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Abstract
We show that the λ-semidirect product M oλ W of a left P -Ehresmann semigroup M
and a left restriction semigroup W is a left P -Ehresmann semigroup. We explore the
behavior of generalized Green’s relations on M oλ W , and investigate some properties
of M oλ W . Then the Zappa-Szép product of a right Ehresmann semigroup and its
distinguished semilattice is studied. An example of Zappa-Szép product in the context of
right Ehresmann semigroups is also given.
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1. Introduction
Left restriction semigroups are non-regular semigroups and are generalizations of inverse

semigroups. These semigroups arise very naturally from partial transformation monoids
in the same way that inverse semigroups arise from symmetric inverse monoids. For
any set X, the partial transformation monoid PTX becomes left restriction semigroup
under the unary operation β 7→ Idom β. Left restriction semigroups are precisely the
(2, 1)-subalgebras of some PTX . These semigroups were termed as weakly left E-ample
semigroups—the (former) York terminology. Since the 1960s, left restriction semigroups
transpired with various names and from diverse points of view in literature. For the
first time in 1973, these semigroups arose in their own right in Trokhimenko’s paper [26].
Also, they were studied in the setting of type SL2 γ-semigroups in [1, 2]. Left restriction
semigroups were also studied as the idempotent connected Ehresmann semigroups in [23].
Later, they occurred in [19] as (left) twisted C-semigroups. In [24], they were studied as
guarded semigroups which appeared from the restriction categories in [6]. Covering results
for restriction semigroups can be found in [7, 10, 12, 13]. New development in the theory
of restriction semigroups implies that these semigroups are a subject of fruitful research.
For the history and more exposition of (left) restriction semigroups, we suggest [14,17].

Semidirect products and their generalization Zapp-Szép products are now believed to be
momentous tools, which were employed to decompose semigroups. For semidirect product,
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see, e.g., [16]. In [27], Zappa introduced Zappa-Szép products which were developed in the
setting of groups in [25]. Kunze [21] and Brin [5] applied them to more general structures.
The author of [21] studied the characterization of R, L, called the Green’s relations, on
Zappa-Szép products of semigroups which involve actions of two semigroups on each other.
Zenab [28] studied the behavior of generalized Green’s relations R∗, L∗, R̃E , L̃E on Zappa-
Szép products of semigroups and monoids. Moreover, for a left restriction semigroup T
with semilattice (a semigroup of idempotents in which every two elements commute) of
projections E, the Zappa-Szép product E ./ T is obtained (see [28, Lemma 3.1]). Also,
E ./ T is not left restriction but there exists a left restriction subsemigroup of E ./ T .

Now we render a succinct background of λ-semidirect products. If A1 and A2 are inverse
semigroups, then the semidirect product of A1 and A2 may not be an inverse semigroup in
general. In [4], by altering the definition of foregoing semidirect product, Billhardt proved
that the λ-semidirect product of A1 and A2 is an inverse semigroup. Then Billhardt
extended his own result to the case where first component, a semilattice, and second
component, a left ample semigroup [3]. The λ-semidirect product of semilattice S and
weakly left ample semigroup T (a left restriction semigroup T with set of idempotents of
T as the semilattice of projections) was calculated in [11]. Recently, in [16], Gould and
Zenab considered the case in which both components are left restriction semigroups—if
R1 and R2 are left restriction semigroups, then the λ-semidirect product of R1 and R2 is
a left restriction semigroup.

Now we explain how to structure the rest of the paper. The next section is furnished
with basic definitions and related facts. In Section 3, we generalize the result of Gould
and Zenab [16] by proving that the λ-semidirect product M oλ W of a left P -Ehresmann
semigroup M and a left restriction semigroup W is a left P -Ehresmann semigroup. We also
characterize generalized Green’s relations R̃E , L̃E on MoλW , and discuss some properties
of MoλW . In Section 4, motivated by [28, Lemma 3.1], the Zappa-Szép product Y ./ E is
obtained, where Y is a right Ehresmann semigroup, and E is the distinguished semilattice
of Y . Then by defining the unary operation (as defined on Y ) on our foregoing Zappa-
Szép product, we seek a subset of the image of unary operation, which is the distinguished
semilattice of a right Ehresmann subsemigroup G of Y ./ E. There exists an isomorphism
between Y and G, which is also an order-isomorphism. Then from the order-theoretic
aspect, some properties of G are discovered. After that, we study the Zappa-Szép product
Y ./ E, where Y is a right Ehresmann semigroup with zero 0, and E is the distinguished
semilattice of Y such that 0 ∈ E. In this case, the set G′ possesses properties from the
order-theoretic perspective, which are different from that of G. Lastly, we include an
example of Zappa-Szép product in the context of right Ehresmann semigroups.

2. Preliminaries
We incorporate some helpful notions and related facts. For rudimentary notions related

to semigroup theory, and Green’s relations R, L, see the monograph [18].
The author of [23] introduced the generalized Green’s relations, i.e., R̃E , L̃E on a

semigroup S, where E is a subset of E(S) the set of idempotents of S. For any v, w ∈ S,
R̃E can be defined as:

v R̃E w ⇐⇒
[
( ∀ f ∈ E ) fv = v⇔fw = w

]
.

The relation L̃E is defined dually. The relation R̃E (L̃E) is an equivalence relation. Green’s
relation R (L) is left (right) compatible. On the contrary, R̃E (L̃E) needs not be left (right)
compatible. Note that R ⊆ R̃E (L ⊆ L̃E).

Let v ∈ S and f ∈ E. Let v R̃E f . Then

ff = f ⇒ fv = v. (2.1)
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Moreover,
v R̃E f ⇐⇒ fv = v and ∀ h ∈ E [hv = v ⇒ hf = f ]. (2.2)

If E is a semilattice, then the idempotent of E is unique in the R̃E-class of v, and by (2.2),
f is the minimum element of LIv(E) the set of all left identities of v belonging to E, with
respect to the usual partial order on semilattice E. For more details regarding R̃E , L̃E ,
see, e.g., [15, 28].

Throughout this paper, we always denote the unique idempotents of E in the R̃E-class
and L̃E-class of an element v by v† and v? respectively.

Now we give a brief account of right Ehresmann semigroups from the generalized Green’s
relations and varietal perspectives, where right Ehresmann semigroups are non-regular
generalizations of inverse semigroups. For more details, we prescribe [15].

Definition 2.1 ([15]). Suppose that Y is a semigroup and let E ⊆ E(Y ). Then Y is a
right Ehresmann semigroup if:

(E1) E is a semilattice in Y ;
(E2) every L̃E-class contains a (unique) element of E;
(E3) L̃E is a right congruence.

In the above definition, the property of Y that each L̃E-class has a unique idempotent
of E, yields a unary operation y 7→ y? on Y . Therefore, every right Ehresmann semigroup
may be regarded as a unary semigroup.

The following result is the characterization of right Ehresmann semigroups from the
varietal standpoint.

Lemma 2.2 ([15]). A semigroup Y is a right Ehresmann semigroup if and only if the
unary operation ‘?’ on Y satisfies the identities:

yy? = y, (2.3)
(y?z?)? = y?z?, (2.4)
y?z? = z?y?, (2.5)

(yz)?z? = (yz)?, (2.6)
(yz)? = (y?z)? (2.7)

and
E = {y? : y ∈ Y }.

In Lemma 2.2, the image of the unary operation ? is the set E. The set E is called
the distinguished semilattice of right Ehresmann semigroup Y . For all w?

1 ∈ E, w?
1 =

(w1w
?
1)? = (w?

1w
?
1)? = (w?

1)?. A partial order ≤` on a right Ehresmann semigroup Y is
defined by the rule that for all x, z ∈ Y ,

x ≤` z ⇐⇒ x = zx?.

Any inverse semigroup T is a right Ehresmann semigroup by defining a unary operation ?

on T by t? = t−1t.
Let A and B be two right Ehresmann semigroups with distinguished semilattices E and

F respectively. We recall (from [22]) that a right Ehresmann semigroup morphism from A
to B is a semigroup homomorphism α : A → B such that for all x ∈ A, α(x?) = (α(x))?.
If α is also bijective, then right Ehresmann semigroup morphism from A to B is an
isomorphism.

