
A. GULER/APJES IV-III (2016) 09-14

*Corresponding author: Address: Department of Computer Programming, Yasar University, Izmir, Turkey,

Turkey. E-mail address: asli.guler@yasar.edu.tr, Phone: +90 05335602317.

Doi:10.21541/apjes.14020

A New Genetic Algorithm for the 0-1 Knapsack Problem

*1Asli Guler, 2Murat Ersen Berberler, 3Urfat G. Nuriyev

1Department of Computer Programming, Yasar University, Izmir, Turkey
2Department of Computer Science, Dokuz Eylul University, Izmir, Turkey

3Department of Mathematics, Ege University, Izmir, Turkey

Received Date : 2016-07-15 Accepted Date: 2016-10-09

Abstract

In this paper, the 0-1 Knapsack Problem (KP) which occurs in many different applications is studied and a new

genetic algorithm to solve the KP is proposed. In our methodology, n items are represented by n genes on a bit

array that compactly stores the values 0 or 1. When calculating fitness values of items, coefficients of items

whose values are 1 in the bit array are summed. Roulette wheel method is used for choosing parents; in this way

it is provided that strong individuals produce more children. Crossover is applied in such a way that roulette

wheel is rotated on genes with the same index of parents, that the dominant parent can transfer its genes to the

child. Mutation is applied for randomly chosen 25% genes and this process is repeated for the number of

individuals. The algorithm is written in C programming language and is tested on randomly generated instances.

In order to find the optimal solutions of these problems, a program that has been written by dynamic

programming technique is used. It is seen that the algorithm yields optimal solutions for all instances.

Keywords: One-dimensional 0-1 knapsack problem, Genetic algorithm, Heuristic approach, Dynamic

programming.

1. Introduction

Knapsack problems have been intensively studied

recently due to its simple structure and the more

complex problems can be solved through knapsack

problems. The problems such as capital budgeting,

cargo loading and project selection problem can be

modeled by knapsack problems [1]. The Knapsack

Problem (KP) is a well-studied, NP-complete

combinatorial optimization problem occurring in

many different applications. The KP cannot be

solved in linear amount of time however its solution

can be verified in linear time [2].

The problem has been intensively studied in the last

20 years both because of its theoretical interest and

its wide practical applicability in operations

research, computer science, engineering and

management science. Because of the increasing

number of the potential applications, numerous

algorithms have been developed to solve the KP

especially for large problem sizes.

Several faster algorithms have been produced

which provide good solutions and approximate

solutions. For example, Sahni [3] introduced

approximation algorithms to 0-1 KP. Ibarra and

Kim [4] developed a fully polynomial

approximation scheme for the KP. Martello and

Toth [5] designed a quite effective algorithm for

large-size problems, which is based on the use of a

greedy algorithm for solving large KP. Horowitz et

al. [6] also presented a very simple algorithm

solving the KP using a greedy method.

Also knapsack problem is a sub problem of one-

dimensional cutting stock problem [7]. Therefore,

KP is also a very important problem for operations

research. This paper aims to solve the problems

with large sizes in minimum amount of time with

near-optimal values.

The KP can be stated as follows:

Given a set of items (i = 1, . . . , n), each with a

weight 0iw  and a profit 0ip  , the aim is to

determine the number of each item to include in a

collection so that the total weight is less than a

given limit and the total profit is as large as

possible.

The problem can be defined by the following

integer linear programming:

 

1

1

maximize

subject to ,

 0,1 , 1,...,

n

i i

i

n

i i

i

i

p x

w x c

x i n







 





Here,

ip : profit of item i,

iw : weight of item i,

c : capacity of the knapsack,

A. GULER/APJES IV-III (2016) 09-14

1, if item is selected,

0, otherwise.
i

i
x


 


It is assumed, without loss of generality, that
ip ,

iw and c are positive integers, besides

, 1,...,iw c i n 

1

n

i

i

w c


 .

2. Genetic algorithms

Genetic Algorithms (GA), which find application in

bioinformatics, phylogenetics, computational

science, engineering, economics, chemistry,

manufacturing, mathematics, physics,

pharmacometrics and other fields are search

algorithms based on natural selection and genetics.

