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Abstract 

This study examines robust regression methods which are used for the solution of problems caused by the situations in which the 

assumptions of LSM technique, which is commonly used for the prediction of linear regression models, cannot be used. Robust estimators 

are not influenced by small deviations and discrepancies. For this purpose, some robust regression techniques which are used in situations 

in which the assumptions cannot be made were introduced and parameter estimation algorithms of these techniques were analyzed. 

Regression models of the methods of Lad, Weighted –M regression, Theil regression and Least Median Squares, coefficients of 

determination and average absolute deviations were calculated and the results were discussed as to which of these methods gave better 

results.  
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BAZI ROBUST TAHMİN YÖNTEMLERİ VE UYGULAMALARI 
Özet 

Bu çalışmada doğrusal regresyon modellerinin tahmininde yaygın olarak kullanılan EKK tekniğinin varsayımlarının sağlanmamasından 

kaynaklanan problemlerin çözümü için kullanılan Robust regresyon yöntemleri incelenmiştir. Robust tahmin ediciler küçük sapmalardan, 

aykırılıklardan etkilenmezler. Bu amaçla, çalışmada varsayımların sağlanmadığı durumlarda kullanılan bazı robust regresyon teknikleri 

tanıtılmıştır ve bu tekniklere ait parametre tahmin algoritmaları incelenmiştir. Uygulamada Lad, Ağırlıklı –M regresyon, Theil regresyon 

ve En küçük Medyan Kareler yöntemlerine ait regresyon modeli, belirleme katsayıları ve ortalama mutlak sapmalar hesaplanmış olup, bu 

tahmin edicilerden hangisinin daha iyi sonuç verdiği tartışılmıştır. 

Anahtar Kelimeler : Robust Regresyon Methodları, En Küçük Kareler Methodu, Ortalama Mutlak Sapma, Belirleme Katsayısı 

Jel Kodu : C40 

 

 

1. INTRODUCTION 

Nowadays, with statistical analysis becoming more and 

more important, LSM method still continues to be one of 

the most used methods among regression parameters 
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estimation techniques. However, when a data set has an 

outlier, using LSM method by excluding these outliers 

from the data or including them as they are may give 

wrong results. In that case, using regression methods 

which will decrease the effect of outliers will yield more 

reliable results. Studies on robust estimators started when 

http://www.alphanumericjournal.com/
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the Least Absolute Deviation (LAD, L1) regression 

technique was put forward by Roger Joseph Boscovich in 

1757. However, it was not used much since it was too long 

and complicated to calculate (Birkes D. and Dodge,Y. 

1993). Later, with the developments in computer 

programming, studies on robust regression started again. 

Tukey in 1960 and Huber in 1964 studied regression and 

Huber who studied theoretically between the years 1972 

and 1973 was followed by Hampel with his studies 

between 1973 and 1978 (Neter, J., Kutner, M.H., 

Nachtsheim, 1993). In a simple linear model, Theil (1950) 

proposed the median of pairwise slopes as an estimator of 

the slope parameter. Later, Sen (1968) extended this 

estimator to handle ties. The Theil-Sen estimator (TSE) is 

robust with a high breakdown point 29.3%, has a bounded 

influence function, and possesses a high asymptotic 

efficiency. Thus it is very competitive to other slope 

estimators (e.g., the least squares estimators), see (Sen, 

1968, Dietz,1989and Wilcox,1998). The TSE has been 

acknowledged in several popular textbooks on 

nonparametric and robust statistics, e.g., (Sprent,1993), 

(Rousseeuw and Leroy 1986). 

2. PARAMETER ESTIMATION 

2.1. Estimation of regression parameters with the help of 

Least Absolute Deviations Method (Lad, L1) 

LSM method is calculated in a way that 𝛽0  and 

𝛽1estimators minimize the total of error squares (Genceli, 

2001). Least Absolute Deviations Method is a method that 

minimizes the total of absolute errors and it is stated as 

follows:  

𝑚𝑖𝑛∑|𝑦𝑖 − (𝛽0 + 𝛽1𝑥𝑖)|

𝑛

𝑖=1

 

There is no mathematical expression to calculate 

estimators with Least Absolute Deviations Method. Thus, 

an algorithm has been developed to calculate L1 

estimators. The basis of the algorithm aims to find the best 

line among all the lines that pass from a given (𝑥0, 𝑦0 line.  

The following steps are followed in finding out the 

regression line for L2 technique (Yorulmaz, 2003): 

1. Generally, the first of observation pairs is chosen. 

2. By using the observation pair chosen, slope 

values for each observation pair and the 

corresponding 𝑥𝑖 − 𝑥0 values are obtained.  

3. The absolute values of 𝑥𝑖 − 𝑥0  values which 

correspond to slope values ordered from the 

smallest to the biggest are found. 

