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Abstract 

 

In this paper, the 0-1 Knapsack Problem (KP) which occurs in many different applications is studied and a new 

genetic algorithm to solve the KP is proposed. In our methodology, n items are represented by n genes on a bit 

array that compactly stores the values 0 or 1. When calculating fitness values of items, coefficients of items 

whose values are 1 in the bit array are summed. Roulette wheel method is used for choosing parents; in this way 

it is provided that strong individuals produce more children. Crossover is applied in such a way that roulette 

wheel is rotated on genes with the same index of parents, that the dominant parent can transfer its genes to the 

child. Mutation is applied for randomly chosen 25% genes and this process is repeated for the number of 

individuals. The algorithm is written in C programming language and is tested on randomly generated instances. 

In order to find the optimal solutions of these problems, a program that has been written by dynamic 

programming technique is used. It is seen that the algorithm yields optimal solutions for all instances. 

 

Keywords: One-dimensional 0-1 knapsack problem, Genetic algorithm, Heuristic approach, Dynamic 

programming. 

 

1. Introduction 

 

Knapsack problems have been intensively studied 

recently due to its simple structure and the more 

complex problems can be solved through knapsack 

problems. The problems such as capital budgeting, 

cargo loading and project selection problem can be 

modeled by knapsack problems [1]. The Knapsack 

Problem (KP) is a well-studied, NP-complete 

combinatorial optimization problem occurring in 

many different applications. The KP cannot be 

solved in linear amount of time however its solution 

can be verified in linear time [2]. 

 

The problem has been intensively studied in the last 

20 years both because of its theoretical interest and 

its wide practical applicability in operations 

research, computer science, engineering and 

management science. Because of the increasing 

number of the potential applications, numerous 

algorithms have been developed to solve the KP 

especially for large problem sizes. 

 

Several faster algorithms have been produced 

which provide good solutions and approximate 

solutions. For example, Sahni [3] introduced 

approximation algorithms to 0-1 KP. Ibarra and 

Kim [4] developed a fully polynomial 

approximation scheme for the KP. Martello and 

Toth [5] designed a quite effective algorithm for 

large-size problems, which is based on the use of a 

greedy algorithm for solving large KP. Horowitz et 

al. [6] also presented a very simple algorithm 

solving the KP using a greedy method. 

 

Also knapsack problem is a sub problem of one-

dimensional cutting stock problem [7]. Therefore, 

KP is also a very important problem for operations 

research. This paper aims to solve the problems 

with large sizes in minimum amount of time with 

near-optimal values. 

 

The KP can be stated as follows: 

Given a set of items (i = 1, . . . , n), each with a 

weight 0iw   and a profit 0ip  , the aim is to 

determine the number of each item to include in a 

collection so that the total weight is less than a 

given limit and the total profit is as large as 

possible. 

 

The problem can be defined by the following 

integer linear programming: 
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Here, 

ip :  profit of item i, 

iw  : weight of item i, 

c  :  capacity of the knapsack, 
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1,       if item    is selected,
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It is assumed, without loss of generality, that
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2. Genetic algorithms 

 

Genetic Algorithms (GA), which find application in 

bioinformatics, phylogenetics, computational 

science, engineering, economics, chemistry, 

manufacturing, mathematics, physics, 

pharmacometrics and other fields are search 

algorithms based on natural selection and genetics. 

These algorithms belong to the larger class of 

evolutionary algorithms (EA) that generate 

solutions to optimization problems using techniques 

inspired by natural evolution, such as inheritance, 

mutation, selection, and crossover. It can be said 

that the strongest individuals in a population will 

have a better chance to transfer their genes to the 

next generation [8]. 

 

In a genetic algorithm, a population of candidate 

solutions to an optimization problem is evolved 

toward better solutions. Each candidate solution has 

a set of properties which can be mutated and 

altered; traditionally, solutions are represented in 

binary as strings of 0s and 1s, but other encodings 

are also possible. 

 

The evolution usually starts from a population of 

randomly generated individuals and happens in 

generations. In each generation, the fitness of every 

individual in the population is evaluated, the more 

fit individuals are stochastically selected from the 

current population, and each individual's genome is 

modified (recombined and possibly randomly 

mutated) to form a new population. The new 

population is then used in the next iteration of the 

algorithm. Commonly, the algorithm terminates 

when either a maximum number of generations has 

been produced, or a satisfactory fitness level has 

been reached for the population [9]. 