These algorithms belong to the larger class of

evolutionary algorithms (EA) that generate

solutions to optimization problems using techniques

inspired by natural evolution, such as inheritance,

mutation, selection, and crossover. It can be said

that the strongest individuals in a population will

have a better chance to transfer their genes to the

next generation [8].

In a genetic algorithm, a population of candidate

solutions to an optimization problem is evolved

toward better solutions. Each candidate solution has

a set of properties which can be mutated and

altered; traditionally, solutions are represented in

binary as strings of 0s and 1s, but other encodings

are also possible.

The evolution usually starts from a population of

randomly generated individuals and happens in

generations. In each generation, the fitness of every

individual in the population is evaluated, the more

fit individuals are stochastically selected from the

current population, and each individual's genome is

modified (recombined and possibly randomly

mutated) to form a new population. The new

population is then used in the next iteration of the

algorithm. Commonly, the algorithm terminates

when either a maximum number of generations has

been produced, or a satisfactory fitness level has

been reached for the population [9].

The reproduction can be done in three ways:

 Pure Reproduction - The individual is copied

directly into the next generation.

 Crossover - Two individuals are selected and

their genes are crossed at some point, as the first

part of the new individual comes from one

parent and the last part from the other.

 Mutation - An individual is selected, and one bit

is changed.

The genetic algorithm approach has been found

quite effective in obtaining the solution of a large

variety of complex optimization problems, such as

multidimensional knapsack (Chu & Beasley, [10]),

subset-sum (Spillman, [11]) and bin packing

(Falkenauer, [12]; Hussain & Sastry, [13]). Khuri et

al. [14] extended previous work for the single

constraint knapsack problem. A similar study was

given in Battiti and Tecchioli [15]. Chu and

Beasley gave the first successful implementation of

GA’s by restricting the genetic algorithms to search

only the feasible search space. Moreover, there are

recent studies for 0-1 KP where GA’s are used. For

example, Khan proposed a new algorithm which

uses masked mutation [16], while Zhao et. al. prefer

greedy strategy for their genetic algorithm [17]. In

the study of Neoh et. al. [18] genetic algorithm and

particle swarm optimization are combined to form a

new model to solve 0-1 knapsack problem.

3. A new genetic algorithm for KP

In our methodology, n items are represented by n

genes on a bit array that compactly stores the values

0 or 1. If ith element is 1, it means that item i is put

into the knapsack. When calculating fitness values

of items, coefficients of items whose values are 1 in

the bit array are summed. Roulette wheel method is

used for choosing parents; in this way it is provided

that strong individuals produce more children.

Crossover is applied in such a way that roulette

wheel is rotated on genes with the same index of

parents, that the dominant parent can transfer its

genes to the child. Mutation is applied for randomly

chosen 25% genes and this process is repeated for

the number of individuals.

The steps of the algorithm knapGA are as follows:

 [GA1] i ip w , values are calculated, then they

are sorted in descending order and index sequence

I is obtained.

 [GA2] n elements of the initial population are

established in a way that the item concerning the

current index is taken as long as it does not

exceed knapsack capacities starting with the ith

element (1  i  n) of index sequence I at each

step.

 [GA3] The coefficients of the objective

function, pi are sorted in descending order and the

first individual is stored as the record. Then, the

upper half of the population is transferred to the

next generation, without any change, due to

elitism.

 [GA4] To create the other half of the new

generation, roulette wheel method is used and

parents are chosen. Roulette wheel is rotated

again for all genes of the individual that is being

created. In this way, the probability that dominant

10

A. GULER/APJES IV-III (2016) 09-14

parent transfers its genes to the child is taken into

consideration.

 [GA5] Mutation is applied for randomly chosen

25% genes of the new generation, and new

individuals are created by checking the feasible

solution (not exceeding the capacity of the

knapsack).

 [GA6] Steps [GA3], [GA4] and [GA5] are

repeated until the iteration number is 10.

 [GA7] The record is written and the algorithm

ends.

Unlike the technique of the classical genetic

algorithm, initial population is not randomly

generated in this algorithm through step [GA2],

thus the solution space is scanned much more

efficiently. The flow chart of the algorithm knapGA

can be seen in Chart 1.