4. The cumulative sum of the 𝑥𝑖 − 𝑥0 values found 

is calculated.  

5. Half of the cumulative sum found in the previous 

step equals the critical value.  

6. To find the slope value which equals the critical 

value, the observation value in the third step is 

referred to. The first observation value higher 

than the critical value is the point looked for. The 

slope value of the corresponding value is 

checked. This value is the value found in the third 

step.  

7. The original order of the point which gives this 

slope value is calculated. This point is the new 

starting point for the next step.  

8. When two consequent same values are found as 

a result of such iterations, the process is stopped.  

2.2. Estimation of Regression Parameters through 

Weighted M-Regression Technique. 

In Huber M- Regression Technique, 𝜌(𝑧), which is the 

function of error terms, is minimized. Thus, when the 𝜌(𝑧) 
function is defined for error terms in the technique 

proposed by Huber (1973), the following is found; 

𝜌(𝜀) = {
𝜀2, −𝑘 ≤ 𝜀 ≤ 𝑘

2𝑘|𝜀| − 𝑘2, 𝜀 < −𝑘 ∨ 𝑘 < 𝜀
 

(Jabr, 2005). Here, 𝑘 = 1,5 ∗ 𝑀𝑆𝑀 and calculated as  

𝑀𝑆𝑀 =
𝑀𝑒𝑑{|𝜀𝑖 −𝑚𝑒𝑑(𝜀𝑖)|}

0,6745
, 𝑖 = 1,2, … , 𝑛 

Here Med (.) shows the median value. 

In Huber’s M- Regression Technique, parameter 

estimations can also be calculated by using Huber weight 

function. The expression ∑ 𝜀𝑖
2𝑛

𝑖=1 →  is minimized by 

LSM. When 𝑤𝑖  weights are also taken into consideration, 

the minimum function will be as 𝑚𝑖𝑛 ∑ 𝑤𝑖(𝑦𝑖 − 𝛽0 −
𝑛
𝑖=1

𝛽1𝑥𝑖)
2. Some important weights are given as summarized 

in Table 1. 
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Table 1. Some weight functions for the estimation of simple liner regression model. 

Name of the method Weight function 

 
Huber M- Weighted Regression 

 

𝑤𝑖 = {

             1,                    |𝑟| ≤ 1,5               
1,5

|𝑟|
,                   |𝑟| > 1,5   

 

 
 

 

 
Hampel Weighted Regression 

 

𝑤𝑖 =

{
 
 

 
 
1,                                           0 <  |𝑟| ≤ 1,7
1,7

𝑟
𝑠𝑔𝑛(𝑟),                          1,7 < |𝑟| ≤ 3,4

1,7
𝑟
[
8,5 − |𝑟|
5,1

] 𝑠𝑔𝑛(𝑟),      3,4 < 𝑟 ≤ 8,5

0,                                   8,5 < |𝑟|

 

 
 

Andrews Weighted Regression 

 

𝑤𝑖 = {           
sin (

𝑟
1,5
)

𝑟
  ,               |𝑟| ≤ 1,5𝜋              

   0   ,                            |𝑟| > 1,5 𝜋  

 

 
 

Tukey Weighted Regression 

 

𝑤𝑖 = {
         (1 − (

𝑟

5
))2  ,               |𝑟| ≤ 1,5             

   0   ,                            |𝑟| > 1,5  
 

 

The 𝑟 value in the functions given in Table 1 is calculated 

as 𝑟 =
𝜀𝑖

𝑀𝑆𝑀
. sgn(.) in the Hampel weighted  

method is the sign function and it is expressed as 

𝑠𝑔𝑛(𝑥) = {
−1, 𝑥 < 0
0, 𝑥 = 0
1, 𝑥 > 0

 .  𝑠𝑖𝑛 (. )  in Andrews Weighted 

Regression shows the sine value.  

The following steps are followed in finding out the 

regression line for Weighted M-Regression techniques: 

1. 𝛽0  and 𝛽1  estimation values are found through 

LSM method. 

2. Next, MSM and 𝜀𝑖  values are found by using 

these estimation values.  

3. Weight values are calculated. 

4. 𝛽00 and 𝛽10 estimation values are found through 

weighted LSM method. 

5. The process is finished if the difference between 

estimations is < 0,001(Ergül, B., 2006). 

 

2.3. Estimation of Regression Parameters through Theil-

Sen Method. 

Theil-Sen method is also expressed as Theill-Kendall or 

Theil method in literature. Brown-Mood method which is 

recommended for finding the slope is a fast, but not very 

reliable method. Thus, Theil method, which is especially 

recommended to find the slope coefficient, is more useful. 

