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Abstract 

 

A Brain-Computer Interface (BCI) is a communication system that decodes and transfers 

information directly from the brain to external devices. The electroencephalogram (EEG) 

technique is used to measure the electrical signals corresponding to commands occurring in the 

brain to control functions. The signals used for control applications in BCI are called Motor 

Imagery (MI) EEG signals. EEG signals are noisy, so it is important to use the right methods 

to recognize patterns correctly. This study examined the performances of different classification 

schemes to train networks using Ensemble Subspace Discriminant classifier. Also, the most 

efficient feature space was found using Neighborhood Component Analysis. The maximum 

average accuracy in classifying MI signals corresponding to right-direction and left-direction 

was 80.4% with a subject-specific classification scheme and 250 features. 

 

Keywords: BCI, classification scheme, eeg, feature selection, subject-specific, subject-

independent 

 

1. INTRODUCTION 

 

Everything that occurs with the transfer of 

information through different mediums 

occurs in the communication field. In human 

physiology, the main communication organ 

is the brain. In realizing any function, the 

first message emerges in the brain as 

electrical signals and is transmitted to the 

whole body through neurons. Functions can 

be performed without body parts if the 

electrical signals arising from the messages 

formed in the brain are measured and 

decoded [1]. Brain-Computer Interface 

(BCI) systems replace the place of neurons 

by directly transferring information from the 
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brain to external devices [2]. 

Electroencephalogram (EEG) is the 

technique BCIs generally use to measure 

electrical signals of the brain because it is 

non-invasive and harmless and can be 

portable and low-cost. Thus, BCI can decode 

EEG signals for different brain activities [1]. 

BCI technology can provide many 

applications, especially for people who 

suffer from stroke, spinal cord injury, 

amyotrophic lateral sclerosis, or are 

amputated, by helping them to control 

external devices such as wheelchairs and 

robotic arms [2, 3]. BCIs can also improve 

healthy people’s quality of life by assisting 

them in different activities. Decoding the 
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movement intention from the brain is 

essential to control an external device. EEG 

signals generated in response to movement 

intentions are called Motor Imagery (MI) 

signals [3]. Due to the noisy nature of EEG 

signals (environmental noise, 

Electrocardiography (ECG), 

Electrooculography (EOG), and 

Electromyography (EMG)), it is hard to 

discriminate the class samples [1, 2]. Thus, 

it is important to choose the best 

classification scheme to train a network and 

to determine the most efficient feature space. 

 

If we examine the literature studies using 

different classification schemes, Zhu et al. 

proposed a CNN structure based on CSP to 

preserve temporal information for the 

subject-specific scheme. They obtained 

73.0% for right-hand and left-hand MI EEG 

signals of 25 healthy subjects between the 

ages of 18 and 25 [4]. In another study, Xu 

et al. used VGG16 CNN architecture as a 

transfer learning method for the subject-

specific classification of right-hand and left-

hand MI EEG signals of 9 subjects. They 

have used the STFT output spectrogram of 

the signals as inputs for the CNN. The 

obtained mean accuracy was 74.2% [5]. 

Zhao et al. used a multi-Branch 3D CNN 

architecture for subject-specific 

classification of right-hand and left-hand MI 

EEG signals of 9 subjects. The 3D input of 

the CNN was the signals’ time steps with the 

electrode positions where zero value was 

used for the nonexistent electrodes. The 

average accuracy was %75 [6]. Ha and Jeong 

proposed a Capsule Network for a more 

robust subject-specific classification of 

right-hand and left-hand MI EEG signals 

obtained from 9 subjects. They used 

spectrograms of the STFT method as inputs 

and obtained a 77.0% average accuracy [7]. 

Jin et al. aim to control the complexity of the 

Extreme Learning Machine (ELM) network 

model by excluding redundant hidden 

neurons using sparse Bayesian learning for 

the subject-specific classification of right-

hand and left-hand MI EEG signals of 9 

subjects. The obtained mean accuracy was 

78.5%  [8]. Kwon et al. generated a new 

input based on spectral-spatial filtering using 

mutual information for a CNN structure with 

a feature fusion process to develop a 

calibration-free BCI system. The data 

belong to 54 subjects of right-hand and left-

hand MI EEG signals. They obtained 74.2%, 

and 71.3% mean accuracy for subject-

independent and subject-specific 

classifications, respectively [9]. Zhang et al. 

tried a deep CNN architecture for subject-

specific, subject-independent, and subject-

adaptive classification schemes by adapting 

the network parameters on different levels. 

They obtained 63.5%, 84.2%, and 86.8% 

accuracies with the related schemes for the 

right-hand and left-hand MI EEG signals of 

54 healthy subjects between 24 and 35 years 

of age [10]. Perez-Velasco et al. proposed a 

new CNN structure called EEGSym, which 

employs the use of inception modules and 

residual connections for the Subject-

Independent classification of right-hand and 

left-hand MI EEG signals. They used the 

mid-sagittal plane of the brain as the 

symmetry line. They obtained 84.7% mean 

accuracy for 54 subjects [11]. Dolzhikova et 

al. proposed a Multi-Subject Ensemble Deep 

CNN (MS-En-CNN) approach for the 

subject-independent classification of right-

hand and left-hand MI EEG signals of 54 

subjects based on trial sessions. They 

achieved an 85.4% average accuracy with 

the offline and online phases of session 2 

[12]. 

