 4) E → EV ′ , and ESi

→
ESiV ′ , for 1 ≤ i ≤ n, respectively. Victor
applies τ on

[
j(EV ′), j(ES1V ′), . . . , j(ESnV ′)

]
and obtains X ′ = [j′i1 , j

′
i2
, . . . , j′in+1

]. He ac-
cepts if X ′ = X , otherwise rejects. If b =

0, Victor checks whether β(Sr) has order ℓp
and generates the isogeny illustrated in Figure
5, EV → EV /⟨β(Sr)⟩ = EV S′

r
and then

accepts if j(EV), j(EV S′
r
) ∈ X . He rejects

otherwise. Note that ESrV ≃ E/⟨Sr, V ⟩ ≃
E/⟨Sr⟩/⟨αr(V)⟩ ≃ E/⟨V ⟩/⟨β(Sr)⟩.

The sigma protocol does not leak any information
about (ESr , r). The prover uses a permutation map,
which hides the index of the elements in the com-
mitment. Moreover, when the verifier sends b = 1,
the prover’s response allows the verifier to compute
all the commitments, and therefore, there is no leak
of anonymity. When the verifier sends the challenge
b = 0, the prover’s answer is an isogeny between
two arbitrary curves (EV , ESiV) in the commitment.
Since the verifier does not know the isogeny that

39

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Figure 3. The isogenies that generate the curves of a commitment for supersingular isogeny-
based sigma protocol for a ring.

Figure 4. The isogenies that verifier computes
to verify the commitment for b = 1 of a supersin-
gular isogeny-based sigma protocol for a ring.

Figure 5. The isogenies that verifier computes
to verify the commitment for b = 0 of a supersin-
gular isogeny-based sigma protocol for a ring.

connects these two curves to public curves in the
ring, the response to this challenge is independent
of the knowledge of (ESr , r).

Theorem 1 The supersingular isogeny-based sigma
protocol for a ring is complete, honest-verifier zero-
knowledge (HVZK), and it satisfies 2-special sound-
ness if the supersingular isogeny problems — DSSP
and CSSI problems — are computationally hard.

Proof: It is trivial to check the complete-
ness. We shall prove that the scheme is HVZK,
which means that one can simulate a real exe-
cution of the identification protocol for a given
public key and a challenge without the knowledge
of the secret key. To see this, consider the algo-
rithm (comm, b, resp) ← Sim(R, b). For a given
R and a challenge b, Sim works as follows: If
b = 1, choose random ω′, τ ′ and compute the
corresponding isogeny maps of degree ℓv with
the public keys in R. X ′ stores the j-invariants
of the image curves. Sim outputs the transcript
(comm, b, resp) = (X ′, 1, (ω′, τ ′)). In this case, the
output transcript is simulated correctly. If b = 0,
choose a curve E ′ (isogenous to E) and a random
point S ′ ∈ E ′[ℓp] where E ′′ = E ′/⟨S ′⟩. X ′ holds the
j-invariants of E ′, E ′′, and n− 1 randomly chosen
curves isogenous to E. Sim outputs the transcript
(comm, b, resp) = (X ′, 0, (E ′, S ′)), however, in this
case, X ′ is not distributed as a real execution. The
computational assumption of DSSP implies that it
is computationally hard to distinguish whether a
transcript is simulated or is a transcript of a real

40

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

execution. Therefore, the scheme has computational
zero-knowledge. 2-Special soundness follows from
the following observation: For given two valid
transcripts (comm, b, resp) = (X, 1, (ω, τ)) and
(comm, b′, resp′) = (X, 0, (E ′, S ′)) with respect to
R, it is possible to extract the secret key. Let β :

E → E ′ = E/⟨V ⟩ be the isogeny generated by the
kernel V = P + [ω]Q and α′ : E ′ → E ′′ = E ′/⟨S ′⟩
be the isogeny generated by S ′. With the knowledge
of these two transcripts, one can compute β′(S ′)

that generates a secret kernel for one of the curves
in the ring. Suppose that A is an adversary that
can correctly respond for both b = 0 and b = 1

corresponding with X , then A can solve an instance
of the CSSI problem.

Assume that Peggy does not know any Si that
generates one of the public keys in R and tries
to cheat Victor into that she is a member of R.
She can select a random number ω ∈ Z/ℓvZ and
obtains a commitment X , only with the knowledge
of public parameters. In this scenario, if Victor sends
b = 1, then Peggy can send a valid response, but
if Victor sends b = 0 since she does not know
any of the secret keys, she cannot compute a valid
kernel ⟨Si⟩ that generates one of the curves in
commitment X . Conversely, Peggy can choose a
random number ω ∈ Z/ℓvZ, compute V = P+[ω]Q

and EV . Then, she selects random points on EV to
generate X . If Victor sends b = 0, Peggy’s response
j(EV), β(Si) will convince Victor since X includes
EV /⟨β(Si)⟩. If Victor sends b = 1, then Peggy has
to send ω, which generates the kernels of the curves
in X; however, the commitment does not include
the curves generated by the public keys in R.
Therefore, Victor does not accept Peggy’s response.
For both of these scenarios, Peggy can cheat with
the probability of 1/2. So, the sigma protocol should
be repeated until Victor is convinced that Peggy is
honest.

3.2. Reducing the Size of Commitment Using
Merkle Tree

The size of the commitment in Section 3.1 is
large. To reduce the size of the commitment, we
apply the Merkle tree to the commitment set X in
each iteration of the sigma protocol for R. We set a
Merkle tree on commitment X = [ji1 , ji2 , . . . , jin+1]

whose leaf nodes are
[
H(ji1),H(ji2), . . . ,H(jin+1)

]
where H is a hash function. Internal nodes in the tree
are hash values of a concatenation of two hashes
(their two children). The root of the Merkle tree
(the top hash) contains the hash of the entire tree.
In order to prove that ji∗ is a leaf node of the Merkle
tree M for a given Root(M), an ordered path that
contains the sibling node of ji∗ and other internal
nodes are needed. This path has a logarithmic size
in the number of leaf nodes.

As an example, Figure 6 illustrates the construc-
tion of a Merkle tree where X = [ji1 , ji2 , . . . , ji8]

is the permuted j-invariants of the curves
EV , ES1V , . . . , ES7V . One can obtain the path of
a single node by following the shortest path from
the root node to the specific node. For instance,
Path(ji6) = (h5, h78, h1234).

We slightly modify the sigma protocol for R so
that the prover only reveals a Merkle tree root of
X as a commitment. The changes in each step of
the sigma protocol are as follows: Peggy applies
the step 3 of sigma protocol given in Section
3.1, and generates a Merkle tree M on X =

[ji1 , ji2 , . . . , jin+1]. Then, sends Root(M) to Victor.
Victor sends a challenge b ∈ {0, 1} to Peggy. If b =

1, Peggy reveals the response resp = (ω, τ). Victor
applies τ on

[
j(EV ′), j(ES1V ′), . . . , j(ESnV ′)

]
gen-

erated by ω and gets X ′ = [j′i1 , j
′
i2
, . . . , j′in+1

]. He
constructs the Merkle tree M ′ of X ′, and obtains
Root(M ′). He accepts if Root(M ′) = Root(M).
If b = 0, the response is modified as resp =

41

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Figure 6. A Merkle tree constructed on a commitment list with 8 j-invariants.

(j(EV), β(Sr),Path(jr)) where jr denotes the j-
invariant of ESrV . Victor first computes EV S′

r
from

the knowledge (j(EV), β(Sr)). Then, by using the
given Path(jr), H(j(EV S′

r
)) recovers Root(M ′).

Victor accepts it if Root(M ′) = Root(M).