In this method, the linear regression model is expressed as 

follows:  

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝜀𝑖                       (1) 

Here, 𝛽0  is the cut parameter, while 𝛽1 is the slope 

parameter and these parameters are estimated. There are 

some assumptions to estimate these parameters of the 

simple linear regression. These assumptions are:  

1. For each 𝑋𝑖 value, a lower mass of 𝑌’s and 𝜀𝑖’s 

are mutually independent.  

2. 𝑋𝑖  ’s are non-repetitive and they are in 𝑋1 <
𝑋2 < ⋯ < 𝑋𝑛 line. 

3. The data set consists of 𝑛  observation pairs as 

(𝑋1, 𝑌1),… , (𝑋𝑛, 𝑌𝑛).  

In line with these assumptions, all the possible 𝑆𝑖𝑗 =
(𝑌𝑗−𝑌𝑖)

(𝑋𝑗−𝑋𝑖)
 slopes (𝑓𝑜𝑟𝑖 < 𝑗)  are calculated to reach 𝛽1 

estimation. 𝑁 = (
𝑛
2
)  𝑆𝑖𝑗  slopes are obtained. 𝛽1 

estimation is calculated as the median of 𝑆𝑖𝑗 values. That 

is, if 𝛽1 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑆𝑖𝑗)  and a constant term, 𝛽0 =

𝑀𝑒𝑑𝑖𝑎𝑛(𝑌) − 𝛽1𝑀𝑒𝑑𝑖𝑎𝑛(𝑋)  (Kıroğlu, 2001). In 

addition, there are other methods to calculate 𝛽0 

estimation. (Wilcox, 2013), (Granato, 2006) and (Erilli 

and Alakus, 2014) can be seen for these methods.  

2.4. Estimation of Regression Parameters through Least 

Median of Squares Method. 

Least Median of Squares regression is a robust method 

used to find out outliers. It was put forward by Rousseeuw 

and developed by Rousseeuw and Leroy. The method has 

the idea of minimizing median of error squares instead of 

sum of error squares. The function to be minimized is 

given as follows:  

𝑚𝑖𝑛𝑚𝑒𝑑𝑖𝑎𝑛(𝜀𝑖
2) 
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 (Rousseeuw and Leroy, 1987). 

This estimator is robust for outliers in the direction of both 

𝑥  and 𝑦. Breakdown point is 0.5 and it has the highest 

possible breakdown point (Rousseeuw and Leroy, 1987). 

The following steps are followed in finding out the 

regression line for Least Median of Squares method: 

1. 𝛽0 and 𝛽1estimation values are calculated for all 

point pairs. 

2. For each calculated 𝛽0 and 𝛽1 value, error terms 

with 𝑛 number of observation pairs are found and 

the median is found by squaring these error 

terms. 

3. 𝛽0 and 𝛽1estimation values which correspond to 

the least median of squares value within the 

calculated median of squares are taken.  
4. Weighted LSM technique is applied by using the 

weighted values in the fifth step. For the method, 

the weights are obtained with the following 

expression:  

5. 𝑤𝑖 = {
1, |

𝜀𝑖

𝑠0
| ≤ 2,5

0, |
𝜀𝑖

𝑠0
| > 2,5

 

and 𝑠0 = 1,4826 ∗ [1 +
5

𝑛−𝑝
] ∗ √𝑚𝑒𝑑(𝜀𝑖

2) 

and the coefficient of determination is found as; 𝑅2 = 1 −

(
𝑚𝑒𝑑|𝜀𝑖|

𝑚𝑎𝑑(𝑦𝑖)
).  

Here, 𝑚𝑎𝑑(𝑦𝑖) = 𝑚𝑒𝑑{|𝑦𝑖 −𝑚𝑒𝑑𝑦𝑗|}  (Rousseeuw and 

Leroy, 1987). 

3. REAL DATA EXAMPLE 

In this practice, rainfall between the years 1970 and 

1975 and annual sugar production yields are discussed. 

The response variable (Y) was taken as yield, while the 

independent variable was taken as rainfall (X) ( Clarke and 

Cooke, 1992). Assumptions should be proved to be able to 

apply the LSM method. We can check the Q-Q graph of 

error terms in order to be able to check visually whether 

normal distribution assumption is proved.  

 

Figure.1 Q-Q graph of the error terms found in the practice 

When Figure 1 is analyzed, it can obviously be seen that 

although Q-Q graph is one of the test methods for 

goodness of fit, results can be misleading in such small 

size samples. In samples of such sizes, both visual and 

other goodness of fit test can give misleading results. For 

example, although the data seems to have normal 

distribution, using robust methods rather than LSM 

method will give more reliable results.  

