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Abstract – This paper presents a methodology to design a phase-lead and phase-

lag controllers for a fractional order system with time-delay and parameter 

uncertainty. The method that was used in the study is a classic design method 

used by D. P. Atherton. The method has been shown to be successful by adding 

time-delay and parameter uncertainty to this classic design method. The 

controllers are obtained by the implementation of individual design steps for the 

phase-lead and phase-lag controller. The unit-step responses and Bode diagrams 

of the systems with controllers are plotted. Considering the results obtained, it is 

observed that the method gave successful results for a fractional order plant with 

time-delay and parameter uncertainty. 
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1. Introduction 
 

Controller design has an important place in the field of control engineering. The type of 

controller to be selected is important for achieving the desired design criteria. In practice, 

simple and low-degree controller structures are preferred most of the time. Among these 

controller structures, proportional-gain (P), proportional-integral (PI), proportional-

derivative (PD), proportional-integral-derivative (PID), phase-lead and phase-lag 

controllers are preferred the most [1,2]. 

 

The fractional order calculations has gained great importance in control engineering with 

the increase in use of fractional order mathematics recently. In the literature, there are 

numerous scientific studies conducted on the controller design for the fractional order 

control systems [3-8].  The fractional order systems and fractional controller structures are 
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started to be used in dynamic systems since the midst of the 20th century [9]. One of the 

areas of use is to perform a controller design for a fractional order system that contains 

time delay and parameter uncertainty. In this study, phase-lead and phase-lag controllers 

are used. Phase-lead controller leads to a lower overshoot in the time response of the 

system, but it shortens parameters such as rise time and settling time. It increases the gain 

crossover-frequency and bandwidth of the phase-lead controller system. This ensures 

acceleration of the system response. The most important feature of the phase-lag controllers 

is their ability of achieving decent phase-lag at high frequencies. This controller structure 

decreases percent overshoot through the reduced bandwidth, but extends the rise and 

settling times and this causes system to respond slowly [1-2,10-11].  

 

Figure 1 shows the block diagram of the simplest control system with feedback. 

 

 
 

Figure 1. Simple feedback control system 

 

In Figure 1, Gp(s) is the transfer function of the system to be controlled, Gc(s) is the 

transfer function of the controller, R(s) is the system input, and Y(s) is the output of the 

system. When the transfer functions in Figure 1 are of fractional order, then the control 

system is called as fractional order control system.  

 

The controller structure used in the study is as in Equation 1.  
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The 𝛼 and 𝑇 parameters to be determined in Equation 1 are obtained by following the 

design steps given in Section 3, which are different for each controller.  

 

The plant used in the study for the application is given by Equation 2.   
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In Equation 2, 
ia (i 0,..,n)  and 

ib (i 0,..,m)  are the constant terms, 
k (k 0,..,n) and 

k (k 0,..,m) indicate the fractional orders. Here, if 𝑎𝑖 ∈ [𝑎𝑖, 𝑎𝑖] and 𝑏𝑗 ∈ [𝑏𝑗, 𝑏𝑗], 𝑖 =

0, 1, 2, … , 𝑛, 𝑗 = 0, 1, 2, … , 𝑚 then there is parameter uncertainty [11]. 

 

For the plant given in Equation 2, Bode diagrams are created. 𝛼 and 𝑇 parameters to be 

determined are obtained by applying the design steps to the transfer function that has the 

smallest phase margin in these Bode diagrams. Thus, the controller design is completed in 

this way. The Bode diagrams and unit-step responses of the outputs of both the 

uncontrolled system and system with controllers are created for each controller. Thus, the 

success of the method used to design controller has been seen from the results obtained.  
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This paper consists of five sections. The first section is the introduction, and the importance 

of controllers as well as the structures of phase-lead and phase-lag controllers are discussed 

in this section briefly. In the second section, fractional order systems with time-delay 

parameter uncertainty are addressed. In the third section, phase-lead and phase-lag 

controllers design methods are described. In the fourth section, the method presented in the 

third section is implemented. The results are presented in the fifth section. 

 

 

2. Fractional Order Systems Containing Time-Delay and Uncertainty 
 

Fractional order calculations is a field of mathematics, and is related to non-integer 

derivatives and integrals [12]. The fractional order math has a history of three hundred 

years. The fractional order mathematics has been discussed in the correspondence between 

Leibniz and L'Hospital in 1695. Later, the first studies were conducted by Liouville, 

Riemann and Holmgren. Its applications in the field of control engineering has a history of 

fifty years [13,14]. The position control was realized first time in 1958 by Tustin [9]. In 

1961 and 1963, Manabe [15, 16] has applied the fractional order integrator in the control 

systems. At first, there are limited number of applications because of the computational 

difficulties. In parallel with developments in computer technology, studies in recent years 

has increased rapidly. In the last two decades, the fractional order calculations have been 

rediscovered by scientists and engineers, and applied gradually in many areas [12].  