Definition 2.3 ([22]). A right Ehresmann semigroup with zero 0 is a unary semigroup
(S, ·,?), where (S, ·) is a semigroup with zero, ? is a unary operation satisfying (2.3)−(2.7).

In the above definition, for all w ∈ S, 0 ≤` w.
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Lemma 2.4 ([22]). Let S be a right Ehresmann semigroup with zero 0 and the
distinguished semilattice E. If 0 ∈ E, then for a ∈ S,

a = 0 ⇐⇒ a? = 0.

Next we need to recall left restriction semigroups and related facts. For convenience,
see, e.g., [14, 28].

Definition 2.5 ([28]). A left restriction semigroup is a unary semigroup (S, ·,†) which
satisfies the following identities:

v†
1v1 = v1, (2.8)

v†
1w

†
1 = w†

1v
†
1, (2.9)

(v†
1w1)† = v†

1w
†
1, (2.10)

v1w
†
1 = (v1w1)†v1. (2.11)

If we put E = S† = {w†
1 | w1 ∈ S}, then one can check that E is a semilattice.

Lemma 2.6. [28, Lemma 1.3 (iii)] For any x, z ∈ S, (xz†)† = (xz)†.

In [29], by applying Lemma 2.6, it is proved that for all w†
1 ∈ E, (w†

1)† = w†
1. Each

element of E is called a projection of S. The set E is known as the semilattice of projections
of S. A partial order ≤ on S is defined by the rule that for all v1, w1 ∈ S,

v1 ≤ w1 ⇐⇒ v1 = v†
1w1.

An alternative characterization for left restriction semigroups is given by Lemma 2.7.

Lemma 2.7. [28, Lemma 1.4] Suppose that (S, ·,†) is a unary semigroup. Then S is a
left restriction semigroup with semilattice of projections E if and only if

(i) E ⊆ E(S) is a semilattice;
(ii) every R̃E-class contains a (unique) element of E;
(iii) R̃E is a left congruence;
(iv) the left ample condition holds, i.e., for any w1 ∈ S, g ∈ E, w1g = (w1g)†w1.

Jones invented (left, right) P -Ehresmann semigroups from the view of variety, which
extend (left, right) Ehresmann semigroups. The left P -Ehresmann semigroups, their right-
sided and two-sided versions are extracted from reducts of regular ∗-semigroups. For facts
relevant to (left, right) P -Ehresmann semigroups, the reader is referred to [20].

Definition 2.8 ([20]). Let (Z, ·,†) be a unary semigroup. If Z satisfies the identities

w†
1w1 = w1, (2.12)

(w1x1)† = (w1x
†
1)†, (2.13)

(w†
1x

†
1)† = w†

1x
†
1w

†
1, (2.14)

w†
1w

†
1 = w†

1, (2.15)
then Z is called a left P-Ehresmann semigroup.

Put PZ = {w†
1 : w1 ∈ Z}. The set PZ is the set of projections of Z.

Remark 2.9. The (left, right) Ehresmann semigroups are generalizations of (left, right)
restriction semigroups from both the generalized Green’s relations and varietal
perspectives. The (left, right) P -Ehresmann semigroups are generalizations of (left,
right) restriction semigroups from the varietal viewpoint.

We now remind the following indispensable notions.
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Definition 2.10 ([29]). Let A be a semigroup. Then A acts on the left of a set Z if there
is a map A×Z → Z, (a, z) 7→ a · z such that for any z ∈ Z and for any a, a′ ∈ A, we have
(aa′) · z = a · (a′ · z).

Dually, A acts on the right of Z if there is a map Z ×A → Z, (z, a) 7→ za such that for
any z ∈ Z and for any a, a′ ∈ A, we have zaa′ = (za)a′

.

Definition 2.11 ([29]). Let A and Z be two semigroups. Suppose that A acts on the left
of Z. If for any y, z ∈ Z and for any a ∈ A, we have a · (yz) = (a · y)(a · z), then A acts
on Z by endomorphisms.

Definition 2.11 is equivalent to say that there exists a map ξ : A → End Z which is a
homomorphism, where End Z is the endomorphism monoid of Z. We denote (ξ(a))(z) by
a · z.

Definition 2.12 ([28]). Let M and Z be two semigroups. Let
Z ×M → M, (x,m) 7→ x ·m and Z ×M → Z, (x,m) 7→ xm

be two maps such that for every m,m′ ∈ M , x, x′ ∈ Z,
(Z1) xx′ ·m = x · (x′ ·m);
(Z2) x · (mm′) = (x ·m)(xm ·m′);
(Z3) (xm)m′ = xmm′ ;
(Z4) (xx′)m = xx′·mx′m.

Define a binary operation ◦ on M × Z by
(m,x) ◦ (m′, x′) = (m(x ·m′), xm′

x′).
Then by (Z1)-(Z4), ◦ is associative. Hence, (M×Z, ◦) is a semigroup, called the (external)
Zappa-Szép product of M and Z, denoted by M ./ Z.

In the above definition, by (Z1), Z acts on M from the left, and by (Z3), M acts on Z
from the right.

Definition 2.13 ([29]). Suppose that A is a left restriction semigroup, and U is a
semigroup. Suppose that A is acting on the left of U by endomorphisms. Let U oλ A
denote the set

{
(x, a) ∈ U ×A : a† · x = x

}
. Define a binary composition on U oλ A by

(x, a)(y, b) = (((ab)† · x)(a · y), ab). (2.16)

Then U oλ A is a semigroup and is called the λ-semidirect product of U by A.

In [29, Lemma 6.1.6], it is proved that U oλ A is a semigroup.
Next we also need to quote the following useful terminologies. We refer the reader to

[8, 9].
Let (Q,≤) and (Q′,≤) be two partial ordered sets (posets). A map ψ : Q → Q′ is said
to be an order-isomorphism if ψ is surjective, and x ≤ y in Q if and only if ψ(x) ≤ ψ(y)
in Q′. Let X ⊆ Q. Then X is a down-set if a ∈ X, d ∈ Q and d ≤ a imply that d ∈ X.
Dually, X is an up-set if a ∈ X, u ∈ Q and a ≤ u imply that u ∈ X. Note that the empty
set ∅ is a down-set and up-set as well. Let (Q,≤) be a poset containing the least element
0. If 0 6= w ∈ Q is such that w is a minimal element of Q \ {0}, then w is an atom. The
poset Q is called atomic if every non-zero element dominates an atom (i.e., there is an
atom less than or equal to it).

3. Generalized Green’s relations on λ-semidirect product
We commence this section by proving that the λ-semidirect product of a left

P -Ehresmann semigroup and a left restriction semigroup is a left P -Ehresmann
semigroup.
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Let M be a left P -Ehresmann semigroup. If a semigroup W is acting on the left of M
such that for all m1, m1

′ ∈ M and w1 ∈ W , we have

w1 · (m1m
′
1) = (w1 ·m1)(w1 ·m′

1) (3.1)

and

w1 ·m†
1 = (w1 ·m1)†, (3.2)

i.e., the morphism W → End M is into the monoid of endomorphisms of M as a unary
semigroup, then we say that W is acing on M by left P-Ehresmann endomorphisms.

Proposition 3.1. Let M be a left P -Ehresmann semigroup. Suppose that W is a left
restriction semigroup which is acting on the left of M by left P -Ehresmann
endomorphisms. Then

M oλ W =
{
(m1, w1) ∈ M × W : w†

1 ·m1 = m1
}

is a left P -Ehresmann semigroup under the binary operation

(l1, v1)(m1, w1) = (((v1w1)† · l1)(v1 ·m1), v1w1), (3.3)

where

(m1, w1)† = (m†
1, w

†
1). (3.4)

Moreover, PMoλW =
{
(m†

1, w
†
1) : w†

1 ·m†
1 = m†

1
}

is the set of projections of M oλ W .