Parameter estimation results for the simple linear 

regression model L1 technique given with Model (1) are 

as summarized in Table 2. 
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Table 2. Analysis results for L1 technique 
Results of the first iteration  

𝑦𝑖 𝑥𝑖 m Ordered m 𝑥𝑖 − 𝑥0 |𝑥𝑖 − 𝑥0| cluster |𝑥𝑖 − 𝑥0| 

63 20 * * * * * 

77 26 2,333333 -4,5 6 4 4 

61 17 0,666667 0,166667 -3 6 10 

73 22 5 0,666667 2 3 13 

45 24 -4,5 2,333333 4 6 19 

62 14 0,166667 5 -6 2 21 

(𝑥0, 𝑦0) = (20,63)   𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝒗𝒂𝒍𝒖𝒆 = 𝟐𝟏/𝟐 = 𝟏𝟎. 𝟓 

Results of the first iteration 

63 20 0,166667 -1,7 6 10 10 

77 26 1,25 -0,33333 12 3 13 

61 17 -0,33333 0,166667 3 6 19 

73 22         1,375            1,25              8              12                       31 

45 24 -1,7 1,375 10 8 39 

62 14 * * * * * 

(𝑥0, 𝑦0) = (14,62)   𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝒗𝒂𝒍𝒖𝒆 = 𝟑𝟗/𝟐 = 𝟏𝟗. 𝟓 

For the Lad Technique, iterations were continued until the 

same slope value was found. Finally, as a result of the 3rd 

and 4th iteration, the slopes were found as equal and the 

process stopped after 4 iteration. �̂�1 =
(𝑦𝑘−𝑦0)

(𝑥𝑘−𝑥𝑥)
= 1,25 and   

𝛽0 = 𝑦0 − 𝛽1𝑥0 = 44,5 → 𝑌𝑖 = 44,5 + 1,25𝑋𝑖 . In the 

light of 

these results, coefficient of determination is found as 

𝑅2 =
∑(𝑌𝑖−�́�)

2

∑(𝑌𝑖−�́�)
2 =

418,8125

623,5
= 0,671712 . In other words, 

according to Lad technique, rainfall accounts for 67,1% of 

the variance of yield.  

Table 3. Huber –M weighted regression results. 

Results of the first iteration 

𝑦𝑖 𝑥𝑖 𝑦𝑖 𝑦𝑖 − 𝑦𝑖 𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖 |𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖| 𝑟𝑖 |𝑟𝑖| 𝑤𝑖 

63 20 63,28643 -0,28643 -0,781407035 0,78141 -0,03917 0,03917 1 

77 26 65,84925 11,15075 10,65577889 10,65578 1,524927 1,524927 0,983654 

61 17 62,00503 -1,00503 -1,5 1,5 -0,13744 0,13744 1 

73 22 64,1407 8,859296 8,364321608 8,364322 1,211557 1,211557 1 

45 24 64,99497 -19,995 -20,48994975 20,4899 -2,73442 2,73442 0,548562 

62 14 60,72362 1,276382 0,781407035 0,781407 0,174552 0,174552 1 

𝒎𝒆𝒅𝜺𝒊 = 𝟎. 𝟒𝟗𝟒𝟗𝟕𝟓 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒. 𝟗𝟑𝟐𝟏𝟔𝟏 𝑴𝑺𝑴 = 𝟕.𝟑𝟏𝟐𝟑𝟐𝟏𝟕𝟐 

Results of the final iteration 

63 20 65,6038779 -2,603877 -2,8827692 2,88276923 -0,4362377 0,43623777 1 

77 26 71,4475702 5,5524297 5,27353845 5,27353845 0,93022011 0,93022011 1 

61 17 62,6820317 -1,682031 -1,9609230 1,96092307 -0,2817973 0,28179730 1 

73 22 67,5517753 5,4482246 5,16933332 5,16933332 0,91276222 0,91276222 1 

45 24 69,4996727 -24,49967 -24,778564 24,7785646 -4,1045252 4,10452528 0,36545 

62 14 59,7601856 2,2398144 1,960923078 1,96092308 0,37524480 0,375244803 1 

𝒎𝒆𝒅𝜺𝒊 = 𝟎. 𝟐𝟕𝟖𝟖𝟗𝟏𝟑𝟑 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒. 𝟎𝟐𝟔𝟎𝟓𝟏𝟐𝟖𝟐 𝑴𝑺𝑴 = 𝟓. 𝟗𝟔𝟖𝟗𝟒𝟏𝟖𝟓𝟓 
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The weight values in Table 3 were found by using the 

Huber-M weighted technique in Table 1. Later, the best 

estimation value was found as a result of technique results 

and first and final iteration analysis results were 

summarized as in Table 4. 

Table 4. Huber –M weighted regression results. 