 

Time-delay and uncertainty is encountered in real systems frequently. Therefore, the 

modeling of systems with parameter uncertainty and time-delay is of importance [17]. 

Therefore, control of systems with time delay and parameter uncertainty is also important. 

In addition, fractional order control system enables to get more realistic results. Expressing 

real systems with fractional order models instead of integer order model is known to give 

more realistic results [10].  

 

There are two important definitions that are used for fractional order derivatives and 

fractional order integrals. These definitions are in the form of Grünwald-Letnikov and 

Riemann-Liouville. The Fractional Order Control System (FOCS) can be expressed as in 

Equation 3 [18].  

 
1 0 1 0

1 0 1 0D y(t) D y(t) ... D y(t) D r(t) D r(t) ... D r(t)n n m m

n n m ma a a b b b
      

          (3) 

 

Laplace transformations of the Riemann-Liouville's fractional order integral and derivative 

are given in Equation 4 and Equation 5 [18]. In Equation 3, r(t)  is the input signal, y(t)  is 

the output signal, 
0 tD D   is the fractional order derivative, 

ka (k 0,..,n)  and 
kb

(k 0,..,m)  are the constants, 
k (k 0,..,n)  and 

k (k 0,..,m)  are the fractional orders. 
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Equation 3 and Equation 4 are used in order to obtain the Laplace transformation of 

Equation 3. Thus, the Laplace transformation of Equation 3 can be found as in Equation 6 

[18,19]. 
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The transfer function to be used in the application is obtained by adding the exponential 

function, which implies a time delay, to Equation 6. In Equation 6, 
ia (i 0,..,n)  and 

ib

(i 0,..,m)  indicate the constant terms, 
k (k 0,..,n)  and 

k (k 0,..,m)  show the 

fractional orders. This equation has parameter uncertainty if 𝑎𝑖 ∈ [𝑎𝑖 , 𝑎𝑖] and 𝑏𝑗 ∈ [𝑏𝑗, 𝑏𝑗] 

𝑖 = 0, 1, 2, … , 𝑛 , 𝑗 = 0, 1, 2, … , 𝑚 [11]. 

 

 

3. Phase-Lead and Phase-Lag Controller Design 
 

The phase-lead and phase-lag controllers are often preferred in the design of control 

systems. It is mainly preferred for its small number of parameters that need to be set. They 

give successful results with the calculation and adjustment of two or three parameters. In 

addition, the simplicity of their control structure, and wide range of application areas make 

them preferable. Although the phase-lead and phase-lag controllers are similar to each 

other in terms of general structure, they are different in terms of placement of the zeros and 

poles [10].   

 

Phase-lead controller adds a zero and a pole to the forward-path transfer function of the 

system. As a result of this, the response time of the system showed lower percent 

overshoot. The time parameters such as rise time and settling time become shorter. In 

addition, gain-phase margin of the closed-loop system increases, and the relative stability 

of the system improves. It increases the gain crossover-frequency and bandwidth of the 

phase-lead controller system. This ensures acceleration of the system response [1,10].   

 

The most important feature of the phase-lag controllers is their ability of achieving decent 

phase-lag at high frequencies. In these controller structures, the bandwidth of the system is 

reduced by shifting gain crossover-frequency to lower frequencies. The reduced bandwidth 

decreases percent overshoot, but extends the rise and settling times. And, this causes 

system to respond slowly [1,10].  

 

In this section, a methodology for phase-lead and phase-lag controller design is utilized. 

The method used is a classic design method developed by D. P. Atherton [20]. In this 

paper, the method is applied to a fractional order system with time delay and parameter 

uncertainty.  

 

3.1. Phase-Lead Controller Design 

 

The phase-lead controller is designed by following the design steps below.  
1. The phase margin (𝜙) of the system to be controlled is found using the Bode 

diagram by selecting the transfer function with the minimum phase margin.  
2. A small amount of the safety angle (𝜀) is chosen. The safety angle is preferred 

between 5º and 18º approximately.  
3. The phase margin of the system is obtained by Equation 7. Here, the 𝜑 angle is 

taken as the phase margin of the desired system.  
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  m                (7) 

 

4. The 𝛼 parameter is calculated by using Equation 8.   
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5.  parameter's corresponding gain margin is obtained by using the Equation 9.  
 