4. Computational experiments

Computational experiments have been carried out

by generating random problems for 1wi100 and

1pi100. In all instances, the capacity of the

knapsack is obtained by taking 25%, 50% and 75%

of total weight of the items. To find the optimal

solutions of the problems, a program written by

dynamic programming technique has been used;

running times are shown in Table 1, Table 2 and

Table 3. If the optimal solution of the problem

couldn’t be found by DP, GAMS IDE has been

used.

Table 1. Optimal values of the problem for 25%

 time (sec)

n c Optimum DP GA

100 1162 2982 0,000 0,000

200 2599 5518 0,000 0,015

300 4054 8035 0,015 0,031

400 5100 11428 0,015 0,046

500 5902 14135 0,031 0,078

600 7729 16778 0,046 0,140

700 8727 20573 0,062 0,171

800 10041 23190 0,078 0,234

900 11651 25773 0,109 0,296

1000 12333 29241 0,125 0,375

2000 24952 56522 0,546 1,484

3000 38777 86411 1,234 3,328

4000 50874 114753 2,171 5,906

5000 62744 146156 3,359 9,343

6000 75487 173990 4,812 13,515

7000 88562 200902 - 18,281

8000 101489 234443 - 24,156

9000 114276 258826 - 30,235

10000 125586 288929 - 37,484

 Chart 1. The flow chart of the algorithm knapG

11

A. GULER/APJES IV-III (2016) 09-14

Table 2. Optimal values of the problem for 50 %

 time (sec)

n c Optimum DP GA

100 2445 4100 0,000 0,000

200 5140 7927 0,000 0,015

300 7637 12570 0,015 0,031

400 10400 16483 0,046 0,062

500 12429 20662 0,078 0,078

600 15301 25026 0,109 0,125

700 17286 29281 0,141 0,187

800 19537 32588 0,171 0,234

900 22585 36155 0,218 0,312

1000 25110 40979 0,281 0,390

2000 50488 82305 1,109 1,562

3000 78109 121976 2,562 3,484

4000 100551 164034 4,406 6,218

5000 125911 203760 - 9,750

6000 150837 243720 - 14,031

7000 176637 283828 - 19,171

8000 202291 330285 - 25,078

9000 226887 367242 - 31,812

10000 251020 412150 - 39,250

Figure 1. Running times for DP

Fig. 1 and Fig. 2 show the running times for DP and

GA respectively. As is seen in Fig. 1, running times

obtained by DP change in proportion to the size of

parameter c, although n is taken the same.

Moreover, the dependence of computation time of

DP technique on the size of the problem is seen in

the memory usage as well; the problems in which

the value of n*c exceeds a particular number cannot

be solved. However, as is seen in Fig. 2, the

computation time of the GA is just dependent on

parameter n, and the memory usage of this

technique is much more efficient.

The properties of the computer that has been used

in computational experiments are Intel CORE 2

CPU (2.8 GHz) and 3 GB RAM, besides all

problems and source codes are available in the

addresshttp://kisi.deu.edu.tr/murat.berberler/knap01

GA/.

Table 3. Optimal values of the problem for 75%

 time (sec)

n c Optimum DP GA

100 3877 4795 0,000 0,000

200 7896 10134 0,015 0,015

300 11274 14843 0,046 0,031

400 14786 19446 0,062 0,062

500 19394 23389 0,109 0,093

600 21383 28490 0,140 0,125

700 26796 33434 0,203 0,187

800 30532 38319 0,281 0,250

900 33624 42881 0,328 0,328

1000 37393 48126 0,421 0,406

2000 75646 95647 1,671 1,578

3000 116490 143361 3,844 3,546

4000 148290 190228 - 6,328

5000 189026 243225 - 9,984

6000 227118 283215 - 14,343

7000 266520 336159 - 19,671

12

http://kisi.deu.edu.tr/murat.berberler/knap01GA/
http://kisi.deu.edu.tr/murat.berberler/knap01GA/

A. GULER/APJES IV-III (2016) 09-14

Figure 2. Running times for GA

5. Conclusion

In this paper, the 0-1 Knapsack Problem (KP)

which occurs in many different applications such as

capital budgeting, cargo loading, project selection

and which is an NP-hard problem has been studied.