 

Variable 

First iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Constant 49.1

17 

21.2

89 

2.307 46.1

24 

18.4

61 

2.498 

Rainfall 0.78

5 

1.03

3 

0.756 0.97

3 

0.90

0 

1.081 

Correlatio

n, 𝑟 

0.355 0.476 

 

Variable 

First iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Coefficien

t of 

determinat

ion, 𝑅2 

0.126 0.226 

 

Thus, the regression equation estimated as a result of the 

ninth iteration according to Huber –M weight regression 

technique was calculated as 𝑌𝑖 = 46.124 + 0.973𝑋𝑖  and 

the amount of rainfall explains 22.6% of the yield 

according to Huber –M weight regression method.  

Table 5. Hampel –M weight regression results. 
First iteration results  

𝑦𝑖 𝑥𝑖 𝑦𝑖 𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖 𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖 |𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖| 𝑟𝑖 |𝑟𝑖| 𝑤𝑖 

63 20 63,28643 -0,28643216 -0,78140703 0,78141 -0,0391711 0,03917 1 

77 26 65,84925 11,15075377 10,65577889 10,65578 1,52492658 1,524927 1 

61 17 62,00503 -1,00502512 -1,5 1,5 -0,1374426 0,13744 1 

73 22 64,1407 8,859296485 8,364321608 8,364322 1,21155726 1,211557 1 

45 24 64,99497 -19,9949749 -20,4899497 20,4899 -2,7344222 2,73442 0,621703553 

62 14 60,72362 1,276381912 0,781407035 0,781407 0,17455220 0,174552 1 

𝒎𝒆𝒅𝜺𝒊 = 𝟎.𝟒𝟗𝟒𝟗𝟕𝟒𝟖𝟖𝟕𝟕 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒. 𝟗𝟑𝟐𝟏𝟔 𝑴𝑺𝑴 = 𝟕. 𝟑𝟏𝟐𝟑𝟐𝟏𝟕𝟐 

Final Iteration results 

63 20 65,67102 -2,671019 -2,9540595 2,9540595 -0,4492539 0,449253 1 

77 26 71,60977 5,390235 5,1071945 5,1071945 0,90661447 0,906614 1 

61 17 62,70165 -1,701646 -1,9846865 1,9846865 -0,2862095 0,286209 1 

73 22 67,6506 5,349399 5,0663585 5,0663585 0,89974603 0,899746 1 

45 24 69,63018 -24,630183 -24,9132235 24,9132235 -4,1426914 4,142691 0,350602071 

62 14 59,73227 2,267727 1,9846865 1,9846865 0,38142198 0,381421 1 

𝒎𝒆𝒅𝜺𝒊 = 𝟎, 𝟐𝟖𝟑𝟎𝟒𝟎𝟓 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒, 𝟎𝟏𝟎𝟐𝟎𝟗 𝑴𝑺𝑴 = 𝟓, 𝟗𝟒𝟓𝟒𝟓𝟒𝟒𝟏𝟏 

 

The weight values in Table 5 were calculated by using the 

weight function of Hampel –M weight regression 

technique in Table 1 and the results of the information 

obtained as a result of 16 iterations were summarized in 

Table 6.  

 
Table 6. Hampel–M weight regression results. 

 

Variable 

First Iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Fixed 50.0

34 

22.1

85 

2.255 45.8

76 

18.1

91 

2.522 

 

Variable 

First Iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Amount of 

rainfall 

0.72

6 

1.07

3 

0.676 0.98

9 

0.88

7 

1.115 

Correlatio

n, 𝑟 

0.320 0.487 

Coefficien

t of 

determinat

ion, 𝑅2 

0.103 0.237 
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Thus, the regression equation estimated as a result of the 

16 iterations for Hampel –M weight regression technique 

is 𝑌𝑖 = 45,875 + 0.989𝑋𝑖   and according to this 

technique, the amount of rainfall as a result of the final 

iteration explains 23,7% of the variance of yield.  

 

 

 

 

Table 7. Andrews weighted regression results. 
First Iteration results 

𝑦𝑖 𝑥𝑖 𝑦𝑖 𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖 𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖 |𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖| 𝑟𝑖 |𝑟𝑖| 𝑠𝑖𝑛 (
|𝑟𝑖|

1,5
) 𝑤𝑖 

63 20 63,28643 -0,2864321 -0,781407 0,78141 -0,039171 0,03917 0,018651 0,47616 

77 26 65,84925 11,150753 10,655778 10,65578 1,5249265 1,524927 0,664 0,43543 

61 17 62,00503 -1,0050251 -1,5 1,5 -0,137442 0,13744 0,0654009 0,47585 

73 22 64,1407 8,8592964 8,3643216 8,364322 1,2115572 1,211557 0,545455 0,450209 

45 24 64,99497 -19,994974 -20,48995 20,4899 -2,734422 2,73442 0,964119 0,352586 

62 14 60,72362 1,2763819 0,7814070 0,781407 0,1745522 0,174552 0,083024 0,47564 

𝒎𝒆𝒅𝜺𝒊 = 𝟎, 𝟒𝟗𝟒𝟗𝟕𝟒𝟖 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒, 𝟗𝟑𝟐𝟏𝟔𝟏 𝑴𝑺𝑴 = 𝟕, 𝟑𝟏𝟐𝟑𝟐𝟏 