4. Supersingular Isogeny-Based Ring
Signature

In this section, we describe a supersingular
isogeny-based ring signature which is obtained by
applying Fiat-Shamir transform to the sigma proto-
col given in Section 3. We give the proof of correct-
ness, anonimity, and unforgeability of our signature
scheme which is the non-interactive version of the
sigma protocol; where we use random oracle to
substitue verifier’s random challenges. Therefore,
the proofs are shown in random oracle model.

Let the set of public parameters be pp =

{p, E, P,Q,H} for given security parameter λ,
where H is a hash function with output size q =

O(λ). The supersingular isogeny-based ring signa-
ture protocol uses the same key generation given in
Section 3.1 and the rest works as follows:

• SigRS(pp, Lpk, Sr,m): Let Lpk be the list of
public keys, Sr be Peggy’s secret key defining
her public key (ESr , Pr, Qr), and let Peggy
choose a ring R = {(ESi

, Pi, Qi)}ni=1 ⊆ Lpk

such that (ESr , Pr, Qr) ∈ R. Peggy generates
the ring signature by running the sigma protocol
for a ring q times. The kth iteration of the
protocol is as follows:

– Select a random integer ωk ∈ Z/ℓvZ and
the random permutation τk(λ).

– Compute Vk = P + [ωk]Q and the corre-
sponding ℓv-isogeny βk : E → EVk

.
– By using the public keys R, compute

the isogenies βk1, βk2, . . . , βkn where βki :

ESi
→ ESiVk

, generated by αi(Vk) = Pi +

[ωk]Qi of degree ℓv, for i = 1, 2, . . . , n.
– Obtain the permuted list Xk = [ji1 , . . . jin+1]

42

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

by gathering the j-invariants of the commit-
ment curves (i.e., EVk

and {ESiVk
}ni=1) and

applying τk on it.
– Generate the Merkle tree Mk on Xk and set
rootk = Root(Mk).

After collecting all rootk values
for k = 1, . . . , q, Peggy computes
h = H(m, root1, root2, . . . , rootq) where
m ∈ {0, 1}∗ is the message and h ∈ {0, 1}q is
the output of H which holds the challenges of
the ring signature. Let z be the verification key
and zk be the kth element of z, for k = 1, . . . , q.
If hk = 1, Peggy sets zk = (ωk, τk), otherwise
zk = (j(EVk

), βk(Sr),Path(jrk)) where
jrk = j(ESrVk

). The signature is σ = (z,R).
• VerRS(pp, σ,m): Victor can recover each rootk

by using the information given by zk, for
1 ≤ k ≤ q. First, he extracts the bits of
h = H(m, root1, root2, . . . , rootq) according to
the size of zk, since the size of zk differs
for hk = 1 and hk = 0. If Victor obtains
zk = (ωk, τk) and so hk = 1, he computes
V ′
k = P + [ωk]Q, V ′

ki = Pi + [ωk]Qi and the
isogenies β′

k : E → EV ′
k
, β′

ki : E → ESiV ′
k

with the kernels ⟨V ′
k⟩ and ⟨V ′

ki⟩. Victor ob-
tains X ′

k = [j′i1 , . . . , j
′
in+1

], by applying τk on
the commitment list including the j-invariants
of EV ′

k
, {ESiV ′

k
}ni=1. He constructs the Merkle

tree M ′
k of X ′

k, and finds root′k = Root(M ′
k).

In the case hk = 0, zk contains a kernel
βk(Sr) of an ℓp-isogeny and j(EVk

), so Victor
can compute EVk

→ EVkS′
r
= EVk

/⟨βk(Sr)⟩.
Path(jrk) is also included in zk, thus Victor
obtains root′k using H(j(EVkS′

r
)) and Path(jrk).

After collecting each root′k, he computes h′ =
H(m, root′1, root

′
2, . . . , root

′
q) then, compares h

and h′. Victor accepts if h = h′.

Theorem 2 The supersingular isogeny-based ring
signature is correct, anonymous, and existentially

unforgeable under an adaptive chosen message at-
tack in the random oracle model if the problems
CSSI and DSSP are computationally hard, and the
sigma-protocol for a ring given in Section 3 is
correct, 2-special sound, and honest-verifier zero-
knowledge.

Proof: The correctness of the ring signature
produced by a signer who knows a secret key in
the ring follows from the correctness of the sigma
protocol for a ring since we run it in q parallel
times, and the commitments are reconstructed from
the verification keys of the signature.

We prove the anonimity and unforgeability by
showing that a PPT adversary A has at most a
negligible advantage against a challenger C in the
games given in Figure 1 and Figure 2.

Let pp = {p, E, P,Q,H, q} be the public parame-
ters for given security parameter λ where q = O(λ)

for the games GRSano(A, C) and GRSunf (A, C).

In the game GRSano(A, C) the adversary recieves
a signature σ = (z,R) including a ring R and a
verification key z of q responses which assumed
to be generated with the secret information that
A has full access. So, one may think that it is
trivial to obtain the signing key of σ for A. Assume
that C simulated σ in the random oracle, i.e., none
of the secret keys in R is the signing key of
the signature. Let σ′ = (z′,R) be the simulated
signature where z′k = (ω′

k, τ
′
k) for hk = 1 and

z′k = (j(Ek), β(Sc),Path(jck)) for hk = 0. And let
σ = (z,R) be the real signature where zk = (ωk, τk)

for hk = 1 and zk = (j(EVk
), βk(Sib),Path(jibk))

for hk = 0. These two distributions are indistin-
guishable due to the computational assumption of
DSSP; thus, the knowledge of the secret signing
keys do not provide any advantage to adversary.
Furthermore, A has to make guesses for each it-
eration of the signature which comprises q = O(λ)

43

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

transcripts. The winning probability of A for each
transacript is 1/2, independent of the knowledge of
secret information. Consequently, let ξano be the
advantage of A in the game GRSano(A, C) and is
defined as:

ξano = 1/2 · |Pr[A wins = 1]− 1/2|

which is negligible for λ. Hence, the zero-
knowledge property of the ring signature is inde-
pendent of the knowledge of the secret keys, which
preserves the anonymity of the proposed scheme
even against the full key exposure.

In the game GRSunf (A, C), the case that the adver-
sary outputs a signature σ∗ of m∗ with respect to
the ring R∗, where a signature for never queried
for m∗,R∗ and R∗ does not include any corrupted
public key, σ∗ is indistinguishable from a signature
generated in the random oracle assumption. Then,
we can say that if A succeeds, it means that either
a collision found or two valid transcripts results in
a secret key in Lpk due to the security assumptions
of supersingular isogenies.

5. Supersingular Isogeny-Based Lin-
kable Ring Signature

In this section, we present the linkable version of
the supersingular isogeny-based ring signature given
in Section 4.

The supersingular isogeny-based linkable ring
signature contains a tag which is the second public
key of the signer and can only be generated by
the signer’s secret key. When there are no auxiliary
image points, the supersingular isogeny maps of
different degrees are non-commutative. Hence, only
Peggy can compute her tag. Besides, an adversary
cannot produce a valid signature linked with the

signature that Peggy issued (assuming Peggy is an
honest ring member), i.e., non-frameability. Peggy
generates a proof (a signature verification key) that
verifies both the tag and other public keys in the ring
to obtain the linkability property. To decide if the
same secret key creates two signatures concerning
the same ring, one can compare the tags of given
two signatures.

Supersingular isogeny-based linkable ring signa-
ture scheme consists of four algorithms such that
KgenLRS, SigLRS, VerLRS, and LverLRS. Let p =

ℓpℓvℓtf ± 1 be a prime number where ℓp ≈ ℓv ≈ ℓt
for given security parameter λ. E(Fp2) is a su-
persingular elliptic curve. The points P and Q

are the generators of the ℓv-torsion group such
that E[ℓv] = ⟨P,Q⟩ and the point T is an el-
ement of ℓt-torsion group such that T ∈ E[ℓt].
One can compute the elliptic curve ET by the
ℓt-degree isogeny θ : E → ET and the corre-
sponding image points (PT , QT) = (θ(P), θ(Q)).
So, the set of public parameters is obtained as
pp = {p, E,ET , P,Q, T, PT , QT ,H} where H is a
hash function with output size O(λ) = q.