1020logmG        (9)  

 

6. Using the Bode diagram, the frequency value ( m ) that corresponds to the gain 

margin is read. 
7. In the last step, the Equation 10 is used for calculating the parameter 𝑇.  
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The 𝛼 and 𝑇 parameters are determined by following the design steps above. The phase-

lead controller is obtained by putting the 𝛼 and 𝑇 parameters in the Equation 11. If the time 

response parameters desired for the closed-loop control system were not found, then the 

steps are repeated with a different 𝜀 value [20-22]. 
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3.2. Phase-Lag Controller Design 

 

The design steps for the phase-lag controller design is as follows. 
1. The phase margin of the given transfer function G(s) is calculated by the 

Equation 12 using the transfer function with the minimum phase margin.  In this 
equation, 𝜑 indicates the phase margin of the system, and 𝛿  indicates 
approximately 4º-5º of safety angle. The parameter 𝛿  is expressed as in 
Equation 13.  
 

   180argG j             (12)  
 

1 1tan 10 tan 10        (13)  

 
2. Using the Bode diagram of G(s), the frequency value that corresponds to gain 

margin, calculated in the 1st step, is read. 
3. Using the Bode diagram, the frequency value that corresponds to this gain 

margin is found.  
4. The phase margin and gain margin values found in the second and third steps are 

put in the Equation 14 to calculate the 𝛼 and 𝑇 values. 

 

10
T


              (14)  

    1020logGain dB G j                     (15)  
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5. This completes the phase-lag controller design. If it fails to give the desired 
output values, then the steps are repeated with a different 𝛿 value [20-22].  

 

 

4. Implementation of the Method 
 

Example 1. We assume a fractional order system with time-delay and parameter 

uncertainty as given below. The aim is to perform phase-lead and phase-lag controller 

design for fractional order system with time-delay and parameter uncertainty, which are 

frequently encountered in real systems.  
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Here, 𝑎1 ∈ [0.8, 1.2] and 𝑎0 ∈ [1.8, 2.2]. There are 2 uncertain parameters in this transfer 

function. Here, 3 values were taken as the lower limit, upper limit, and middle value for 

each coefficient having parameter uncertainty. Therefore, for the 𝐺𝑝(𝑠)  transfer function, 

there are 32 = 9 vertex polynomials. The Bode diagrams obtained for different vertex 

polynomials are shown in Figure 2.  

 

 
Figure 2. Bode diagrams for fractional order transfer function given in Equation 16 

 

For this application, the transfer function with the least phase margin was chosen. The 

selected transfer function is given in Equation 17. The 𝛼 and 𝑇 parameters were calculated 

to be 0.23 and 1.38, respectively, by applying the design steps given in the third section to 

the transfer function selected. For the application, the selected phase margin (𝜙) was 40°, 

and the safety angle was 17.4°. The phase-lead controller was designed as in Equation 18.  
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The unit-step response in Figure 3 is obtained by applying the phase-lead controller 

obtained to Equation 17. Figure 3 shows that percent overshoot value of the controller 

system decreases. In addition, it is remarkable that settling time and rise time parameters of 

the controller system has shortened. 

 

 
Figure 3. Step responses for Plant and Lead Controller applied system  

 

 

 
Figure 4. Step responses for Plant and Lag Controller applied system 

 

The  𝛼 and 𝑇 parameters were calculated as 2.63 and 21.3, respectively, by following the 

design steps for the phase-lag controller design. Here, the transfer function in Equation 17 

is used. For the phase-lag controller design, the phase margin (𝜑) of the system was chosen 

as 40°, and the safety angle denoted by 𝛿 parameter was chosen as 4°. The phase-lag 

controller is obtained as in Equation 19.  
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The unit-step response in Figure 4 is obtained by applying the phase-lag controller to the 

system. Figure 4 shows that percent overshoot value of the controller system is about 25%. 

In addition, it is seen that the time parameters of the phase-lag controller system becomes 

longer.  

 

Figure 5 shows the Bode diagrams of the open-loop transfer functions of the systems with 

and without a phase-lead controller. The system in the Equation 17 and the controller in the 

Equation 18 was used in obtaining Figure 5. As shown in the graph, the gain crossover-

frequency of the system was shifted from 0.94 rad/sec to 1.5 rad/sec. Similarly, the phase 

crossover-frequency was increased from 1.33 rad/sec to 2.26 rad/sec. Although the gain is 

the same, there is approximately 13° increase in phase. 