Final Iteration results 

63 20 64,5258 -1,525882 -1,720983 1,720983 -0,240231 0,240231 0,1141467 0,4751525 

77 26 68,8205 8,179474 7,984373 7,984373 1,2877600 1,287760 0,5755030 0,4469023 

61 17 62,3785 -1,37856 -1,573661 1,573661 -0,217037 0,217037 0,1031674 0,4753431 

73 22 65,9574 7,04257 6,847469 6,847469 1,1087681 1,108768 0,5037936 0,4543723 

45 24 67,3889 -22,38897 -22,584079 22,58407 -3,524876 3,524876 0,9942042 0,2820536 

62 14 60,2312 1,768762 1,573661 1,573661 0,2784703 0,278470 0,1322166 0,4747961 

𝒎𝒆𝒅𝜺𝒊 = 𝟎, 𝟏𝟗𝟓𝟏𝟎𝟏 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒, 𝟐𝟖𝟒𝟐𝟐𝟔 𝑴𝑺𝑴 = 𝟔, 𝟑𝟓𝟏𝟕𝟎𝟔 

 

The results of the information obtained as a result of 12 

iterations were summarized in Table 8.  

Table 8. Andrews weighted regression results. 
 

Variable 

First Iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Fixed 52.5

53 

23.4

87 

2.237 50.2

10 

21.8

63 

2.297 

Amount of 

rainfall 

0.56

8 

1.13

7 

0.499 0.71

6 

1.06

2 

0.673 

Correlatio

n, 𝑟 

0.242 0.319 

 

Variable 

First Iteration Final Iteration 

𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Erro

r 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Coefficien

t of 

determinat

ion, 𝑅2 

0.059 0.102 

 

The regression equation estimated as a result of the 12 

iterations for Andrews weighted regression is 𝑌𝑖 =
50,210 + 0.715𝑋𝑖 and according to this technique, the 

amount of rainfall explains 10,2% of the variance of yield. 

Table 9. Tukey weighted regression results. 
First Iteration results  

𝑦𝑖 

 

𝑥𝑖 𝑦𝑖 

𝜀𝑖 = 𝑦𝑖 − 𝑦𝑖 𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖 |𝜀𝑖 −𝑚𝑒𝑑𝜀𝑖| 𝑟𝑖 |𝑟𝑖| 1 − (
|𝑟𝑖|

5
)2 𝑤𝑖 

63 20 63,2864 -0,286432 -0,78140703 0,781407 -0,039171 0,039171 0,9999386 0,9998772 

77 26 65,8492 11,15075 10,65577889 10,65577 1,5249266 1,524926 0,9069839 0,8226198 

61 17 62,0050 -1,005025 -1,5 1,5 -0,137442 0,137442 0,9992443 0,9984893 

73 22 64,1407 8,859296 8,364321608 8,364321 1,2115573 1,211557 0,9412851 0,8860177 

45 24 64,9949 -19,99497 -20,4899497 20,48994 -2,734422 2,734422 0,7009173 0,4912851 

62 14 60,7236 1,276381 0,781407035 0,781407 0,1745522 0,174552 0,9987812 0,9975640 
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𝒎𝒆𝒅𝜺𝒊 = 𝟎, 𝟒𝟗𝟒𝟗𝟕𝟒 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟒, 𝟗𝟑𝟐𝟏𝟔𝟎 𝑴𝑺𝑴 = 𝟕, 𝟑𝟏𝟐𝟑𝟐𝟏 

Final Iteration results 

63 20 67,5179 -4,517926 -3,868626 3,868626 -0,877385 0,877385 0,9692077 0,9393637 

77 26 76,0434 0,956578 1,605878 1,605878 0,1857683 0,185768 0,9986196 0,9972411 

61 17 63,2551 -2,255178 -1,605878 1,605878 -0,437957 0,437957 0,9923277 0,9847143 

73 22 70,3597 2,640242 3,289542 3,289542 0,5127375 0,512737 0,9894840 0,9790786 

45 24 73,2015 -28,20159 -27,55229 27,55229 -5,476776 5,476776 -0,1998031 0 

62 14 58,9924 3,00757 3,65687 3,65687 0,5840730 0,584073 0,9863543 0,9728948 

𝒎𝒆𝒅𝜺𝒊 = −𝟎, 𝟔𝟒𝟗𝟑 𝒎𝒆𝒅|𝜺𝒊 −𝒎𝒆𝒅𝜺𝒊| = 𝟑, 𝟒𝟕𝟑𝟐𝟎𝟔 𝑴𝑺𝑴 = 𝟓, 𝟏𝟒𝟗𝟑𝟎𝟒 

 
Table 10. Tukey weighted regression results 

 

Variable 

First Iteration Final Iteration 

𝛽𝑖 Std. 