• KgenLRS(pp): For the ith user, the point Si ∈
E[ℓp] which generates the kernel of the secret
isogeny αi : E → ESi

, is the secret key,
(ESi

, Pi, Qi) is the public key where (Pi, Qi) =

(αi(P), αi(Q)). Using the map θi that defines
an isogeny from E to ETSi

with the kernel
⟨T, Si⟩, the tag of the ith user is generated. The
tag consists of the image curve ETSi

and two
image points (PTi

, QTi
) = (θi(P), θi(Q)). So,

(ski, pki, Tagi) = (Si, (ESi
, Pi, Qi), (ETSi

, PTi
,

QTi
)) is obtained. Note that the signer generates

the tag only if she will issue a linkable signa-
ture, thus, the list of public keys Lpk do not
include the tags of the users.

• SigLRS(pp, Lpk, Sr, Tagr,m): Let Sr,
(ESr , Pr, Qr), and Tagr = (ETSr , PTr , QTr)

44

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

be Peggy’s secret key, public key, and tag,
respectively. Assume that Peggy wants to
generate a linkable signature on behalf of a
ring R = {(ESi

, Pi, Qi)}ni=1 including her
public key. Peggy implements the following
sequence in order to issue a supersingular
isogeny-based linkable ring signature. The
signature isogenies of proposed scheme are
illustrated in Figure 7.
For k = 1, 2, . . . , q:

– Select a random permutation τk(λ) and a
random number ωk ∈ Z/ℓvZ.

– Calculate the kernels ⟨Vk⟩ = P + [ωk]Q,
⟨VkT ⟩ = PT + [ωk]QT , ⟨VkTr⟩ = PTr +

[ωk]QTr , ⟨Vki⟩ = Pi + [ωk]Qi of the iso-
genies with the domains E, ET , ETSr , and
ESi

for i = 1, 2, . . . , n, respectively.
– Compute the isogenies βk : E → EVk

, γk :

ET → ETVk
, and δk : ETSr → ETSrVk

.
– For each user i in R, compute the isogenies
βki : ESi

→ ESiVk
.

Obtain the permuted list Xk =

[ji1 , . . . , jin+1] by gathering the j-invariants
of the commitment curves and applying τk
on it.

– Generate the Merkle tree Mk on Xk and set
rootk = Root(Mk).

– Set the tag, tagk = (j(ETVk
), j(ETSrVk

)).
– The signature for iteration k is σk =

H(rootk, tagk).
When Peggy collects all σk values, she com-
putes h = H(m,σ1, . . . , σq). Let z be a
set that contains the verification keys match-
ing each bit of h. If hk = 1, Peggy sets
zk = (ωk, τk) and if hk = 0, she sets
zk = (j(EVk

), βk(Sr), βk(T),Path(jrk)) where
jrk denotes the j-invariant of the curve ESrVk

.
The signature is obtained as σ = (z, Tagr,R).

• VerLRS(pp, σ,m): After receiving the message
m and the signature σ = (z, Tagr,R), Victor

reconstructs the bits of h as explained in Sec-
tion 4. For the case zk = (ωk, τk), by using
pp and ωk, the image curves EV ′

k
and ETV ′

k

can be obtained. Also, for each member of
R, ESiV ′

k
can be generated. Victor obtains the

permuted list X ′
k = [j′i1 , . . . , j

′
in+1

] by applying
τk on the commitment list. After constructing
the Merkle tree M ′

k of X ′
k, he sets root′k =

Root(M ′
k). He can also define the curve ETS′

rV
′
k

with the kernel V ′
kTr

= PTr + [ωk]QTr since
Peggy sent the Tagr in σ. Finally, he sets
root′k = (j(ETV ′

k
), j(ETS′

rV
′
k
)), and computes

σ′
k = H(root′k, tag

′
k). In the case that hk = 0

and zk = (j(EVk
), βk(Sr), βk(T),Path(jrk)),

Victor computes the isogeny EVk
→ EVkS′

r

with the kernel βk(Sr). Since Path(jrk) is in-
cluded in zk, the Root(M ′

k) can be found. He
also obtains EVkT ′S′

r
= EVk

/⟨βk(T), βk(Sr)⟩
and EVkT ′ = EVk

/⟨βk(T)⟩. So, Victor sets
tag′k = (j(EVkT ′), j(EVkT ′S′

r
)) and computes

σ′
k = H(root′k, tag

′
k). Finally, he collects each σ′

k

and computes h′ = H(m,σ′
1, . . . , σ

′
n). If h′ = h

he accepts, otherwise rejects.
• LverLRS(σ1, σ2): Let σ1 and σ2 be two signatures

with respect to the same R, the tag of σ1 be
Tag1, and the tag of σ2 be Tag2. Victor accepts
if Tag1 ̸= Tag2, and rejects otherwise.

Theorem 3 The supersingular isogeny-based lin-
kable ring signature scheme is correct, linkable,
linkable anonymous, and non-frameable in the ran-
dom oracle model, providing that CSSI, SSDDH,
and their modified versions MCSSI, MSSDDH are
hard problems.

Proof: In the linkable version of the ring
signature, the signer with the index i generates a
second public key Tag = (ETSi

, PTi
, QTi

) from her
secret key Si ∈ E[ℓp] and the given curve ET . The
curves (ET , ETSi

) are used for generating signatures

45

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Figure 7. The illustration of the isogenies computed in signature generation of supersingular
isogeny-based linkable ring signature protocol.

similar to the public keys in the ring R. Therefore,
proving the correctness of the linkable ring signature
is based on the correctness of the sigma protocol for
the ring R and (ET , ETSi

) in q parallel executions.

We prove the linkable anonymity of this scheme
by providing games that a PPT adversary A plays
against the linkable anonymity property. We show
that the adversary has a negligible advantage to win
the following games against a challenger because
of the hardness of the isogeny assumptions. Let
ξ = Pr(A(Gi)) be the winning probability of
the adversary in each game Gi. The games are as
follows:

G) In the real game between a challenger and
A, the challenger runs {(ski, pki, Tagi)}ni=1 ←
KgenLRS(pp), and selects a random bit b ∈
{0, 1}. Then it creates a list L = {ski}ni=1 −
{skc0 , skc1} where {skc0 , skc1} ∈ {ski}ni=1

and randomly chosen. Challenger provides
pp, Lpk = {pki, . . . , pkn}, and L to adversary.
A selects {pka0 , pka1} ∈ Lpk and sets a ring
R such that {pka0 , pka1} ∈ R. A requests
a signature σ for (pkA,R,m) where pkA ∈
{pka0 , pka1}.
A outputs a guess b∗ and wins if b = b∗. The

advantage of A is:

ξ =

∣∣∣∣Pr(A(G))− 1

2

∣∣∣∣.
G1) In this version of the game, the challenger’s

response to A’s signature query (pkA,R,m) is
generated by a simulator Sim. The challenger
computes Tag = ETSc using a secret key
skc = Sc corresponding with pkc = ESc and
generates binary random challenges h. Then
it runs the zero-knowledge Sim to return the
signature σ ← Sim(pp,R, Tag, h,m). The sim-
ulator program uses the random oracle to adjust
the challenges h with the inputs to generate
a signature. In this case, Sim generates the
transcripts without the knowledge of a secret
key. The advantage of A in G1 is:

|Pr(A(G1))− Pr(A(G))| = negl(λ).