 

 
Figure 5. Bode diagrams for Plant and Lead Controller applied system 

 

 

 
Figure 6. Bode diagrams for Plant and Lag Controller applied system 
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Figure 6 shows the Bode diagrams of the systems with and without a phase-lag controller. 

The system in the Equation 17 and the controller in the Equation 19 were used in obtaining 

Figure 6. As shown in Figure 6, the gain crossover-frequency of the system without 

controller is 0.94 rad/sec, whereas the gain crossover-frequency of the system with phase-

lag controller is found to be shifted to 0.47 rad/sec. It is observed that the phase crossover-

frequency remains the same. It is observed that there is an 8.5 dB of increase in gain. 

Approximately 4º change is observed in phase.  

 

Figure 7 and 8 show the unit-step responses of the systems controlled by phase-lead and 

phase-lag controllers respectively. Figure 7 and 8 also show that the controllers designed 

for a transfer function having minimum phase margin control other transfer functions as 

well. 

 

 
Figure 7. Step responses for Lead Controller applied system 

 

 

 
Figure 8. Step responses for Lag Controller applied system 
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Example 2. For this example, a transfer function as in Equation 20 was chosen. Although 

the number of uncertain parameters was 2 in the transfer function given in Equation 16, 

there are 3 coefficients with parameter uncertainty in the transfer function in this example. 
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These coefficients are given as 𝑏0 ∈ [1.3, 1.7] , 𝑎1 ∈ [1, 1.4] and 𝑎0 ∈ [1.6, 2]. Minimum, 

maximum and middle-point values are taken for each coefficient to obtain 27 transfer 

functions in total. The Bode diagrams obtained for different transfer functions are shown in 

Figure 9.  

 

 
Figure 9. Bode diagrams for fractional order transfer function given in Equation 20  

 

For the phase-lead controller design, the transfer function with the least phase margin was 

chosen. The selected transfer function is given in Equation 21. The 𝛼 and 𝑇 parameters 

were calculated as 0.244 and 1.5, respectively, by applying the design steps to the transfer 

function in Equation 21. The phase-lead controller was designed as in Equation 22.    
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The unit-step response in Figure 10 is obtained by applying designed controller to Equation 

21. Figure 10 shows that a graph very close to the unit-step response in the Example 1 was 

obtained.  
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Figure 10. Step responses for Plant and Lead Controller applied system 

 

The  𝛼 and 𝑇 parameters were calculated as 2.16 and 20.55, respectively, by following the 

design steps for the phase-lag controller design. Here, the design was made by using the 

transfer function in Equation 21. The phase-lag controller is obtained as in Equation 23.  
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The unit-step response in Figure 11 is obtained by applying the phase-lag controller to the 

system. Figure 11 shows that percent overshoot value of the controller system is about 

30%. 

 

 
Figure 11. Step responses for Plant and Lag Controller applied system 

 
Figure 12 and 13 show the unit-step responses of the systems controlled by phase-lead and 

phase-lag controllers respectively. 
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Figure 12. Step responses for Lead Controller applied system 

 

 

 
Figure 13. Step responses for Lag Controller applied system 

 

 

The Bode diagrams used for the application of the method and the figures showing the 

unit-step responses were obtained using FOTF Matlab Toolbox [22,23].   

 
The first version of this paper was presented in the symposium EEB2016 [24]. 

 

5. Conclusions 
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order systems that have time delay and parameter uncertainty. The method that was used in 

the study is a design method used by D. P. Atherton [20]. This methodology has been 

applied to fractional order systems with time delay and parameter uncertainty, and 

successful results have been obtained.  
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The two parameters of the phase-lead and phase-lag controller,  𝛼 and 𝑇 were determined 

by applying the design steps for the fractional order controller systems that have time delay 

and parameter uncertainty. In the unit-step response of a system controlled with a phase-

lead controller, the percent overshoot value was found to be decreased as well as shortened 

time parameters and improved response time of the system. In addition, gain crossover-

frequency and bandwidth were observed to be increased as seen in the Bode diagrams of 

the system controlled by a phase-lead controller. This ensures acceleration of the system 

response. It increased the gain crossover-frequency and bandwidth of the phase-lag 

controller system. The reduced bandwidth has extended the rise and settling times. It was 

observed that this causes slower system response.  

 

As one of the most fundamental issues of control systems, this controller design study was 

successfully applied in a fractional order controller system with time-delay and parameter 

uncertainty.  
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