Proof. Since W is acting on M by left P -Ehresmann endomorphisms, for all w1 ∈ W ,
m1 ∈ M , we have w1 ·m†

1 = (w1 ·m1)†.
For every (m1, w1) ∈ M oλ W ,

w†
1 ·m†

1 = (w†
1 ·m1)† = m†

1. (3.5)

Consequently, we have PMoλW ⊆ M oλ W .
By definition 2.13, M oλW is a semigroup under the binary operation, defined in (3.3),

and is called the λ-semidirect product of M by W .
Now we show that M oλ W satisfies (2.12)−(2.15). For (l1, v1), (m1, w1) ∈ M oλ W ,

we have

(l1, v1)†(l1, v1) = (l†1, v
†
1)(l1, v1)

= (((v†
1v1)† · l†1)(v†

1 · l1), v†
1v1)

= ((v†
1 · l†1)(v†

1 · l1), v1) (using (2.8))

= ((v†
1 · l†1)l1, v1) (v†

1 · l1 = l1)

= (l†1l1, v1) (using (3.5))
= (l1, v1) (using (2.12)).
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Now we obtain

((l1, v1)(m1, w1)†)† = ((l1, v1)(m†
1, w

†
1))†

=
(
((v1w

†
1)† · l1)(v1 ·m†

1), v1w
†
1

)†

=
(
((v1w

†
1)† · l1)(v1 ·m1)†, v1w

†
1

)†

=
(
(((v1w

†
1)† · l1)(v1 ·m1)†)†, (v1w

†
1)†

)
(using (3.4))

=
(
(((v1w1)† · l1)(v1 ·m1)†)†, (v1w1)†

)
(By Lemma 2.6)

=
(
(((v1w1)† · l1)(v1 ·m1))†, (v1w1)†

)
(using (2.13))

=
(
((v1w1)† · l1)(v1 ·m1), v1w1

)†

= ((l1, v1)(m1, w1))†.

Next we see that

((l1, v1)†(m1, w1)†)† = ((l†1, v
†
1)(m†

1, w
†
1))†

=
(
((v†

1w
†
1)† · l†1)(v†

1 ·m†
1), v†

1w
†
1

)†

=
(
((v†

1w
†
1)† · l1)†(v†

1 ·m1)†, v†
1w

†
1

)†
(using (3.2))

=
((

((v†
1w

†
1)† · l1)†(v†

1 ·m1)†
)†
, (v†

1w
†
1)†

)
(using (3.4))

=
(
((v†

1w
†
1)† · l1)†(v†

1 ·m1)†((v†
1w

†
1)† · l1)†, (v†

1w
†
1)†

)
(using (2.14))

=
(
((v†

1w
†
1)† · l†1)(v†

1 ·m†
1)((v†

1w
†
1)† · l†1), (v†

1w
†
1)†

)
=

(
(v†

1w
†
1v

†
1 · l†1)(v†

1 ·m†
1)(v†

1w
†
1v

†
1 · l†1), v†

1w
†
1v

†
1

)
(using (2.14) in W )

=
(
(v†

1w
†
1 · (v†

1 · l†1))(v†
1 ·m†

1)(v†
1w

†
1 · (v†

1 · l†1)), v†
1w

†
1v

†
1

)
=

(
(v†

1w
†
1 · l†1)(v†

1 ·m†
1)(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.5))

=
(
(v†

1w
†
1 · l†1)(v†

1 · (w†
1 ·m†

1))(v†
1w

†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.5))

=
(
(v†

1w
†
1 · l†1)(v†

1w
†
1 ·m†

1)(v†
1w

†
1 · l†1), v†

1w
†
1v

†
1

)
=

(
(v†

1w
†
1 · l†1m

†
1)(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.1))

=
(
((v†

1w
†
1)†(v†

1w
†
1) · l†1m

†
1)(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (2.8))

=
((

(v†
1w

†
1)† · ((v†

1w
†
1) · l†1m

†
1)

)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
=

((
(v†

1w
†
1)† · ((v†

1w
†
1 · l†1)(v†

1w
†
1 ·m†

1))
)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.1))

=
((

(v†
1w

†
1)† · ((v†

1w
†
1 · l†1)(v†

1 · (w†
1 ·m†

1)))
)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
=

((
(v†

1w
†
1)† · ((v†

1w
†
1 · l†1)(v†

1 ·m†
1))

)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.5))

=
((

(v†
1w

†
1)† · ((v†

1w
†
1 · (v†

1 · l†1))(v†
1 ·m†

1))
)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (3.5))
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=
((

((v†
1w

†
1)†)† · ((v†

1w
†
1v

†
1 · l†1)(v†

1 ·m†
1))

)
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
=

((
(v†

1w
†
1v

†
1)† ·

(
((v†

1w
†
1)† · l†1)(v†

1 ·m†
1)

))
(v†

1w
†
1 · l†1), v†

1w
†
1v

†
1

)
(using (2.14) in W )

=
(
((v†

1w
†
1)† · l†1)(v†

1 ·m†
1), v†

1w
†
1

)
(l†1, v

†
1)

= (l†1, v
†
1)(m†

1, w
†
1)(l†1, v

†
1)

= (l1, v1)†(m1, w1)†(l1, v1)†.

Finally, we have

(l1, v1)†(l1, v1)† = (l†1, v
†
1)(l†1, v

†
1)

= (((v†
1v

†
1)† · l†1)(v†

1 · l†1), v†
1v

†
1)

= ((v†
1 · l†1)(v†

1 · l†1), v†
1)

= (l†1l
†
1, v

†
1) (using (3.5))

= (l1, v1)†.

Therefore, M oλ W is a left P -Ehresmann semigroup with (m1, w1)† = (m†
1, w

†
1). It is

straightforward to show that for all (m1, w1)† ∈ PMoλW , ((m1, w1)†)† = (m1, w1)†. Hence,
PMoλW is the set of projections of M oλ W . �

Our next aim is to ascertain the behavior of generalized Green’s relations R̃E , L̃E on
the λ-semidirect product of a left P -Ehresmann semigroup by a left restriction semigroup.

Proposition 3.2. Let M oλ W be as in Proposition 3.1. Put P=M oλ W . Suppose that
E(P) =

{
(m1, w1) ∈ P : (m1, w1)(m1, w1) = (m1, w1)

}
.

(a) Suppose that for all t ∈ W , we have
t · e = e, (3.6)

where e is a right identity of M . Let Ee=
{
(e, h) : h ∈ E ⊆ E(W )

}
. Then we have

Ee ⊆ E(P)
and

(l1, v1) L̃Ee
(m1, w1) in P ⇐⇒ v1 L̃E w1 in W .

(b) Suppose that for all p ∈ M , we have
f · p = p, (3.7)

where f is a left identity of W . Let F f =
{
(g, f) : g ∈ F ⊆ E(M)

}
⊆ P. If in

addition, for any t ∈ W ,
t · g = g, (3.8)

where g ∈ F , then we have
F f ⊆ E(P)

and
(l1, v1) R̃F f

(m1, w1) in P ⇐⇒ l1 R̃F m1 in M .

Proof. (a) It can be easily checked that Ee ⊆ P. For every (e, h) ∈ Ee, we have

(e, h)(e, h) = (((hh)† · e)(h · e), hh)
= (ee, hh) (using (3.6))
= (e, h) (e is a right identity and hh = h).
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Hence, Ee ⊆ E(P).
Suppose that for all (l1, v1), (m1, w1) ∈ P, (l1, v1) L̃Ee

(m1, w1). Suppose that for all
h ∈ E, v1h = v1. Then

(l1, v1)(e, h) = (((v1h)† · l1)(v1 · e), v1h)

= ((v†
1 · l1)(v1 · e), v1)

= ((v†
1 · l1)e, v1) (using (3.6))

= (l1e, v1) ((l1, v1) ∈ P)
= (l1, v1).

Since (l1, v1) L̃Ee
(m1, w1), we obtain

(m1, w1)(e, h) = (m1, w1)
(((w1h)† ·m1)(w1 · e), w1h) = (m1, w1).

Then we have w1h = w1. Therefore, we have v1h = v1 ⇒ w1h = w1. Similarly, we obtain
w1h = w1 ⇒ v1h = v1. Hence, v1 L̃E w1 in W .