G2) In this modified game, the challenger first
makes a guess on the public keys that A se-
lected. Let challenger’s guess be {pkc0 , pkc1} ∈
pk. Then, it computes their correspond-
ing tags Tagc0 , Tagc1 using the secret keys
skc0 and skc1 , respectively. If pkA ∈
{pkc0 , pkc1}, the challenger returns σ ←
Sim(pp,R, TagcA , h,m) as in game G1 where

46

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

TagcA is the tag of A corresponding with pkci .
Otherwise, it aborts the game. In this case, A’s
advantage is:∣∣Pr(A(G2))

∣∣ = 1

n2

∣∣Pr(A(G1))
∣∣.

G3) In this game, the challenger first generates
binary random challenges h and samples
i0, i1 ∈ {1, 2, . . . , n}. Then, it generates ran-
dom {pki0 , pki1} and {Tagi0 , Tagi1} which are
isogeneous to E and ET , respectively. The
challenger adds the new public keys to Lpk

such that Lpk = {pk1, . . . , pkn}
⋃
{pki0 , pki1}.

For the query (pkA,R,m), challenger runs
the simulator σ ← Sim(pp,R, TagiA , h,m) if
pkA ∈ {pki0 , pki1}. Otherwise, it aborts the
game. Thus, the signature simulated in this way
is computationally indistinguishable from the
game G2 (SSDDH and MSSDDH problems).
Therefore,

|Pr(A(G3))− Pr(A(G2))| = negl(λ).

Moreover, unlike the above games, {pki0 , pki1}
and {Tagi0 , Tagi1} are not dependent on a
secret key. Also, by knowing that the signature
is generated by a zero-knowledge simulator, we
obtain

ξ = |Pr(A(G3))| =
1

2
.

Finally, applying the result of G3 to the previous
games shows that A’s advantage in G is negligible.

Here, we briefly provide proof of linkability; for
more details, please refer to [20]. Suppose that
A is an efficient adversary against the linkability,
that runs {(ski, pki, Tagi)}ni=1 ← KgenLRS(pp) and
generates a set {(σi,Ri,mi)}n+1

i=1 of valid signatures
with different tags, which means LverLRS(σj, σk) =

0 for all (j, k) ∈ [1, n+ 1] where j ̸= k.

One can construct an algorithm B that uses A
as a black box and programs a random oracle to

refresh the randomness on certain points. If A wins
the linkability game, for each 1 ≤ j ≤ n + 1,
then B can extract the secret key skj . To achieve
this, B reruns A by changing the randomness (of
the query j) to get signatures with different chal-
lenges and verification keys, i.e., (comm, h, z)j and
(comm, h′, z′)j . B obtains skj based on the 2-special
soundness property of the sigma protocol. Assume
that A wins the linkability game, then B will extract
n+1 secret keys {sk1, . . . , skn+1}. Therefore, either
two of the following cases might happen:

• One of the secret keys provides a collision for
the composite hash roots σk = H(rootk, tagk).

• There exist two secret keys that generate one
public key but two different tags. In other
words, since we have n public keys, then there
exist two secret keys skk = Sk and skj = Sj

such that E/⟨Sk⟩ = E/⟨Sj⟩ and (ETSk
=

E/⟨T, Sk⟩) ̸= (E/⟨T, Sj⟩ = ETSj
).

The advantage of the adversary in the first case
is negligible. For the second case, we know that an
isogeny is uniquely determined by its kernel up to
isomorphism, so the adversary’s success is zero.

We use a similar technique that we used in
the proof of linkability to prove non-frameability.
Let A be an efficient adversary against the non-
frameability property and let B be an algorithm
that uses A that can program a random ora-
cle to extract the secret key (which is not cor-
rupted before) for given (pkj, Tagj). This algorithm
runs {(ski, pki, Tagi)}n+1

i=1 ← KgenLRS(pp) (where
(skj, pkj) ̸= (skk, pkk) for j ̸= k), generates a
simulated signature σ ← Sim(pp,R, pkj, Tagj,m),
and some signatures by querying random oracle.

B runs A for pkk ∈ R. If A wins the game, it
provides a linkable signature σ∗ on (Tagj,R∗,m∗)

(i.e., two signatures with the same tag implying that
LverLRS(σ, σ

∗) = 1) which means that A has queried
the random oracle on a certain point. Therefore B

47

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

can run A with new randomness and retrieve the
secret key skj . So, skj is either a collision for the
hash function or an answer to the supersingular
isogeny computation problem. The advantage of A
in both cases is negligible.

6. Efficiency and Implementation

This section provides efficiency analyses of the
schemes introduced in Section 3, 4, and 5 and
implementation results of the supersingular isogeny-
based ring signature. Note that the method given in
Lemma 2. of [29] is used for the efficiency analyses.

6.1. Efficiency Analyses

The best known classical and quantum attacks
of supersingular isogeny assumptions of smooth
degree ℓp ≈ ℓv have roughly O(

√
ℓp) and O(3

√
ℓp)

heuristic running times, respectively. Thus, for a
given security parameter λ, we have log ℓp = 2λ

for the classical security and log ℓp = 3λ for the
quantum security.

We assume that H is a secure hash function
with the output {0, 1}q where q = O(λ) and
the ring R consists of n public keys. pki =

(j(Ei), x(Pi), x(Qi)) ∈ R is the public key of a
ring member where j(Ei), x(Pi), x(Qi) ∈ Fp2 . The
secret key of the ith user is an ℓp-torsion point.
Assume that ⟨Ps, Qs⟩ = E[ℓp], ski ∈ Z/ℓpZ and
ski is relatively prime to the smooth base (i.e., if
ℓp = 2a then gcd(ski, 2) = 1), then the secret key
of the ith user is defined as Si = Ps + [ski]Qs.
Therefore, it is enough to represent the secret key
with the integer ski.

We present the efficiency analysis of the su-
persingular isogeny-based sigma protocol for a
ring. R consists of n public keys pki =

(j(Ei), x(Pi), x(Qi)), where one of these public

keys corresponds with the prover’s secret key skr.
The size of the ring is |R| = 6n log p, where
the size of a public key is |pki| = 6 log p, and
the secret key size is |ski| = 1/2 log p, providing
that the generators of the torsion group E[ℓp] are
given as public information. The prover sends a
commitment comm = [ji1 , ji2 , . . . , jin+1] consisting
the j-invariants of n + 1 curves that are computed
using the ℓv-isogeny maps from E and the curves
in R. In this case, the size of the commitment
is |comm| = 2(n + 1) log p where ji ∈ Fp2 .
The prover’s response is either resp = (ω, τ) or
resp = (j(EV), x(β(Sr))) based on challenge b = 1

and b = 0, respectively. On average, the size of the
response

|resp| = 1

2

(
1/2 log p+ log τ +

[
2 log p+ 1/2 log p

])
where |ω| = 1/2 log p, |τ | = log τ , |x(β(Sr))| =
1/2 log p, and |j(EV)| = 2 log p. With the Merkle
tree implementation, the size of the prover’s re-
sponse can be changed to

|resp| = 3 log p+ q log n+ log τ

where q log n is the Merkle tree path size from a leaf
node to root. The computation of the supersingular
isogeny map is the main operation in the proposed
sigma protocol. The prover computes n+1 isogenies
to generate a commitment. In the verification phase,
the verifier computes n + 1 isogenies if b = 1 and
one isogeny if b = 0.

Efficiency analysis of the supersingular isogeny-
based ring signature can be explained as follows:
The key sizes and the ring size are the same as
the sigma protocol. The verification key includes q
elements, and the size of each element depends on
the hash output. The hash function H with output
h of q bits where the number of hk = 0 and
hk = 1 are roughly equal. So, the size of z is
calculated as follows: In the case that hk = 1,

48

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

|zk| = 1/2 log p+ log τ . If hk = 0, |zk| = 5/2 log p+

q log n where |j(EVk
)| + |x(βk(Sr))| = 5/2 log p

and |Path(jrk)| = q log n. Consequently, |z| =
q/2(1/2 log p+log τ +(5/2 log p+ q log n)). When we
put them all together, we come up with the size of
the signature on average:

|σ| = 6n log p+
q

2

(
3 log p+ q log n+ log τ

)
.