 

The reproduction can be done in three ways: 

 Pure Reproduction - The individual is copied 

directly into the next generation. 

 Crossover - Two individuals are selected and 

their genes are crossed at some point, as the first 

part of the new individual comes from one 

parent and the last part from the other. 

 Mutation - An individual is selected, and one bit 

is changed. 

The genetic algorithm approach has been found 

quite effective in obtaining the solution of a large 

variety of complex optimization problems, such as 

multidimensional knapsack (Chu & Beasley, [10]), 

subset-sum (Spillman, [11]) and bin packing 

(Falkenauer, [12]; Hussain & Sastry, [13]). Khuri et 

al. [14] extended previous work for the single 

constraint knapsack problem. A similar study was 

given in Battiti and Tecchioli [15]. Chu and 

Beasley gave the first successful implementation of 

GA’s by restricting the genetic algorithms to search 

only the feasible search space. Moreover, there are 

recent studies for 0-1 KP where GA’s are used. For 

example, Khan proposed a new algorithm which 

uses masked mutation [16], while Zhao et. al. prefer 

greedy strategy for their genetic algorithm [17]. In 

the study of Neoh et. al. [18] genetic algorithm and 

particle swarm optimization are combined to form a 

new model to solve 0-1 knapsack problem. 

 

3. A new genetic algorithm for KP 

 

In our methodology, n items are represented by n 

genes on a bit array that compactly stores the values 

0 or 1. If ith element is 1, it means that item i is put 

into the knapsack. When calculating fitness values 

of items, coefficients of items whose values are 1 in 

the bit array are summed. Roulette wheel method is 

used for choosing parents; in this way it is provided 

that strong individuals produce more children.  

 

Crossover is applied in such a way that roulette 

wheel is rotated on genes with the same index of 

parents, that the dominant parent can transfer its 

genes to the child. Mutation is applied for randomly 

chosen 25% genes and this process is repeated for 

the number of individuals. 

 

The steps of the algorithm knapGA are as follows: 

 [GA1] i ip w , values are calculated, then they 

are sorted in descending order and index sequence 

I is obtained. 

 [GA2] n elements of the initial population are 

established in a way that the item concerning the 

current index is taken as long as it does not 

exceed knapsack capacities starting with the ith 

element (1  i  n) of index sequence I at each 

step. 

 [GA3] The coefficients of the objective 

function, pi are sorted in descending order and the 

first individual is stored as the record. Then, the 

upper half of the population is transferred to the 

next generation, without any change, due to 

elitism. 

 [GA4] To create the other half of the new 

generation, roulette wheel method is used and 

parents are chosen. Roulette wheel is rotated 

again for all genes of the individual that is being 

created. In this way, the probability that dominant 
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parent transfers its genes to the child is taken into 

consideration. 

 [GA5] Mutation is applied for randomly chosen 

25% genes of the new generation, and new 

individuals are created by checking the feasible 

solution (not exceeding the capacity of the 

knapsack). 

 [GA6] Steps [GA3], [GA4] and [GA5] are 

repeated until the iteration number is 10. 

 [GA7] The record is written and the algorithm 

ends. 

Unlike the technique of the classical genetic 

algorithm, initial population is not randomly 

generated in this algorithm through step [GA2], 

thus the solution space is scanned much more 

efficiently. The flow chart of the algorithm knapGA 

can be seen in Chart 1. 

 

4. Computational experiments 

 

Computational experiments have been carried out 

by generating random problems for 1wi100 and 

1pi100. In all instances, the capacity of the 

knapsack is obtained by taking 25%, 50% and 75% 

of total weight of the items. To find the optimal 

solutions of the problems, a program written by 

dynamic programming technique has been used; 

running times are shown in Table 1, Table 2 and 

Table 3. If the optimal solution of the problem 

couldn’t be found by DP, GAMS IDE has been 

used. 