Error 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝛽𝑖 Std. 

Err

or 

𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Fixed 49.8

02 

20.6

09 

2.416 39.0

99 

8.16

3 

4.789 

Amount of 

rainfall 

0.74

4 

1.01

3 

0.734 1.42

0 

0.40

3 

3.524 

Correlatio

n, 𝑟 

0.345 0.898 

Coefficient 

of 

determinat

ion, 𝑅2 

0.119 0.806 

 

The weight values in Table 9 were calculated by using the 

weight function Tukey weighted regression technique in 

Table 1 and the results obtained as a result of the 7 

iterations were summarized in Table 10. Thus, the 

regression model estimated as a result of the 7 iterations 

for Tukey weighted regression method is 𝑌𝑖 = 39.099 +
1,420𝑋𝑖  and according to this technique, the amount of 

rainfall explains 80,6% of the variance of yield. 

Table 11. LMS regression results 
𝑦𝑖 𝑥𝑖 𝛽1 𝛽0 First 𝛽0 and 𝛽1 Results 15th 𝛽0 and 𝛽1 Results 

𝑦𝑖 𝜀𝑖 𝜀𝑖
2 𝑦𝑖 𝜀𝑖  𝜀𝑖

2 

63 20 2,333 16,333 63 0 0 51,8 11,2 125,44 

77 26 0,667 49,667 77 0 0 41,6 35,4 1253,16 

61 17 5 -37 56 5 25 56,9 4,1 16,81 

73 22 -4,5 153 67,667 5,333 28,44444 48,4 24,6 605,16 

45 24 0,167 59,667 72,333 -27,333 747,1111 45 0 0 

62 14 1,778 30,778 49 13 169 62 0 0 

  1 51  𝑚𝑒𝑑𝜀𝑖
2 26,72222  𝑚𝑒𝑑𝜀𝑖

2 71,125 

  16 -339       

  1,25 44,5       

  2,4 20,2       

  -2,286 99,857       

  -0,333 66,6667       

  -14 381       

  1,375 42,75       

  -1,7 85,8       
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Table 12. Median results of error squares in LMS regression analysis. 

𝛽0 and 𝛽1 Values 𝛽1 𝛽0 𝑚𝑒𝑑𝜀𝑖
2 

1. 2,333333 16,33333 26,722222 

2. 0,666667 49,66667 42,055556 

3. 5 -37 212,5 

4. -4,5 153 300,625 

5. 0,166667 59,66667 47,847222 

6. 1,777778 30,77778 10,395062 

7. 1 51 29 

8. 16 -339 5162 

9. 1,25 44,5 11,78125 

10. 2,4 20,2 29,2 

11. -2,28571 99,85714 56,377551 

12. -0,33333 66,66667 97,888889 

13. -14 381 2522 

14. 1,375 42,75 14,257813 

15. -1,7 85,8 71,125 

By using the slope information of the line, it was 

calculated through  𝛽1 =
𝑦𝑗−𝑦𝑖

𝑥𝑗−𝑥𝑖
 , 𝑖 = 0 < 𝑗 and 𝛽0 = 𝑦0 −

𝛽1𝑥0  for all possible situations. 𝑚𝑒𝑑𝜀𝑖
2  value was 

calculated for all possible data pairs. In the next step, 𝛽0 

and 𝛽1  estimation coefficients with 𝑚𝑖𝑛𝑚𝑒𝑑𝜀𝑖
2  value 

were calculated. In the light of this information, ((
6
2
) =

15 ) 𝛽0 and 𝛽1 were calculated for all possible situations 

in Table 11. Later, the median of the error squares of these 

regression parameters were found as in Table 12 and 

estimation values which had 𝑚𝑖𝑛𝑚𝑒𝑑𝜀𝑖
2  value were 

expressed as regression coefficients for LMS.  

As a result, the regression line of LMS was obtained as 

𝑌𝑖 = 30,778 + 1,778𝑥𝑖 . Coefficient of determinacy was 

calculated as 𝑅2 = 1 − (
𝑚𝑒𝑑|𝜀𝑖|

𝑚𝑎𝑑(𝑦𝑖)
)
2

= 1 − (
3,2222

6
)
2

=

0,711 and according to this method, the amount of rainfall 

explains 71,1% of the variance of yield. 