Conversely, suppose that for all v1, w1 ∈ W, v1 L̃E w1. Suppose that for all (e, h) ∈ Ee,

(l1, v1)(e, h) = (l1, v1)
(((v1h)† · l1)(v1 · e), v1h) = (l1, v1).

Then we have v1h = v1. Since v1 L̃E w1, we deduce w1h = w1. Also, we have

(m1, w1)(e, h) = (((w1h)† ·m1)(w1 · e), w1h)

= ((w†
1 ·m1)(w1 · e), w1)

= ((w†
1 ·m1)e, w1) (using (3.6))

= (m1e, w1) ((m1, w1) ∈ P)
= (m1, w1).

Therefore, we have (l1, v1)(e, h) = (l1, v1) ⇒ (m1, w1)(e, h) = (m1, w1). Similarly, we
obtain (m1, w1)(e, h) = (m1, w1) ⇒ (l1, v1)(e, h) = (l1, v1). Hence, (l1, v1) L̃Ee

(m1, w1).
(b) For every (g, f) ∈ F f , we have

(g, f)(g, f) = (((ff)† · g)(f · g), ff)
= (gg, ff) (using (3.8))
= (g, f) (gg = g and f is left identity).

This implies that F f ⊆ E(P).
Suppose that for all (l1, v1), (m1, w1) ∈ P, (l1, v1) R̃F f

(m1, w1). Suppose that for all
g ∈ F , gl1 = l1. Then

(g, f)(l1, v1) = (((fv1)† · g)(f · l1), fv1)
= (gl1, fv1) (using (3.8) and (3.7))
= (l1, v1).
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Since (l1, v1) R̃F f
(m1, w1), we obtain

(g, f)(m1, w1) = (m1, w1)
(((fw1)† · g)(f ·m1), fw1) = (m1, w1)

(gm1, fw1) = (m1, w1).
Then we have gm1 = m1. Therefore, we have gl1 = l1 ⇒ gm1 = m1. Similarly, gm1 =
m1 ⇒ gl1 = l1. Hence, l1 R̃F m1 in M .

Conversely, suppose that for all l1,m1 ∈ M , l1 R̃F m1. Suppose that for all (g, f) ∈ F f ,
(g, f)(l1, v1) = (l1, v1)

(((fv1)† · g)(f · l1), fv1) = (l1, v1)
(gl1, fv1) = (l1, v1).

Then we have gl1 = l1. Since l1 R̃F m1, we have gm1 = m1. Also, we have
(g, f)(m1, w1) = (((fw1)† · g)(f ·m1), fw1)

= (gm1, fw1) (using (3.8) and (3.7))
= (m1, w1).

Therefore, we have (g, f)(l1, v1) = (l1, v1) ⇒ (g, f)(m1, w1) = (m1, w1). Similarly,
(g, f)(m1, w1) = (m1, w1) ⇒ (g, f)(l1, v1) = (l1, v1). Hence, (l1, v1) R̃F f

(m1, w1). �

Now we study properties of the λ-semidirect product of a left P -Ehresmann semigroup
and a left restriction semigroup.

Proposition 3.3. Let P be as in Proposition 3.2. Then
(a) E(P) =

{
(n1, w1) ∈ P : w1 · n1 is a right identity of n1 and w1w1 = w1

}
;

(b) Suppose that for all t ∈ W , t · e = e, where e is a right identity of M . Let Ee be
as in Proposition 3.2. If (l1, v1) R̃Ee

(e, h) L̃Ee
(l1, v1) in P, then h is a two-sided

identity of v1;
(c) Suppose that for all p ∈ M , f · p = p, where f is a left identity of W . Let F f be

as in Proposition 3.2. If (l1, v1) R̃F f
(g, f) L̃F f

(l1, v1) in P, then f is a two-sided
identity of v1;

(d) Let E be the semilattice of projections of W . Suppose that for all t ∈ W , t · e = e,
where e is a right identity of M . Let Ee = {(e, h) : h ∈ E}. Then

(l1, v1) R̃Ee
(e, h) in P ⇒ v†

1 ≤ h in W.

Proof. (a) If (n1, w1) ∈ E(P), then
(n1, w1)(n1, w1) = (n1, w1) ⇒ (((w1w1)† · n1)(w1 · n1), w1w1) = (n1, w1)

⇒ ((w1w1)† · n1)(w1 · n1) = n1 and w1w1 = w1

⇒ (w†
1 · n1)(w1 · n1) = n1

⇒ n1(w1 · n1) = n1 (w†
1 · n1 = n1).

Let (n1, w1) ∈ P be such that n1(w1 · n1) = n1 and w1w1 = w1. Since w†
1 · n1 = n1, it

follows that
(w†

1 · n1)(w1 · n1) = n1 ⇒ ((w1w1)† · n1)(w1 · n1) = n1

⇒ (((w1w1)† · n1)(w1 · n1), w1w1) = (n1, w1)
⇒ (n1, w1)(n1, w1) = (n1, w1)
⇒ (n1, w1) ∈ E(P).
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(b) By Proposition 3.2 (a), Ee ⊆ E(P). Since (l1, v1) R̃Ee
(e, h) in P and (e, h)(e, h) =

(e, h), it follows that (e, h)(l1, v1) = (l1, v1). Then we have (((hv1)†·e)(h·l1), hv1) = (l1, v1).
Then hv1 = v1. Since (e, h) L̃Ee

(l1, v1) in P , we have (l1, v1)(e, h) = (l1, v1). Then we
have (((v1h)† · l1)(v1 · e), v1h) = (l1, v1). Then v1h = v1. Hence, h is a two-sided identity
of v1.

(c) The proof is the same as that of (b).
(d) By Proposition 3.2 (a), Ee ⊆ E(P). The proof of hv1 = v1 is the same as that of

(b). Since v†
1 is the unique idempotent in the R̃E-class of v1 and is the minimum element

of LIv1(E) the set of all left identities of v1 belonging to E, we deduce v†
1 ≤ h. �

4. Zappa-Szép products
In this section, in general, we study the Zappa-Szép product of a right Ehresmann

semigroup and its distinguished semilattice.

4.1. Zappa-Szép product of a right Ehresmann semigroup and its
distinguished semilattice

We gain the Zappa-Szép product Y ./ E, where Y is a right Ehresmann semigroup,
and E is the distinguished semilattice of Y . We define the unary operation (as defined
on Y ) on our foregoing Zappa-Szép product, and find a subset of the image of unary
operation, which is the distinguished semilattice of a right Ehresmann subsemigroup G of
Y ./ E. We also show that G is isomorphic and order-isomorphic to Y . Then we study
some properties of G from the order-theoretic viewpoint.

Lemma 4.1. Let Y be a right Ehresmann semigroup with distinguished semilattice E.
Define the maps E × Y → Y and E × Y → E by (a?

1, w1) 7→ a?
1 · w1 = a?

1w1 and
(a?

1, w1) 7→ (a?
1)w1 = (a1w1)? respectively. Then we have Y ./ E the Zappa-Szép product

of Y and E.

Proof. In order to check that the given maps satisfy the Zappa-Szép product axioms, let
a?

1, c
?
1 ∈ E and w1, x1 ∈ Y .

(Z1)
a?

1 · (c?
1 · w1) = a?

1 · (c?
1w1)

= a?
1(c?

1w1)
= (a?

1c
?
1)w1

= (a?
1c

?
1)?w1 (using (2.4))

= (a?
1c

?
1)? · w1

= (a?
1c

?
1) · w1.

Hence, (Z1) holds.
(Z2)

(a?
1 · w1)((a?

1)w1 · x1) = (a?
1w1)((a1w1)? · x1)

= (a?
1w1)((a?

1w1)? · x1) (using (2.7))
= (a?

1w1)((a?
1w1)?x1)

= ((a?
1w1)(a?

1w1)?)x1

= (a?
1w1)x1 (using (2.3))

= a?
1(w1x1)

= a?
1 · (w1x1).

Hence, (Z2) holds.
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(Z3)

((a?
1)w1)x1 = ((a1w1)?)x1

= ((a1w1)x1)?

= (a1(w1x1))?