 

Table 1. Optimal values of the problem for 25% 

     time (sec) 

n c Optimum DP GA 

100 1162 2982 0,000 0,000 

200 2599 5518 0,000 0,015 

300 4054 8035 0,015 0,031 

400 5100 11428 0,015 0,046 

500 5902 14135 0,031 0,078 

600 7729 16778 0,046 0,140 

700 8727 20573 0,062 0,171 

800 10041 23190 0,078 0,234 

900 11651 25773 0,109 0,296 

1000 12333 29241 0,125 0,375 

2000 24952 56522 0,546 1,484 

3000 38777 86411 1,234 3,328 

4000 50874 114753 2,171 5,906 

5000 62744 146156 3,359 9,343 

6000 75487 173990 4,812 13,515 

7000 88562 200902  - 18,281 

8000 101489 234443  - 24,156 

9000 114276 258826  - 30,235 

10000 125586 288929  - 37,484 

 Chart 1. The flow chart of the algorithm knapG 
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Table 2. Optimal values of the problem for 50 %  

     time (sec) 

n c Optimum DP GA 

100 2445 4100 0,000 0,000 

200 5140 7927 0,000 0,015 

300 7637 12570 0,015 0,031 

400 10400 16483 0,046 0,062 

500 12429 20662 0,078 0,078 

600 15301 25026 0,109 0,125 

700 17286 29281 0,141 0,187 

800 19537 32588 0,171 0,234 

900 22585 36155 0,218 0,312 

1000 25110 40979 0,281 0,390 

2000 50488 82305 1,109 1,562 

3000 78109 121976 2,562 3,484 

4000 100551 164034 4,406 6,218 

5000 125911 203760  - 9,750 

6000 150837 243720  - 14,031 

7000 176637 283828  - 19,171 

8000 202291 330285  - 25,078 

9000 226887 367242  - 31,812 

10000 251020 412150  - 39,250 

 

 

 

 

  
Figure 1. Running times for DP 

 

Fig. 1 and Fig. 2 show the running times for DP and 

GA respectively. As is seen in Fig. 1, running times 

obtained by DP change in proportion to the size of 

parameter c, although n is taken the same. 

Moreover, the dependence of computation time of 

DP technique on the size of the problem is seen in 

the memory usage as well; the problems in which 

the value of n*c exceeds a particular number cannot 

be solved. However, as is seen in Fig. 2, the 

computation time of the GA is just dependent on 

parameter n, and the memory usage of this 

technique is much more efficient. 

 

The properties of the computer that has been used 

in computational experiments are Intel CORE 2 

CPU (2.8 GHz) and 3 GB RAM, besides all 

problems and source codes are available in the 

addresshttp://kisi.deu.edu.tr/murat.berberler/knap01

GA/. 

Table 3. Optimal values of the problem for 75% 

   time (sec) 

n c Optimum DP GA 

100 3877 4795 0,000 0,000 

200 7896 10134 0,015 0,015 

300 11274 14843 0,046 0,031 

400 14786 19446 0,062 0,062 

500 19394 23389 0,109 0,093 

600 21383 28490 0,140 0,125 

700 26796 33434 0,203 0,187 

800 30532 38319 0,281 0,250 

900 33624 42881 0,328 0,328 

1000 37393 48126 0,421 0,406 

2000 75646 95647 1,671 1,578 

3000 116490 143361 3,844 3,546 

4000 148290 190228  - 6,328 

5000 189026 243225  - 9,984 

6000 227118 283215  - 14,343 

7000 266520 336159  - 19,671 
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Figure 2. Running times for GA 

 

5. Conclusion 

 

In this paper, the 0-1 Knapsack Problem (KP) 

which occurs in many different applications such as 

capital budgeting, cargo loading, project selection 

and which is an NP-hard problem has been studied. 

A new genetic algorithm to solve the KP has been 

proposed. Unlike the technique of the classical 

genetic algorithm, initial population is not 

randomly generated in the proposed algorithm, thus 

the solution space is scanned more efficiently. The 

algorithm is written in C programming language 

and is tested on randomly generated instances. It is 

seen that it yields optimal solutions for all 

instances. The computation time of the GA is 

dependent on parameter n, while running times 

obtained by DP change in proportion to the size of 

parameter c, although n is taken the same. 

Furthermore, the memory usage of this technique is 

much more efficient. 
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