In the proposed ring signature, the signer computes
q(n+1) isogenies to generate the signature, and the
verifier computes q/2(n+1) isogenies on average to
verify the signature.

If we have an ordered set of public keys, instead
of including a ring of public keys as a part of the
signature, which increases the total size of signature
6n log p, the signer can provide a seed and an
integer as part of the signature. The seed generates
n random integers. The signer then finds an integer
such that the addition of the random numbers and
integer modulo n will generate the indices of n
public keys, including the signer’s public key from
the ordered public key list. This optimization saves
approximately 6n log p in the signature size.

In the construction of the linkable ring signature
proposed in Section 5, the signer needs to provide
another public key related to her secret key as a
tag. So, for a given security parameter λ, a prime
number p = ℓpℓvℓtf ± 1 of size log p ≈ 6λ for
classical and log p ≈ 9λ for quantum security are
required. The public key size is |pki| = 6 log p, and
the secret key size is |ski| = 1/2 log p. The size of
the linkable ring signature σ = (z, Tagr,R) differs
from the ring signature in Tagr and z. Since a tag
contains three Fp2 elements, the size is represented
as |Tagr| = 6 log p. The size calculation of z

changes only when hk = 0. In this case, zk =

(j(EVk
), x(βk(Sr)), x(βk(T)),Path(jrk)), therefore

the size is computed as follows: |zk| = 6 log p +

q log n where |x(βk(Sr))| + |x(βk(T))| = 4 log p

in canonical representation. Hence, the size of the
linkable ring signature σ = (z, Tagr,R) on average
is:

|σ| = (6n+6) log p+
q

2

(
7/2 log p+q log n+log τ

)
.

Signature generation requires q(n + 3) and verifi-
cation requires q/2(n+ 6) isogeny computations on
average.

6.2. Implementation Results

Here we share the benchmark test results of SIRS.
We implement the protocol by using the isogeny
functions of SIDH library1 that provides SIDH
and SIKE implementations for different levels of
security.

Our implementation calculates the average run-
ning cycles of SIRSp434, SIRSp503, SIRSp610,
and SIRSp751 that provide post-quantum security
of AES128 (NIST 1), SHA3-256 (NIST 2), AES192
(NIST 3), and AES256 (NIST 5), respectively as
in SIDH library. We run the tests on a 64-bit
platform; however, the library supports both 32-bit
and 64-bit architectures. We compiled the library
using clang2 with optimization level FAST. For
more details, please refer to [25]. For each level
of security, we gathered the signature sizes. Merkle
tree construction is done using the hash algorithm
SHAKE256 with the output sizes3 required by the
relevant quantum security levels.

Recall the verification key size calculation given
in Section 6.1 of the ring signature protocol:
q

2

(
|ω|+ |τ |+ |j(EV)|+ |x(β(Sr))|+ |Path((jr)|

)
.

The signature σ includes the verification key z

1. See https://github .com/Microsoft/PQCrypto-SIDH.
2. A compiler front end for some programming languages like C,

as well as some frameworks such as OpenMP.
3. The hash output is taken as 2λ for λ-bit quantum security.

49

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Table 1.
The the signature sizes in kilobytes.

n 23 24 25 26 27 28 29 210

SIRSp434 25.6 26.6 27.6 28.6 29.6 30.6 31.6 32.6

SIRSp503 39.1 40.9 42.6 44.3 46 47.7 49.5 51.2

SIRSp610 54.1 56.3 58.6 60.8 63.1 65.3 67.6 69.8

SIRSp751 88.9 92.9 96.9 100.9 104.9 108.9 112.9 116.9

and the ring R; however, the size of a signature is
taken as the size of z since providing a seed instead
of R is enough to recover R.

We give the signature sizes (z) in Table 1 that
SIRS provides. Figure 8 shows the number of cycles
to generate and verify a signature of SIRS. Note
that the supersingular isogeny-based ring signature
benchmark tests were done on a 3.1GHz AMD
Ryzen 3 1200 Quad-Core Processor running on
Debian GNU/Linux 11 (bullseye).

7. Conclusion

In this paper, we have presented a post-quantum
sigma protocol for a ring based on supersin-
gular isogenies. We have proved the correct-
ness, 2-special soundness, and honest-verifier zero-
knowledge properties of this supersingular isogeny-
based sigma protocol for a ring. We have also pro-
posed a supersingular isogeny-based ring signature
obtained by applying Fiat-Shamir transform to the
supersingular isogeny-based sigma protocol for a
ring. The correctness, anonymity, and existential un-
forgeability properties of this ring signature scheme
have been provided. Furthermore, we have added
the linkability property to the ring signature scheme,
which offers the ability to determine if the same
signer has issued two signatures and could prevent
the problems such as double-spending attacks on

crypto-currencies and double-voting attacks on e-
voting protocols. We have shown that the supersin-
gular isogeny-based linkable ring signature scheme
is correct, linkable, linkable anonymous, and non-
frameable in the random oracle model. We have
applied the Merkle tree to our constructions to
improve the efficiency of the proposed protocols.
We have provided the efficiency analyses of the
given protocols. In the proposed ring signature, the
signature size grows logarithmically in the size of
the ring where Merkle tree paths or roots have
formed a part of the verification keys. Finally, we
have shared the benchmark test results and signature
sizes of supersingular isogeny-based ring signature
for post-quantum security levels of NIST. SIRS
protocol provides small signature sizes and efficient
implementation; thus, it is a strong candidate for
post-quantum applications.

50

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Figure 8. Number of cycles (in logarithmic scale) needed for signature generation and verification
of SIRS.

Appendix A
Algorithms

Here, we provide the algorithms of supersingular
isogeny-based sigma protocol for a ring
(Kgen,Comm,Resp,Ver), ring signature
(SigRS,VerRS), and linkable ring signature
(KgenLRS, SigLRS,VerLRS, LverLRS) in Section
A.1, A.2, A.3, respectively. The following are
the generic parameters and functions used in the
algorithms we give in this Appendix.

• λ is the security parameter,
• R = [(ESi

, Pi, Qi)]
n−1
i=0 is the ring with n mem-

bers,
• X denotes the commitment list that includes the
j-invariants of the commitment curves,

• M denotes the Merkle tree,
• H is the function with the output size q = O(λ)

that returns the hash of the given input,
• IsogenyMap is a function that returns the

isogeny map of the given domain curve and the
kernel,

• IsogenyImage is a function that returns the im-
age curve of the given isogeny map,

• Rand is a function that outputs a random ele-
ment in the given range,

• Permute is the function that permutes the given
list with given τ ,

• MerkleTree function builds the Merkle tree for
given list of commitments,

• Root function returns the root of given Merkle
tree,

• Path is the function that returns the path of
given node to the root of given Merkle tree,

• FindRoot function returns the root of a Merkle
tree with the given path of given node hash,

• RetrieveCurve denotes the function that re-
trieves the elliptic curve equation with given j-
invariant.

Sigma protocol and ring signature are defined on
the same prime p (i.e., log p = 6λ for quantum
security); however, linkable ring signature requires
a different setting since it uses a larger prime
(log p = 9λ) to handle the tag. Here we define
the parameters specific for the algorithms given in
Sections A.1 and A.2:

• p = ℓpℓvf ± 1 is the prime number such that
ℓp ≈ ℓv,

51

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

• E(Fp2) is the supersingular elliptic curve,
• P and Q are the points such that E[ℓv] =

⟨P,Q⟩,
• Sr ∈ E[ℓp] denotes the secret key of the signer,
• (ESr , Pr, Qr) ∈ R is the public key of the

signer,
• pp = {λ, p, E(Fp2), P,Q,H} is the list of public

parameters.