 

Table 13. Weighted LSM technique for LMS method. 

𝑦𝑖 𝑥𝑖 𝑦𝑖 𝜀𝑖 𝜀𝑖
2 

𝜀𝑖
𝑠0

 |
𝜀𝑖
𝑠0
| 𝑤𝑖 

63 20 66,33338 -3,33338 11,11142 -0,30993087 0,309930879 1 

77 26 77,00006 -6E-05 3,6E-09 -5,57868E-0 5,57868E-0 1 

61 17 61,00004 -4E-05 1,6E-09 -3,71912E-0 3,71912E-0 1 

73 22 69,88894 3,11106 9,678694 0,289260018 0,289260018 1 

45 24 73,4445 -28,4445 809,0896 -2,64471163 2,64471163 0 

62 14 55,6667 6,3333 40,11069 0,588857326 0,588857326 1 

   𝑚𝑒𝑑𝜀𝑖
2 10,39506    

   √𝑚𝑒𝑑𝜀𝑖
2 3,224137    

   1+
5

𝑛−𝑝
 2,25    

   𝑠0 10,75524    

 
Table 14. Weighted LSM technique for LMS method. 

Variable 𝛽𝑖 Std. Error 𝑡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛 

Fixed 39.134 8.258 4.739 

Amount of rainfall 1.417 0.408 3.473 

Correlation, 𝑟 0.895 

Coefficient of 

determination, 𝑅2 

0.801 

 

Regression coefficients in weighted LSM technique for 

LMS method were calculated by using regression 

coefficients obtained by LMS technique and according to 

this method, the amount of rainfall explains 80,1% of the 

variance of yield. 

When Table 11 is examined for Theil method, the median 

of all possible slopes were taken to reach 𝛽1estimation and 

it was calculated as 1. It is calculated as  𝛽0 =

𝑀𝑒𝑑𝑖𝑎𝑛(𝑌) − 𝛽1𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 62.5 − 1 ∗ 21 = 41.5 

4. CONCLUSION AND RECOMMENDATIONS 

In this study, regression line, standard error, coefficients 

of determination and average absolute deviations were 

calculated and interpreted for regression models and 

parameter estimations of techniques used on real life data 

by using simple linear robust regression techniques. 

According to the results, the method which gave the best 

result in terms of the percentage of independent variable 

explaining the dependent variable was Tukey-weighted 

regression method. Although weighted least median of 

squares method was close to Tukey-weighted regression 

method, its 𝑅2 was found to be a bit lower. The percentage 

of explanations obtained by non-weighted least median of 

squares method was calculated as 𝑅2 = 0,712. However, 
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when the methods analyzed were taken into consideration, 

it was seen that Tukey, least median of squares and Lad 

methods gave significantly better results than the other 

regression models analyzed. In the light of this 

information, it is seen that Tukey, least median of squares 

and Lad methods gave more reliable results than LSM 

method. In addition, when average absolute deviation 

values (𝑂𝑀𝑆 =
∑ |(𝑌𝑖−�̂�𝑖|
𝑛
𝑖=1

𝑛
) were taken into consideration 

for the methods, it can be said that the techniques which 

have high coefficients of determination have lower 

average absolute deviations.  

The summary of the information about the methods used 

are as follows:  

Table 15. Summary Information 

Method Estimation Equation Average 

Absolute 

Deviation 

LSE �̂�𝑖 = 54.744 + 0.427𝑋𝑖 7.095 

LAD & L1 �̂�𝑖 = 44.500 + 1.250𝑋𝑖 6.958 

Huber M Weighted Reg. �̂�𝑖 = 54.124 + 0.974𝑋𝑖 7.004 

Hampel-M Weighted 
Reg. 

�̂�𝑖 = 45.875 + 0.989𝑋𝑖 7.001 

Method Estimation Equation Average 

Absolute 

Deviation 

Andrews Weighted Reg. �̂�𝑖 = 50.210 + 0.716𝑋𝑖 7.047 

Tukey Weighted Reg. �̂�𝑖 = 39.099 + 1.420𝑋𝑖 6.929 

LMS �̂�𝑖 = 30,777 + 1,778𝑋𝑖 6.870 

Weighted LMS �̂�𝑖 = 39,134 + 1,417𝑋𝑖 6.930 

Theil Reg. �̂�𝑖 = 41,500 + 1.000𝑋𝑖 8.330 

The results obtained and our interpretations are valid for 

the data set we used. No generalizations can be made. 

Robust regression methods for simple linear regression 

were analyzed in this study. Similarly, studies can be made 

on robust methods for multiple linear regression. In future 

studies, it can be recommended to be used together with 

the robust methods we discussed with jackknife method. 
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