= (a?
1)w1x1 .

Therefore, (Z3) holds.
(Z4)

(a?
1)c?

1·w1(c?
1)w1 = (a?

1)c?
1w1(c?

1)w1

= (a1(c?
1w1))?(c1w1)?

= (a?
1(c?

1w1))?(c?
1w1)? (using (2.7))

= (a?
1(c?

1w1))? (using (2.6))
= ((a?

1c
?
1)w1)?

= ((a?
1c

?
1)?)w1

= (a?
1c

?
1)w1 (using (2.4)).

Thus, (Z4) holds. Then Y × E is a semigroup under the binary operation ◦, defined by

(w1, a
?
1) ◦ (x1, c

?
1) = (w1(a?

1 · x1), (a?
1)x1c?

1). (4.1)

Hence, we have the semigroup (Y × E, ◦), called the Zappa-Szép product of Y and E,
denoted by Y ./ E. �

Lemma 4.2. Let Y ./ E be the Zappa-Szép product of Y and E, formed in Lemma 4.1.
Let the unary operation ? (as defined on Y) be defined on Y ./ E by

(w1, a
?
1)? = (w?

1, a
?
1). (4.2)

Then the unary semigroup (Y × E, ◦,?)=(Y ./ E,?) satisfies:

(i) ((w1, a
?
1)? ◦ (x1, c

?
1)?)? = (w1, a

?
1)? ◦ (x1, c

?
1)?;

(ii) ((w1, a
?
1)? ◦ (x1, c

?
1))? = ((w1, a

?
1) ◦ (x1, c

?
1))?;

(iii) ((w1, a
?
1) ◦ (x1, c

?
1)?)? = (w1, a

?
1)? ◦ (x1, c

?
1)?;

(iv) (w1, w
?
1)? ◦ (w1, w

?
1)? = (w1, w

?
1)?;

(v) (w1, a
?
1)? ◦ (x1, a

?
1)? = (x1, a

?
1)? ◦ (w1, a

?
1)? whenever a?

1 ≤` w
?
1 and a?

1 ≤` x
?
1.

Proof. One can verify that ? is well-defined. Now we hasten to prove (i)-(v).
First, we intend to prove that for all (w1, a

?
1), (x1, c

?
1) ∈ Y ./ E, (i)-(iii) are satisfied.
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(i)

((w1, a
?
1)? ◦ (x1, c

?
1)?)? = ((w?

1, a
?
1) ◦ (x?

1, c
?
1))? (using (4.2))

= (w?
1(a?

1 · x?
1), (a?

1)x?
1c?

1)?

= (w?
1(a?

1x
?
1), (a1x

?
1)?c?

1)?

= (w?
1(a?

1x
?
1), ((a1x

?
1)?c?

1)?)? (using (2.4))
= ((w?

1(a?
1x

?
1))?, ((a1x

?
1)?c?

1)?) (using (4.2))
= (((w?

1a
?
1)x?

1)?, ((a1x
?
1)?c?

1)?)
= (((w?

1a
?
1)?x?

1)?, ((a1x
?
1)?c?

1)?) (using (2.7))
= ((w?

1a
?
1)?x?

1, (a1x
?
1)?c?

1) (using (2.4))
= ((w?

1a
?
1)x?

1, (a1x
?
1)?c?

1) (using (2.4))
= (w?

1(a?
1x

?
1), (a1x

?
1)?c?

1)
= (w?

1(a?
1 · x?

1), (a?
1)x?

1c?
1)

= (w?
1, a

?
1) ◦ (x?

1, c
?
1)

= (w1, a
?
1)? ◦ (x1, c

?
1)?.

(ii)

((w1, a
?
1)? ◦ (x1, c

?
1))? = ((w?

1, a
?
1) ◦ (x1, c

?
1))?

= (w?
1(a?

1 · x1), (a?
1)x1c?

1)?

= (w?
1(a?

1x1), (a1x1)?c?
1)?

= (w?
1(a?

1x1), ((a1x1)?c?
1)?)? (using (2.4))

= ((w?
1(a?

1x1))?, ((a1x1)?c?
1)?) (using (4.2))

= ((w1(a?
1x1))?, ((a1x1)?c?

1)?) (using (2.7))
= (w1(a?

1x1), ((a1x1)?c?
1)?)? (using (4.2))

= (w1(a?
1x1), (a1x1)?c?

1)?

= (w1(a?
1 · x1), (a?

1)x1c?
1)?

= ((w1, a
?
1) ◦ (x1, c

?
1))?.

(iii)

((w1, a
?
1) ◦ (x1, c

?
1)?)? = ((w1, a

?
1)? ◦ (x1, c

?
1)?)? (using (ii))

= (w1, a
?
1)? ◦ (x1, c

?
1)? (using (i)).

Hence, for all (w1, a
?
1), (x1, c

?
1) ∈ Y ./ E, (i)-(iii) are satisfied.

(iv)

(w1, w
?
1)? ◦ (w1, w

?
1)? = (w?

1, w
?
1) ◦ (w?

1, w
?
1)

= (w?
1(w?

1 · w?
1), (w?

1)w?
1w?

1)
= (w?

1, (w1w
?
1)?w?

1)
= (w?

1, w
?
1w

?
1) (using (2.3))

= (w?
1, w

?
1)

= (w1, w
?
1)?.
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(v) Suppose that a?
1 ≤` w

?
1 and a?

1 ≤` x
?
1. Then

a?
1 = w?

1a
?
1 = x?

1a
?
1. (4.3)

Now we obtain

(w1, a
?
1)? ◦ (x1, a

?
1)? = (w?

1, a
?
1) ◦ (x?

1, a
?
1)

= (w?
1(a?

1 · x?
1), (a?

1)x?
1a?

1)
= (w?

1(a?
1x

?
1), (a1x

?
1)?a?

1)
= (w?

1a
?
1x

?
1, (a?

1x
?
1)?a?

1) (using (2.7))
= (w?

1a
?
1x

?
1, a

?
1x

?
1a

?
1) (using (2.4))

= (x?
1a

?
1w

?
1, a

?
1x

?
1a

?
1) (using (2.5))

= (x?
1a

?
1w

?
1, a

?
1w

?
1a

?
1) (using (4.3))

= (x?
1a

?
1w

?
1, (a?

1w
?
1)?a?

1) (using (2.4))
= (x?

1(a?
1w

?
1), (a1w

?
1)?a?

1) (using (2.7))
= (x?

1(a?
1 · w?

1), (a?
1)w?

1a?
1)

= (x?
1, a

?
1) ◦ (w?

1, a
?
1)

= (x1, a
?
1)? ◦ (w1, a

?
1)?.

�

Lemma 4.3. Let (Y ./ E,?) be as in Lemma 4.2. Put

F = {(w1, a
?
1)? : (w1, a

?
1) ∈ Y ./ E},

where F is the image of Y ./ E under ?. Then F is a unary subsemigroup of (Y ./ E,?).

Proof. Let (w1, a
?
1)?, (x1, c

?
1)? ∈ F . Then

(w1, a
?
1)? ◦ (x1, c

?
1)? = (w?

1, a
?
1) ◦ (x?

1, c
?
1)

= (w?
1(a?

1 · x?
1), (a?

1)x?
1c?

1)
= (w?

1(a?
1x

?
1), (a1x

?
1)?c?

1)
= (w?

1(a?
1x

?
1), (a?

1x
?
1)?c?

1) (using (2.7))
= (w?

1(a?
1x

?
1)?, ((a?

1x
?
1)?c?

1)?) (using (2.4))
= ((w?

1(a?
1x

?
1)?)?, ((a?

1x
?
1)?c?

1)?) (using (2.4))
= (w?

1(a?
1x

?
1)?, ((a?

1x
?
1)?c?

1)?)? (using (4.2)).

Since (w?
1(a?

1x
?
1)?, ((a?

1x
?
1)?c?

1)?) ∈ Y ./ E, we deduce (w1, a
?
1)? ◦ (x1, c

?
1)? ∈ F . Hence, F is

a subsemigroup of Y ./ E.
Next for any (w1, a

?
1)? ∈ F ,

((w1, a
?
1)?)? = (w?