The algorithms of linkable ring signature, given
in Section A.3 use the following parameters:

• p = ℓpℓvℓtf ± 1 is the prime number such that
ℓp ≈ ℓv ≈ ℓt,

• E(Fp2) is the supersingular elliptic curve,
• P , Q, T are the points such that E[ℓv] = ⟨P,Q⟩

and T ∈ E[ℓt],
• ET is the curve which is defined as θ : E → ET ,
• Sr ∈ E[ℓp] denotes the secret key of the signer,
• (ESr , Pr, Qr) ∈ R is the public key of the

signer,
• Tagr = (ETSr , PTr, QTr) is the tag of the

signer,
• pp = {λ, p, E(Fp2), P,Q, T,ET , PT , QT ,H} is

the list of public parameters.

Note that we assume Peggy generates the ring
before commitment and signature generation; thus,
the algorithms Comm, SigRS, and SigLRS use R
as input and so do not return it. Similarly, Victor
retrieves the ring before verification; therefore Ver,
VerRS, and VerLRS take R as input.

A1. Supersingular Isogeny-based Sigma Pro-
tocol for a Ring

In this section, we provide the algorithms for
key generation (Kgen), computing the commitment
(Comm), setting the response (Resp), and verifi-
cation (Ver) of sigma protocol. (Kgen) given in
Algorithm 1 takes the list of public parameters
as input and returns the secret and public keys

of the ith user. Algorithm 2 (Comm) takes pp,
R with size n that includes (ESr , Pr, Qr), and Sr

as input. It computes and returns the commitment
comm. Algorithm 3 (Resp) takes pp, b, M , j(EV),
j(ESrV), β, ω, τ , and Sr as input where b is the
challenge that verifier sends to prover after receiving
the commitment. It returns the response resp with
respect to the challenge b. Algorithm 4 (Ver) takes
pp, R, comm, b, and resp as input. It returns 1 for
accepting the response and 0 for rejecting it.

Algorithm 1 Kgen
Input: pp.
Output: Si, (ESi

, Pi, Qi).
1: Si ← Rand(E[ℓp]).
2: αi ← IsogenyMap(E, ⟨Si⟩).
3: ESi

← IsogenyImage(αi).
4: Pi, Qi ← αi(P), αi(Q).
5: return Si, (ESi

, Pi, Qi).

Algorithm 2 Comm
Input: pp, R, and Sr.
Output: The commitment comm.

1: ω ← Rand(Z/ℓvZ).
2: V ← P + [ω]Q.
3: β ← IsogenyMap(E, ⟨V ⟩).
4: EV ← IsogenyImage(β).
5: X[0]← j(EV).
6: for i = 0 to n− 1 do
7: Vi ← Pi + [ω]Qi.
8: βi ← IsogenyMap(ESi

, ⟨Vi⟩).
9: ESiV ← IsogenyImage(βi).

10: X[i+ 1]← j(ESiV).
11: end for
12: τ ← Rand(λ).
13: X ← Permute(X, τ).
14: M ← MerkleTree(X).
15: comm← Root(M).
16: return comm.

52

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Algorithm 3 Resp

Input: pp, M , b, ω, τ , j(EV), j(ESrV), and β(Sr).
Output: The response resp.

1: if (b == 1) then
2: resp← (ω, τ).
3: else
4: path← Path(M,H(j(ESrV))).
5: resp← (j(EV), β(Sr), path).
6: end if
7: return resp.

Algorithm 4 Ver

Input: pp, b, R, comm, and resp.
Output: 1/0.

1: if (b == 1) then
2: ω, τ ← resp[0], resp[1].
3: V ′ ← P + [ω]Q.
4: β′ ← IsogenyMap(E, ⟨V ′⟩).
5: EV ′ ← IsogenyImage(β′).
6: X ′[0]← j(EV ′).
7: for i = 0 to n− 1 do
8: V ′

i ← Pi + [ω]Qi.
9: β′

i ← IsogenyMap(ESi
, ⟨V ′

i ⟩).
10: ESiV ′ ← IsogenyImage(β′

i).
11: X ′[i+ 1]← j(ESiV ′).
12: end for
13: X ′ ← Permute(X ′, τ).
14: M ′ ← MerkleTree(X ′).
15: comm′ ← Root(M ′).
16: else
17: j, ker, path← resp[0], resp[1], resp[2].
18: EV ′ ← RetrieveCurve(j).
19: α′

r ← IsogenyMap(EV ′ , ⟨ker⟩).
20: EV ′S′

r
← IsogenyImage(α′

r).
21: comm′ ← FindRoot(H(j(EV ′S′

r
)), path).

22: end if
23: if comm′ == comm then
24: return 1.
25: else
26: return 0.
27: end if

A2. Supersingular Isogeny-based Ring Signa-
ture

The algorithms SigRS and VerRS used in ring
signature are given in this section. The supersingular
isogeny-based ring signature protocol uses Algo-
rithm 1 for key generation. Algorithm 5 (SigRS)
takes pp, R with size n that includes (ESr , Pr, Qr),
and a message m as input. It returns the signature σ
for m. Algorithm 6 (VerRS) takes pp, R, σ, and m

as input and returns 1 for accepting the signature, 0
for rejecting it.

Algorithm 5 SigRS
Input: pp, R, Sr, and m.
Output: The signature σ .

1: for k = 0 to q − 1 do
2: ωk ← Rand(Z/ℓvZ).
3: Vk ← P + [ωk]Q.
4: βk ← IsogenyMap(E, ⟨Vk⟩).
5: EVk

← IsogenyImage(βk).
6: Xk[0]← j(EVk

).
7: for i = 0 to n− 1 do
8: Vki ← Pi + [ωk]Qi.
9: βki ← IsogenyMap(ESi

, ⟨Vki⟩).
10: ESiVk

← IsogenyImage(βki).
11: Xk[i+ 1]← j(ESiVk

).
12: end for
13: τk ← Rand(λ).
14: Xk ← Permute(Xk, τk).
15: Mk ← MerkleTree(Xk).
16: pathk ← Path(Mk,H(j(EVkSr))).
17: rootk ← Root(Mk).
18: end for
19: h← H(m, root0, . . . , rootq−1).
20: for k = 0 to q − 1 do
21: if h[k] == 1 then
22: σ[k]← (ωk, τk).
23: else
24: σ[k]← (j(EVk

), βk(Sr), pathk).
25: end if
26: end for
27: return σ.

53

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Algorithm 6 VerRS
Input: pp, R, σ, and m.
Output: 1/0.

1: Define h.
2: for k = 0 to q − 1 do
3: if σk == (ωk, τk) then
4: h← h ∥ 1.
5: ωk, τk ← σk[0], σk[1].
6: V ′

k ← P + [ωk]Q.
7: β′

k ← IsogenyMap(E, ⟨V ′
k⟩).

8: EV ′
k
← IsogenyImage(β′

k).
9: X ′

k[0]← j(EV ′
k
).

10: for i = 0 to n− 1 do
11: V ′

ki ← Pi + [ωk]Qi.
12: β′

ki ← IsogenyMap(ESi
, ⟨V ′

ki⟩).
13: ESiV ′

k
← IsogenyImage(β′

ki).
14: X ′

k[i+ 1]← j(ESiV ′
k
).

15: end for
16: X ′

k ← Permute(X ′
k, τk).

17: M ′
k ← MerkleTree(X ′

k).
18: root′k ← Root(M ′

k).
19: else
20: h← h ∥ 0.
21: jk, kerk, pathk ← σk[0], σk[1], σk[2].
22: EV ′

k
← RetrieveCurve(jk).