A new genetic algorithm to solve the KP has been

proposed. Unlike the technique of the classical

genetic algorithm, initial population is not

randomly generated in the proposed algorithm, thus

the solution space is scanned more efficiently. The

algorithm is written in C programming language

and is tested on randomly generated instances. It is

seen that it yields optimal solutions for all

instances. The computation time of the GA is

dependent on parameter n, while running times

obtained by DP change in proportion to the size of

parameter c, although n is taken the same.

Furthermore, the memory usage of this technique is

much more efficient.

References

[1] Kellerer H., Pferschy U., Pisinger D., Knapsack

Problems, (Springer, Berlin, 2004).

[2] Garey M. R. and Johnson D. S., Computers and

Intractability: A Guide to the Theory of NP-

Completeness, (Freeman, San Francisco, 1979).

[3] Sahni, S., Approximate algorithms for the 0/1

knapsack problems, Journal of ACM, 1, 115-124

(1975).

[4] Ibarra, O. H and Kim, C. E., Fast approximation

algorithms for the knapsack and sum of subset

problems, Journal of ACM, 22(4), 463-468 (1975).

[5] Martello, S. and Toth, P., Knapsack Problems,

(John Wiley&Sons, England, 1990).

[6] Horowitz E., Sahni, S. and Rajasekaran, S.,

Computer algorithms, (New York: Computer

Science Press, W.H. Freeman & Co., 1994).

[7] Berberler M.E., Nuriyev U.G., A new heuristic

algorithm for the one-dimensional cutting stock

problem, Applied and Computational Mathematics,

Vol. 9, No. 1, 19-30, (2010).

[8] Goldberg, D.E., Genetic Algorithms in Search,

Optimization and Machine Learning, (Addison–

Wesley, 1989).

[9] Chu, P., A Genetic Algorithm Approach for

Combinatorial Optimization Problems, Ph.D. thesis

at the Management School, Imperial College of

Science, London, (1997).

[10] Chu, P., and Beasley, J., A genetic

algorithm for the multidimensional knapsack

problem. Journal of Heuristics, 4, 63–86 (1998).

[11] Spillman, R., Solving large knapsack

problems with a genetic algorithm. Proceedings of

IEEE International Conference Systems, Man, and

Cybernetics, Vancouver, Canada. Piscataway, NJ:

IEEE, 632– 637 (1995).

[12] Falkenauer, E., A hybrid grouping genetic

algorithm for bin packing. Journal of Heuristics, 2,

5–30 (1996).

[13] Hussain, S. A., and Sastry, V. U. K.,

Application of genetic algorithm for bin packing,

International Journal of Computer Mathematics, 63,

203–214 (1997).

[14] Khuri, S., Back, T., Heitkotter, J.: The

zero/one multiple knapsack problem and genetic

algorithms. In: Deaton, E., et al. (eds.) Proc. of the

1994 ACM symposium of Applied Computation,

ACM Press, New York 188–193 (1994).

[15] Battiti, R., Tecchiolli, G., Parallel biased

search for combinatorial optimization: Genetic

algorithms and tabu search, Microprocessors and

Microsystems, 16, 351–367 (1992).

13

A. GULER/APJES IV-III (2016) 09-14

[16] Khan M. H. A., An Evolutionary

Algorithm with Masked Mutation for 0/1 Knapsack

Problem, Proceedings of Informatics, Electronics &

Vision (ICIEV), 2013 International Conference on,

IEEE, 1-6 (2013).

[17] Zhao J., Pang F., Huang T. and Liu Y.,

Genetic algorithm based on Greedy strategy in the

0-1 Knapsack Problem, Proceedings of Third

International Conference on Genetic and

Evolutionary Computing, IEEE, 105-107 (2009).

[18] Neoh S. C., Morad N., Lim C. P. and Aziz

Z. A., A GA-PSO layered encoding evolutionary

approach to 0/1 knapsack optimization,

International journal of innovative computing,

information and control 6 (8) 3489-3505 (2010).

14