1, a
?
1)? = ((w?

1)?, a?
1) = (w?

1, a
?
1) = (w1, a

?
1)? ∈ F.

Thus, F is a unary subsemigroup of (Y ./ E,?). �

Theorem 4.4. Let F = {(w1, a
?
1)? : (w1, a

?
1) ∈ Y ./ E} be the unary subsemigroup

of (Y ./ E,?), constructed in Lemma 4.3. Let G = {(w1, w
?
1) : w1 ∈ Y } and DG =

{(w1, w
?
1)? : (w1, w

?
1) ∈ G} ⊆ F . Then (G, ◦,?) is a right Ehresmann subsemigroup of

(Y ./ E,?) and DG is the distinguished semilattice of (G, ◦,?). Moreover, there exists an
isomorphism between Y and G, which is also an order-isomorphism.
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Proof. Our first objective is to show that the given set G is a unary subsemigroup of
(Y ./ E,?). Let (w1, w

?
1), (x1, x

?
1) ∈ G. Then (w1, w

?
1)◦(x1, x

?
1) = (w1(w?

1 ·x1), (w?
1)x1x?

1) =
(w1(w?

1x1), (w1x1)?x?
1). By (2.3), (w1, w

?
1) ◦ (x1, x

?
1) = (w1x1, (w1x1)?x?

1). By (2.6),

(w1, w
?
1) ◦ (x1, x

?
1) = (w1x1, (w1x1)?). (4.4)

Since w1x1 ∈ Y , it follows that (w1, w
?
1) ◦ (x1, x

?
1) = (w1x1, (w1x1)?) ∈ G. Therefore, G is

a subsemigroup of Y ./ E.
Now we show that G is closed under ?. Let (w1, w

?
1) ∈ G. Then by (4.2), (w1, w

?
1)? =

(w?
1, w

?
1). Since w?

1 ∈ Y , we deduce (w1, w
?
1)? = (w?

1, w
?
1) ∈ G. Hence, (G, ◦,?) is a unary

subsemigroup of (Y ./ E,?).
Second, we prove that the unary semigroup G satisfies the identities (2.3)−(2.7). For

all (w1, w
?
1), (x1, x

?
1) ∈ G, the identities (2.4) and (2.7) hold in G with the aid of Lemma

4.2 (i) and (ii) respectively.
For proving the identities (2.3), (2.5) and (2.6), let (w1, w

?
1), (x1, x

?
1) ∈ G. Then we have

(w1, w
?
1) ◦ (w1, w

?
1)? = (w1, w

?
1) ◦ (w?

1, w
?
1)

= (w1, w
?
1) ◦ (w?

1, (w?
1)?)

= (w1w
?
1, (w1w

?
1)?) (using (4.4))

= (w1, w
?
1).

Now we obtain

(w1, w
?
1)? ◦ (x1, x

?
1)? = (w?

1, w
?
1) ◦ (x?

1, x
?
1)

= (w?
1x

?
1, (w?

1x
?
1)?) (using (4.4))

= (w?
1x

?
1, w

?
1x

?
1)

= (x?
1w

?
1, x

?
1w

?
1) (using (2.5))

= (x1, x
?
1)? ◦ (w1, w

?
1)?.

Next we see that

((w1, w
?
1) ◦ (x1, x

?
1))? ◦ (x1, x

?
1)? = (w1x1, (w1x1)?)? ◦ (x1, x

?
1)? (using (4.4))

= ((w1x1)?, (w1x1)?) ◦ (x?
1, x

?
1)

= ((w1x1)?x?
1, ((w1x1)?x?

1)?) (using (4.4))
= ((w1x1)?, ((w1x1)?)?) (using (2.6))
= ((w1x1)?, (w1x1)?)
= (w1x1, (w1x1)?)? (using (4.4))
= ((w1, w

?
1) ◦ (x1, x

?
1))?.

Therefore, for any (w1, w
?
1), (x1, x

?
1) ∈ G, (2.3), (2.5) and (2.6) are satisfied. Thus, (G, ◦,?)

is a right Ehresmann subsemigroup of (Y ./ E,?). In this case, the set DG = {(w1, w
?
1)? :

(w1, w
?
1) ∈ G} is the distinguished semilattice of G.

Next we define a map α : Y → G by

α(w1) = (w1, w
?
1). (4.5)

We show that α is an isomorphism. It is not tricky to check that α is well-defined.
One can verify that for all w1, x1 ∈ Y , α(w1x1) = α(w1) ◦ α(x1). For all w1 ∈ Y ,
α(w?

1) = (w?
1, (w?

1)?) = (w?
1, w

?
1) = (w1, w

?
1)? = (α(w1))?. So α is a right Ehresmann

semigroup morphism. Also, α is surjective and one-one. Hence, Y and G are isomorphic.

Lemma 4.5. Assume that w1, x1 ∈ Y and (w1, w
?
1), (x1, x

?
1) ∈ G. Then w1 ≤` x1 in Y

implies (w1, w
?
1) ≤` (x1, x

?
1) in G, and (w1, w

?
1) ≤` (x1, x

?
1) in G implies w1 ≤` x1 and

w?
1 ≤` x

?
1 in Y .
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Proof. Assume that w1 ≤` x1 in Y . Then we have
w1 = x1w

?
1. (4.6)

In G, we get
(x1, x

?
1) ◦ (w1, w

?
1)? = (x1, x

?
1) ◦ (w?

1, w
?
1)

= (x1(x?
1 · w?

1), (x?
1)w?

1w?
1)

= (x1x
?
1w

?
1, (x1w

?
1)?w?

1)
= (x1w

?
1, (x1w

?
1)?w?

1)
= (w1, w

?
1w

?
1) (using (4.6))

= (w1, w
?
1).

So (w1, w
?
1) ≤` (x1, x

?
1).

Suppose that (w1, w
?
1) ≤` (x1, x

?
1) in G. Then we obtain

(w1, w
?
1) = (x1, x

?
1) ◦ (w1, w

?
1)?

= (x1, x
?
1) ◦ (w?

1, w
?
1)

= (x1(x?
1 · w?

1), (x?
1)w?

1w?
1)

= (x1x
?
1w

?
1, (x?

1)w?
1w?

1)
= (x1w

?
1, (x?

1)w?
1w?

1).
Then we have w1 = x1w

?
1. Therefore, w1 ≤` x1 in Y . Since w1 = x1w

?
1, we have

w?
1 = (x1w

?
1)?. By (2.7), w?

1 = (x?
1w

?
1)?. By (2.4), w?

1 = x?
1w

?
1. Then w?

1 = x?
1(w?

1)?. Thus,
w?

1 ≤` x
?
1 in Y . �

Now we return to prove our Theorem 4.4 by using the above lemma. To prove that Y
is order-isomorphic to G, we merely need to prove that

w1 ≤` x1 in Y ⇐⇒ α(w1) ≤` α(x1) in G. (4.7)
With the aid of Lemma 4.5, (4.7) is proved. Hence, α is an order-isomorphism. The proof
is completed. �

Throughout this article, inf A (supA) means the infimum (supremum) of a non-empty
set A.

Equipped with the notation, given in Theorem 4.4, we reveal some properties of the set
G in the following result.
Proposition 4.6. Consider α : Y → G the order-isomorphism, proved in the proof of
Theorem 4.4. Let ∅ 6= U ⊆ Y . Then

(i) if supU exists in Y , then sup(α(U)) exists in G and sup(α(U)) = α(supU);
(ii) if inf U exists in Y , then inf(α(U)) exists in G and inf(α(U)) = α(inf U);
(iii) if U is a down-set in Y , then so is α(U) in G;
(iv) if U is an up-set in Y , then so is α(U) in G.

Proof. We only prove (i) and (iii). The proofs of (ii) and (iv) are similar to that of (i)
and (iii) respectively.