23: α′
kr ← IsogenyMap(EV ′

k
, ⟨kerk⟩).

24: EV ′
kS

′
r
← IsogenyImage(α′

kr).
25: root′k ← FindRoot(H(j(EV ′

kS
′
r
)), pathk).

26: end if
27: end for
28: h′ ← H(m, root′0, . . . , root

′
q−1).

29: if h == h′ then
30: return 1.
31: else
32: return 0.
33: end if

A3. Supersingular Isogeny-based Linkable
Ring Signature

In this section we give the algorithms KgenLRS,
SigLRS, VerLRS, and LverLRS used in linkable ring
signature. Algorithm 7 (KgenLRS) takes pp as in-
put and returns the secret key Si, the public key

(ESi
, Pi, Qi), and the tag (ETSi

, PTi
, QTi

) of the
ith user. Note that, a signer generates the tag only
if she issues a linkable ring signature. Algorithm
9 (SigLRS) takes pp, R with size n that includes
(ESr , Pr, Qr), Sr, Tagr, and m as input and returns
a linkable ring signature σ for the message m.
Algorithm 10 (VerLRS) takes pp, σ, R, and m

as input and returns 1 for accepting the linkable
ring signature and 0 for rejecting it. Algorithm 8
(LverLRS) takes σ1,σ2 as input and returns 1 if the
tags of given two signatures are different and 0

otherwise.

Algorithm 7 KgenLRS
Input: pp.
Output: Si, (ESi

, Pi, Qi), and (ETSi
, PTi

, QTi
).

1: Si ← Rand(E[ℓp]).
2: αi ← IsogenyMap(E, ⟨Si⟩).
3: θi ← IsogenyMap(E, ⟨T, Si⟩).
4: ESi

← IsogenyImage(αi).
5: ETSi

← IsogenyImage(θi).
6: Pi, Qi ← αi(P), αi(Q).
7: PTi

, QTi
← θi(P), θi(Q).

8: return Si, (ESi
, Pi, Qi), (ETSi

, PTi
, QTi

).

Algorithm 8 LVerLRS
Input: σ1,σ2.
Output: 1/0.

1: Tag1, Tag2 ← σ1[1], σ2[1]
2: if Tag1 == Tag2 then
3: return 0
4: else
5: return 1
6: end if

54

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Algorithm 9 SigLRS
Input: pp, R, Sr, Tagr, and m.
Output: The signature σ.

1: for k = 0 to q − 1 do
2: ωk ← Rand(Z/ℓvZ).
3: Vk ← P + [ωk]Q.
4: VkT ← PT + [ωk]QT .
5: VkTr ← PTr + [ωk]QTr .
6: βk ← IsogenyMap(E, ⟨Vk⟩).
7: γk ← IsogenyMap(ET , ⟨VkT ⟩).
8: δk ← IsogenyMap(ETSr , ⟨VkTr⟩).
9: EVk

← IsogenyImage(βk).
10: ETVk

← IsogenyImage(γk).
11: ETSrVk

← IsogenyImage(δk).
12: Xk[0]← j(EVk

).
13: for i = 0 to n− 1 do
14: Vki ← Pi + [ωk]Qi.
15: βki ← IsogenyMap(ESi

, ⟨Vki⟩).
16: ESiVk

← IsogenyImage(βki).
17: Xk[i+ 1]← j(ESiVk

).
18: end for
19: τk ← Rand(λ).
20: Xk ← Permute(Xk, τk).
21: Mk ← MerkleTree(Xk).
22: pathk ← Path(Mk,H(j(EVkSr))).
23: rootk ← Root(Mk).
24: tagk ← (j(ETVk

), j(ETSrVk
)).

25: σk ← (rootk, tagk).
26: end for
27: h← H(m,σ0, . . . , σq−1).
28: for k = 0 to q − 1 do
29: if h[k] == 1 then
30: z[k]← (ωk, τk).
31: else
32: z[k]← (j(EVk

), βk(Sr), βk(T), pathk).
33: end if
34: end for
35: σ ← (z, Tagr).
36: return σ.

Algorithm 10 VerLRS
Input: pp, R, σ, and m.
Output: 1/0.

1: Define h.
2: for k = 0 to q − 1 do
3: if zk == (ωk, τk) then
4: h← h ∥ 1.
5: ωk, τk ← zk[0], zk[1].
6: V ′

k ← P + [ωk]Q.
7: V ′

kT ← PT + [ωk]QT .
8: V ′

kTr
← PTr + [ωk]QTr .

9: β′
k ← IsogenyMap(E, ⟨V ′

k⟩).
10: γ′k ← IsogenyMap(ET , ⟨V ′

kT ⟩).
11: δ′k ← IsogenyMap(ETSr , ⟨V ′

kTr
⟩).

12: EV ′
k
← IsogenyImage(β′

k).
13: ETV ′

k
← IsogenyImage(γ′k).

14: ETSrV ′
k
← IsogenyImage(δ′k).

15: X ′
k[0]← j(EV ′

k
).

16: for i = 0 to n− 1 do
17: V ′

ki ← Pi + [ωk]Qi.
18: β′

ki ← IsogenyMap(ESi
, ⟨V ′

ki⟩).
19: ESiV ′

k
← IsogenyImage(β′

ki).
20: X ′

k[i+ 1]← j(ESiV ′
k
).

21: end for
22: X ′

k ← Permute(X ′
k, τk).

23: M ′
k ← MerkleTree(X ′

k).
24: root′k ← Root(M ′

k).
25: tag′k ← (j(ETV ′

k
), j(ETSrV ′

k
)).

26: else
27: h← h ∥ 0.
28: jk ← zk[0].
29: kerSk

← zk[1].
30: kerTk

← zk[2].
31: pathk ← zk[3].
32: EV ′

k
← RetrieveCurve(jk).

33: α′
kr ← IsogenyMap(EV ′

k
, ⟨kerSk

⟩).
34: θ′k ← IsogenyMap(EV ′

k
, ⟨kerTk

⟩).
35: θ′kr ← IsogenyMap(EV ′

k
, ⟨kerTk

, kerSk
⟩).

36: EV ′
kS

′
r
← IsogenyImage(α′

kr).
37: EV ′

kT
← IsogenyImage(θ′k).

38: EV ′
kTS′

r
← IsogenyImage(θ′kr).

39: root′k ← FindRoot(H(j(EV ′
kS

′
r
)), path′k).

40: tag′k ← (j(EV ′
kT
), j(EV ′

kTS′
r
)).

41: end if
42: σ′

k ← (root′k, tag
′
k).

43: end for
44: h′ ← H(m,σ′

0, . . . , σ
′
q−1).

45: if h == h′ then
46: return 1.
47: else
48: return 0.
49: end if

55

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

Acknowledgment

This work was supported by TÜBİTAK under
grant no 120E065. M. Sheikhi Garjan was a post-
doctoral researcher at Middle East Technical Uni-
versity during a period of this research and would
like to thank the Institute of Applied Mathematics
Cryptography Department for the hospitality. N.
G. Orhon Kılıç was supported by the Council of
Higher Education (YÖK) 100/2000 CoHE Ph.D.
Scholarship and would like to thank the Council
of Higher Education. A part of this paper was
written while M. Cenk was visiting the University of
Waterloo and would like to thank the Department of
Combinatorics & Optimization for the hospitality.

References

[1] R. L. Rivest, A. Shamir, and Y. Tauman, “How to leak a secret,”
in International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 2001, pp. 552–
565.

[2] J. K. Liu, V. K. Wei, and D. S. Wong, “Linkable spontaneous
anonymous group signature for ad hoc groups,” in Australasian
Conference on Information Security and Privacy. Springer,
2004, pp. 325–335.