To prove (i), let k = supU . Then for all u ∈ U , u ≤` k. Then by Lemma 4.5,
α(u) ≤` α(k) for all α(u) ∈ α(U). So α(k) is an upper bound of α(U). Let c ∈ G be any
upper bound of α(U). Since c = α(s) for some s ∈ Y , it follows that α(u) ≤` α(s) for
all α(u) ∈ α(U). Then by Lemma 4.5, we obtain u ≤` s for all u ∈ U . As s is an upper
bound of U , we deduce k ≤` s. Then α(k) ≤` α(s) = c. So α(k) = sup(α(U)), whence
sup(α(U)) = α(supU).

To prove (iii), let t ∈ α(U) and c ∈ G, where t = α(b) for some b ∈ U ⊆ Y , and c = α(a)
for some a ∈ Y . Suppose that c ≤` t. Since α(a) ≤` α(b) in G. Then we obtain a ≤` b
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in Y . Since U is a down set such that b ∈ U , we have a ∈ U . Then α(a) = c ∈ α(U).
Therefore, α(U) is a down-set in G. �

4.2. Zappa-Szép product of a right Ehresmann semigroup with zero and
its distinguished semilattice

Here we form the Zappa-Szép product Y ./ E, where Y is a right Ehresmann semigroup
with zero 0, and E is the distinguished semilattice of Y such that 0 ∈ E. Then we define
the unary operation (as defined on Y ) on Y ./ E, and find a subset of the image of unary
operation, which is the distinguished semilattice of a right Ehresmann subsemigroup G′

of Y ./ E with zero. We also show that G′ is isomorphic to Y . Then our aim is to discuss
some properties of the set G′ from the order-theoretic perspective, which are different from
that of G, studied in the previous subsection.

Lemma 4.7. Let Y be a right Ehresmann semigroup with zero 0 and distinguished
semilattice E such that 0 ∈ E. Define the maps E × Y → Y and E × Y → E by
(a?

1, w1) 7→ a?
1 · w1 = a?

1w1 and (a?
1, w1) 7→ (a?

1)w1 = (a1w1)? respectively. Then we have
Y ./ E the Zappa-Szép product of Y and E.

Proof. We first note that for any w1 ∈ Y , 0 · w1 = 0w1 = 0, and for any a?
1 ∈ E,

(a?
1)0 = (a10)? = 0? = 0. It can be checked that the given maps satisfy the Zappa-

Szép product axioms (Z1)-(Z4). Then Y × E is a semigroup with zero (0, 0) under the
binary operation ◦, defined in (4.1). Hence, we have the semigroup (Y ×E, ◦), called the
Zappa-Szép product of Y and E, denoted by Y ./ E. �

Lemma 4.8. Let Y ./ E be the Zappa-Szép product of Y and E, formed in Lemma 4.7.
Let the unary operation ? (as defined on Y) be defined on Y ./ E by

(w1, a
?
1)? = (w?

1, a
?
1). (4.8)

Then the unary semigroup (Y × E, ◦,?)=(Y ./ E,?) satisfies:
(i) ((w1, a

?
1)? ◦ (x1, c

?
1)?)? = (w1, a

?
1)? ◦ (x1, c

?
1)?;

(ii) ((w1, a
?
1)? ◦ (x1, c

?
1))? = ((w1, a

?
1) ◦ (x1, c

?
1))?;

(iii) ((w1, a
?
1) ◦ (x1, c

?
1)?)? = (w1, a

?
1)? ◦ (x1, c

?
1)?;

(iv) (w1, w
?
1)? ◦ (w1, w

?
1)? = (w1, w

?
1)?;

(v) (w1, a
?
1)? ◦ (x1, a

?
1)? = (x1, a

?
1)? ◦ (w1, a

?
1)? whenever a?

1 ≤` w
?
1 and a?

1 ≤` x
?
1, where

a?
1, w

?
1, x

?
1 6= 0.

Proof. By Lemma 2.4, and by (4.8), (0, 0)? = (0, 0?)? = (0?, 0?) = (0, 0). One can check
that ? is well-defined.

Now we prove (i)-(v). For all non-zero (w1, a
?
1), (x1, c

?
1) ∈ Y ./ E, the identities (i)-

(iii) can be proved in the same way that (i)-(iii) are proved in Lemma 4.2. If (0, 0) ∈
{(w1, a

?
1), (x1, c

?
1)}, then (i)-(iii) can be easily proved. Thus, for all (w1, a

?
1), (x1, c

?
1) ∈ Y ./

E, (i)-(iii) are satisfied.
(iv) We deal with the cases: (a) w1 6= 0, (b) w1 = 0.
(a) If w1 6= 0, then by Lemma 2.4, w?

1 6= 0. Then (iv) can be proved in the same way
that (iv) is proved in Lemma 4.2.

(b) Let w1 = 0. Then by Lemma 2.4, w?
1 = 0. It can be easily verified that (w1, w

?
1)? ◦

(w1, w
?
1)? = (w1, w

?
1)?.

(v) It can be proved in the same way that (v) is proved in Lemma 4.2. �

Lemma 4.9. Let (Y ./ E,?) be as in Lemma 4.8. Put
F = {(w1, a

?
1)? : (w1, a

?
1) ∈ Y ./ E},

where F is the image of Y ./ E under ?. Then F is a unary subsemigroup of (Y ./ E,?)
with a zero element (0, 0) such that (0, 0)? = (0, 0).
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Proof. Since (0, 0) ∈ Y ./ E, we deduce (0, 0)? ∈ F . Then by (4.8), (0?, 0) ∈ F . So
(0, 0) ∈ F .

Let (w1, a
?
1)?, (x1, c

?
1)? ∈ F be such that (w1, a

?
1)?, (x1, c

?
1)? 6= (0, 0). Then (w1, a

?
1)? ◦

(x1, c
?
1)? ∈ F can be proved in the same way that we proved in Lemma 4.3. It can also

be shown that (w1, a
?
1)? ◦ (0, 0) = (0, 0) ◦ (w1, a

?
1)? = (0, 0) ◦ (0, 0) = (0, 0). Hence, F is a

subsemigroup of Y ./ E with zero (0, 0).
Next for any non-zero (v1, a

?
1)? ∈ F , ((v1, a

?
1)?)? = (v?

1, a
?
1)? = ((v?

1)?, a?
1) = (v?

1, a
?
1) =

(v1, a
?
1)? ∈ F . Also, (0, 0)? = (0, 0) ∈ F . Thus, F is a unary subsemigroup of (Y ./ E,?)

with zero (0, 0) such that (0, 0)? = (0, 0). �

Theorem 4.10. Let F = {(w1, a
?
1)? : (w1, a

?
1) ∈ Y ./ E} be the unary subsemigroup

of (Y ./ E,?), constructed in Lemma 4.9. Let G′ = {(w1, w
?
1) : w1 ∈ Y } and DG′ =

{(w1, w
?
1)? : (w1, w

?
1) ∈ G′} ⊆ F . Then (G′, ◦,?) is a right Ehresmann subsemigroup

of (Y ./ E,?) with zero (0, 0) such that (0, 0)? = (0, 0), and DG′ is the distinguished
semilattice of (G′, ◦,?) such that (0, 0) ∈ DG′. Moreover, there exists an isomorphism
between Y and G′.

Proof. First, we show that the given set G′ is a unary subsemigroup of (Y ./ E,?) with
zero (0, 0) such that (0, 0)? = (0, 0). Since 0 ∈ Y , by the definition of G′, it follows that
(0, 0) = (0, 0?) ∈ G′. Let (w1, w

?
1), (x1, x

?
1) ∈ G′ be such that (w1, w

?
1), (x1, x

?
1) 6= (0, 0).

Then (w1, w
?
1) ◦ (x1, x

?
1) ∈ G′ can be proved in the same way that we proved in Theorem

4.4. It can also be verified that (w1, w
?
1) ◦ (0, 0) = (0, 0) ◦ (w1, w

?
1) = (0, 0) ◦ (0, 0) = (0, 0).

Therefore, G′ is a subsemigroup of Y ./ E with zero (0, 0).
Now we show that G′ is closed under ?. Let (w1, w

?
1) ∈ G′ be such that (w1, w

?
1) 6= (0, 0).

Then by (4.8), (w1, w
?
1)? = (w?

1, w
?
1). Since w?

1 ∈ Y , we have (w?
1, (w?

1)?) ∈ G′. So
(w?

1, w
?
1) ∈ G′. Therefore, (w1, w

?
1)? ∈ G′. Also, we have (0, 0)? = (0, 0) ∈ G′. Hence,

(G′, ◦,?) is a unary subsemigroup of (Y ./ E,?) containing zero (0, 0) such that (0, 0)? =
(0, 0).

Second, we prove that the unary semigroup G′ satisfies the identities (2.3)−(2.7). For
all (w1, w

?
1), (x1, x

?
1) ∈ G′, the identities (2.4) and (2.7) hold in G′ with the aid of Lemma

4.8 (i) and (ii) respectively. For any non-zero (w1, w
?
1), (x1, x

?
1) ∈ G′, (2.3), (2.5) and (2.6)

can be proved in the same way that we proved in Theorem 4.4. It can also be checked
that if (0, 0) ∈ {(w1, w

?
1), (x1, x

?
1)}, then (2.3), (2.5) and (2.6) also hold in G′. Therefore,

for all (w1, w
?
1), (x1, x

?
1) ∈ G′, (2.3), (2.5) and (2.6) are satisfied. Thus, (G′, ◦,?) is a right

Ehresmann subsemigroup of (Y ./ E,?) containing zero (0, 0) with (0, 0)? = (0, 0). In
this case, the set DG′ = {(w1, w

?
1)? : (w1, w

?
1) ∈ G′} is the distinguished semilattice of G′.

Since (0, 0) ∈ G′, by the definition of DG′ , (0, 0)? = (0, 0) ∈ DG′ .
Next we define a map α : Y → G′ by

α(w1) = (w1, w
?
1). (4.9)

We show that α is an isomorphism. It is immediate that α(0) = (0, 0), and that α is
well-defined. One can prove that for all w1, x1 ∈ Y , α(w1x1) = α(w1) ◦ α(x1). It can be
checked that for any w1 ∈ Y , α(w?

1) = (α(w1))?. So α is a right Ehresmann semigroup
morphism. Also, α is surjective and one-one. Hence, Y and G′ are isomorphic. The proof
is completed. �

Equipped with the notation, given in Theorem 4.10, we prove all the remaining results
of this section.

Lemma 4.11. If 0 6= k1 ∈ Y , then (k1, k
?
1) 6= (0, 0) in G′ such that k?

1 6= 0 in Y , and if
(0, 0) 6= (k1, k

?
1) ∈ G′, then k1 6= 0 (and hence k?

1 6= 0) in Y .

Proof. Let 0 6= k1 ∈ Y . Then by Lemma 2.4, k?
1 6= 0 in Y . Then we have (k1, k

?
1) 6= (0, 0)

in G′. Conversely, let (0, 0) 6= (k1, k
?
1) ∈ G′. On the contrary, suppose that k1 = 0 in Y .
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Then by Lemma 2.4, k?
1 = 0 in Y . So (k1, k

?
1) = (0, 0)—a contradiction. Therefore, k1 6= 0

in Y . Then k?
1 6= 0 in Y . �

Lemma 4.12.

(i) Let w1, x1 ∈ Y be such that w1, x1 6= 0. Then w1 ≤` x1 in Y implies (w1, w
?
1) ≤`

(x1, x
?
1) in G′;

(ii) Let (w1, w
?
1), (x1, x

?
1) ∈ G′ be such that (w1, w

?
1), (x1, x

?
1) 6= (0, 0). Then (w1, w

?
1) ≤`

(x1, x
?
1) in G′ implies w1 ≤` x1 and w?

1 ≤` x
?
1 in Y .

Proof. (i) If w1, x1 ∈ Y with w1, x1 6= 0, then by Lemma 4.11, (w1, w
?
1), (x1, x

?
1) 6= (0, 0)

in G′ such that w?
1, x

?
1 6= 0 in Y . The proof of the implication is the same as that of

implication of Lemma 4.5.
(ii) If (w1, w

?
1), (x1, x

?
1) ∈ G′ with (w1, w

?
1), (x1, x

?
1) 6= (0, 0), then by Lemma 4.11,

w1, x1 6= 0 (and hence w?
1, x

?
1 6= 0) in Y . The proof of the implication is the same as that

of implication of Lemma 4.5. �

Next, from the perspective of order theory, we reveal some properties of the set G′.

Proposition 4.13.

(i) a1 is an atom of Y if and only if (a1, a
?
1) is an atom of G′;

(ii) Y is an atomic poset if and only if G′ is an atomic poset.

Proof. (i) Suppose that a1 is an atom of Y . Then a1 6= 0. By Lemma 4.11, (a1, a
?
1) 6= (0, 0)

in G′. Suppose that for all (0, 0) 6= (k1, k
?
1) ∈ G′,

(k1, k
?
1) ≤` (a1, a

?
1).

Since (k1, k
?
1) 6= (0, 0), by Lemma 4.11, we deduce k1 6= 0 in Y . By Lemma 4.12 (ii),

k1 ≤` a1 in Y . Since a1 is an atom, it follows that k1 = a1. Then k?
1 = a?

1. So (k1, k
?
1) =

(a1, a
?
1). Thus, (a1, a

?
1) is an atom of G′. Conversely, let (a1, a

?
1) be an atom of G′. Then

(a1, a
?
1) 6= (0, 0). By Lemma 4.11, a1 6= 0 in Y . Suppose that for all 0 6= k1 ∈ Y ,

k1 ≤` a1.

Since k1 6= 0, by Lemma 4.11, we deduce (k1, k
?
1) 6= (0, 0) in G′. By Lemma 4.12 (i),

(k1, k
?
1) ≤` (a1, a

?
1) in G′. Since (a1, a

?
1) is an atom, it follows that (k1, k

?
1) = (a1, a

?
1).

Then k1 = a1. Accordingly, a1 is an atom of Y .
(ii) Let Y be an atomic poset. Therefore, for any 0 6= k1 ∈ Y , there is an atom a1 ∈ Y

with a1 ≤` k1. Then by Lemma 4.11, (0, 0) 6= (k1, k
?
1) ∈ G′. By (i), (a1, a

?
1) is an atom of

G′. Then by Lemma 4.12 (i), for all (0, 0) 6= (k1, k
?
1) ∈ G′,

(a1, a
?
1) ≤` (k1, k

?
1).

This implies that every non-zero element of G′ dominates an atom of G′. Thus, G′ is
atomic. Conversely, if G′ is an atomic poset, then for all (0, 0) 6= (k1, k

?
1) ∈ G′, there is an

atom (a1, a
?
1) ∈ G′ with (a1, a

?
1) ≤` (k1, k

?
1). Then by Lemma 4.11, 0 6= k1 ∈ Y . By (i), a1

is an atom of Y . By Lemma 4.12 (ii), for all 0 6= k1 ∈ Y ,

a1 ≤` k1.

Therefore, every non-zero element of Y dominates an atom of Y . Hence, Y is atomic. �
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4.3. Example
We end this section by presenting an example of Zappa-Szép product.

Example 4.14. Let V be a non-empty set containing at least two elements. Suppose
that A and B are non-empty subsets of V such that A ∪B = V and A ∩B = ∅. Put

M = Z = {∅, A,B, V }.
Then (M,∪,?) and (Z,∪,?) are right Ehresmann semigroups by defining m? = m for all
m ∈ M , and z? = z for all z ∈ Z. Define the maps Z × M → M and Z × M → Z by
(z,m) 7→ z · m = m ∪ z and (z,m) 7→ zm = z \ m respectively. It is handy to verify
(Z1)-(Z4). The binary operation ◦ on M × Z is defined by

(m, z) ◦ (m′, z′) = (m(z ·m′), zm′
z′).

Then by (Z1)-(Z4), ◦ is associative. Hence, we have the semigroup (M × Z, ◦), called the
Zappa-Szép product M ./ Z.

Example 4.14 can be found in the contexts of inverse semigroups and left restriction
semigroups in [16] and [28] respectively, in which M = Z = P (X) (a power set of a set
X).
Acknowledgment. I thank to the anonymous referees for their insightful comments
and valuable suggestions to enhance merit in this article.
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