[3] P. P. Tsang and V. K. Wei, “Short linkable ring signatures for
e-voting, e-cash and attestation,” in International Conference on
Information Security Practice and Experience. Springer, 2005,
pp. 48–60.

[4] M. Chase and A. Lysyanskaya, “On signatures of knowledge,”
in Annual International Cryptology Conference. Springer,
2006, pp. 78–96.

[5] Y. Dodis, A. Kiayias, A. Nicolosi, and V. Shoup, “Anonymous
identification in ad hoc groups,” in International Conference
on the Theory and Applications of Cryptographic Techniques.
Springer, 2004, pp. 609–626.

[6] M. Abe, M. Ohkubo, and K. Suzuki, “1-out-of-n signatures
from a variety of keys,” in International Conference on the
Theory and Application of Cryptology and Information Security.
Springer, 2002, pp. 415–432.

[7] J. Groth and M. Kohlweiss, “One-out-of-many proofs: Or how
to leak a secret and spend a coin,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2015, pp. 253–280.

[8] J. Herranz and G. Sáez, “Forking lemmas for ring signature
schemes,” in International Conference on Cryptology in India.
Springer, 2003, pp. 266–279.

[9] J. K. Liu and D. S. Wong, “Linkable ring signatures: Security
models and new schemes,” in International Conference on
Computational Science and Its Applications. Springer, 2005,
pp. 614–623.

[10] A. Bender, J. Katz, and R. Morselli, “Ring signatures: Stronger
definitions, and constructions without random oracles,” in The-
ory of Cryptography Conference. Springer, 2006, pp. 60–79.

[11] L. Nguyen, “Accumulators from bilinear pairings and appli-
cations,” in Cryptographers’ track at the RSA conference.
Springer, 2005, pp. 275–292.

[12] H. Shacham and B. Waters, “Efficient ring signatures without
random oracles,” in International Workshop on Public Key
Cryptography. Springer, 2007, pp. 166–180.

[13] S. S. Chow, S.-M. Yiu, and L. C. Hui, “Efficient identity
based ring signature,” in International Conference on Applied
Cryptography and Network Security. Springer, 2005, pp. 499–
512.

[14] M. Backes, N. Döttling, L. Hanzlik, K. Kluczniak, and
J. Schneider, “Ring signatures: Logarithmic-size, no
setup—from standard assumptions,” in Annual International
Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2019, pp. 281–311.

[15] D. Derler, S. Ramacher, and D. Slamanig, “Post-quantum zero-
knowledge proofs for accumulators with applications to ring
signatures from symmetric-key primitives,” in International
Conference on Post-Quantum Cryptography. Springer, 2018,
pp. 419–440.

[16] J. Katz, V. Kolesnikov, and X. Wang, “Improved non-interactive
zero knowledge with applications to post-quantum signatures,”
in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, 2018, pp. 525–537.

[17] D. H. Duong, H. T. Tran, W. Susilo et al., “An efficient mul-
tivariate threshold ring signature scheme,” Computer Standards
& Interfaces, vol. 74, p. 103489, 2020.

[18] M. S. E. Mohamed and A. Petzoldt, “Ringrainbow–an efficient
multivariate ring signature scheme,” in International Conference
on Cryptology in Africa. Springer, 2017, pp. 3–20.

[19] C. Baum, H. Lin, and S. Oechsner, “Towards practical lattice-
based one-time linkable ring signatures,” in International
Conference on Information and Communications Security.
Springer, 2018, pp. 303–322.

[20] W. Beullens, S. Katsumata, and F. Pintore, “Calamari and
falafl: Logarithmic (linkable) ring signatures from isogenies and
lattices,” 2020.

[21] M. F. Esgin, R. K. Zhao, R. Steinfeld, J. K. Liu, and D. Liu,
“Matrict: efficient, scalable and post-quantum blockchain con-
fidential transactions protocol,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications
Security, 2019, pp. 567–584.

[22] B. Libert, S. Ling, K. Nguyen, and H. Wang, “Zero-knowledge
arguments for lattice-based accumulators: logarithmic-size ring
signatures and group signatures without trapdoors,” in Annual

56

https://doi.org/10.55859/ijiss.1187756

INTERNATIONAL JOURNAL OF INFORMATION SECURITY SCIENCE
M. S. Garjan et al., Vol.12, No.1, pp. 32-57.
https://doi.org/10.55859/ijiss.1187756

International Conference on the Theory and Applications of
Cryptographic Techniques. Springer, 2016, pp. 1–31.

[23] W. A. A. Torres, R. Steinfeld, A. Sakzad, J. K. Liu, V. Kuchta,
N. Bhattacharjee, M. H. Au, and J. Cheng, “Post-quantum one-
time linkable ring signature and application to ring confidential
transactions in blockchain (lattice ringct v1. 0),” in Australasian
Conference on Information Security and Privacy. Springer,
2018, pp. 558–576.

[24] L. De Feo, D. Jao, and J. Plût, “Towards quantum-resistant cryp-
tosystems from supersingular elliptic curve isogenies,” Journal
of Mathematical Cryptology, vol. 8, no. 3, pp. 209–247, 2014.

[25] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny diffie-hellman,” in Annual International
Cryptology Conference. Springer, 2016, pp. 572–601.

[26] J. H. Silverman, The arithmetic of elliptic curves. Springer
Science & Business Media, 2009, vol. 106.

[27] D. Jao and L. De Feo, “Towards quantum-resistant cryptosys-
tems from supersingular elliptic curve isogenies,” in Interna-
tional Workshop on Post-Quantum Cryptography. Springer,
2011, pp. 19–34.

[28] C. D. de Saint Guilhem, P. Kutas, C. Petit, and J. Silva, “Séta:
Supersingular encryption from torsion attacks,” 2019.

[29] S. D. Galbraith, C. Petit, and J. Silva, “Identification protocols
and signature schemes based on supersingular isogeny prob-
lems,” Journal of Cryptology, vol. 33, no. 1, pp. 130–175, 2020.

[30] Y. Yoo, R. Azarderakhsh, A. Jalali, D. Jao, and V. Soukharev, “A
post-quantum digital signature scheme based on supersingular
isogenies,” in International Conference on Financial Cryptog-
raphy and Data Security. Springer, 2017, pp. 163–181.

[31] J. Vélu, “Isogenies entre courbes elliptiques,” Communica-
tions de lÁcademie royale des Sciences de Paris, vol. 273, p.
238–241, 1971.

[32] D. Jao and V. Soukharev, “Isogeny-based quantum-resistant
undeniable signatures,” in International Workshop on Post-
Quantum Cryptography. Springer, 2014, pp. 160–179.

[33] M. S. Srinath and V. Chandrasekaran, “Isogeny-based quantum-
resistant undeniable blind signature scheme.” IACR Cryptology
ePrint Archive, vol. 2016, p. 148, 2016.

57

https://doi.org/10.55859/ijiss.1187756

	Introduction
	Background
	Elliptic Curve Isogenies
	Computational Problems of Supersingular Isogenies
	Ring Signatures
	Security of Ring Signatures

	Linkable Ring Signatures
	Supersingular Isogeny-Based Zero-Knowledge Proof

	Supersingular Isogeny-Based Sigma Protocol for a Ring
	Sigma Protocol for a Ring
	Reducing the Size of Commitment Using Merkle Tree

	Supersingular Isogeny-Based Ring Signature
	Supersingular Isogeny-Based Linkable Ring Signature
	Efficiency and Implementation
	Efficiency Analyses
	Implementation Results

	Conclusion
	Appendix A: Algorithms
	Supersingular Isogeny-based Sigma Protocol for a Ring
	Supersingular Isogeny-based Ring Signature
	Supersingular Isogeny-based Linkable Ring Signature

	References