 

There are also feature extraction and 

analysis studies for a BCI to recognize 

patterns in EEG signals more effectively. In 

a study realized by Raza et al., a method was 

proposed called Transductive Learning with 

Covariate Shift Detection (TLCSD) to detect 

covariate shifting in the distribution of 

features between training and testing phases 

of right-hand and left-hand MI EEG signals. 

The average mean accuracy was 74.92% for 

nine subjects [13]. Xie et al. proposed an 

algorithm for classifying right-hand and left-

hand MI EEG signals by employing sub-

manifold learning of multidimensional 
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Riemannian space of symmetric positive-

definite covariance matrices called Tangent 

Space of Sub-Manifold (TSSM). The 

method gives a 75.5% mean accuracy for 

nine subjects with a Linear Discriminant 

Analysis (LDA) classifier [14]. Sakhavi et 

al. used the Filter Bank Common Spatial 

Pattern (FBCSP) method to extract temporal 

features of right-hand and left-hand MI EEG 

signals as inputs to the CNN architecture. 

They realized the classifications with three 

different scenarios for CNN: convolution 

only over time, convolution only over 

channels, and convolution over both time 

and channel. They obtained a maximum 

average accuracy of 74.5% for nine subjects 

using convolution over time and channel 

[15]. Fu et al. proved that mu rhythms are 

more effective for the binary classification 

of MI EEG signals using CSP features and a 

regularized LDA (RLDA) classifier. The 

average accuracy was 77.0% for seven 

subjects [16]. You et al. used a Flexible 

Analytic Wavelet Transform (FAWT) to 

obtain time-frequency features. They 

reduced the feature space dimension using 

Multidimensional Scaling (MDS) to classify 

four subjects’ right-hand and left-hand MI 

EEG signals. The average accuracy was 

85.3% [17]. Liang and Ma proposed a Multi-

source Fusion Transfer Learning (MFTL) 

based on covariance matrices of Riemannian 

space to choose features of source subjects 

similar to the current subject. Thus, the 

features of the BCI system are always 

calibrated. They obtained 72.5% accuracy 

for the right-hand and both feet MI EEG 

signals of 12 subjects [18]. 

 

As seen from the literature, there are many 

studies about feature extraction and analysis 

studies to improve the classification of EEG 

signals. The studies show that there is still a 

need for improvement. However, the studies 

about the classification schemes generally 

belong to the subject-specific scheme, which 

is used without determining the best 

classification scheme. In this study, we have 

used four classification schemes to 

determine which scheme yields the best 

performance on our data. We evaluated the 

BCI-dependent scheme, which there is no 

study we have come across, as well as 

subject-specific, subject-independent, and 

subject-adaptive. Also, we determined the 

more efficient minimum feature space 

through several procedures to classify right-

direction and left-direction MI EEG signals. 

 

2. MATERIAL AND METHODS 

 

2.1. Dataset 

 

We obtained MI EEG signals related to the 

movements to the right and left direction 

from five healthy subjects. Before the 

recordings, necessary ethical permissions 

and informed consent forms were obtained. 

The signals were recorded in one session 

with two runs with a short break between 

them. The demographic properties of the 

subjects are given in Table 1.  

 
Table 1 The demographic properties of the  

subjects EEG recordings belong to. 

Subject Gender Age 
Total 

Samples 

BCI 

Training 

S1 Female 37 160 Yes 

S2 Female 26 160 No 

S3 Male 22 80 No 

S4 Male 52 80 No 

S5 Female 33 80 No 

 

The EEG signals were obtained using a 14-

channel Emotiv Epoc+ headset. The 

sampling frequency was adjusted to 256 Hz. 

The advantage of this EEG headset is that it 

allows the user to realize cognitive tasks 

outside a medical facility, making it more 

suitable for daily use. The study paradigm 

was created using PsychoPy software, which 

works with EmotivPRO synchronously. 

EmotivPRO does not allow us to label signal 

epochs by itself while obtaining EEG 

signals. However, PsychoPy makes it 

possible to label the epochs of the EEG 

signal.  

 

The paradigm starts with a 10s blank screen 

where the subjects look at it while not doing 
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anything to create the baseline signal of the 

study. Then, a 2s part with a cue starts with 

a ding sound, which shows the right or left 

direction MI task with a command of 

direction. After the cue part, the subjects 

think of the movement associated with the 

command of the direction for 5s with a 

fixation cross appearing on the related 

direction of the screen. The trial ends with a 

ding sound, and the subjects close their eyes 

to rest until another ding sound starts. The 

paradigm is based on thinking of the 

movement in the desired direction, not on 

thinking of the movement of a limb. The 

timing of the cue-guided paradigm of the 

study is shown in Figure 1. 

 

 
Figure 1 The BCI paradigm of the study. 

 

2.2. Preprocessing and Feature 

Extraction 

 

The signals were filtered with a 50 Hz Notch 

filter to eliminate the power noise. Common 

Average Reference (CAR) was applied for 

signal-to-noise optimization. Also, we used 

baseline correction to retract the signal 

distribution around the 0 amplitude position 

to ensure consistency among the signals. The 

3% minimum and maximum outliers of the 

signals were discarded. Finally, the epoch 

signals related to the MI task were extracted. 

The baseline signal, where the subject does 

not realize any cognitive task, was 

subtracted from the epochs obtained from 

frontal lobe channels AF3, F7, F8, and AF4. 

Normally the frequency range preferred for 

EEG signals is 8-30Hz, corresponding to 

Alpha and Beta wavebands [19]. However, 

there are opinions out there that Delta and 

Theta bands can be used for control 

applications which are generally realized 

using MI EEG signals [20-23]. Also, while 

gamma wavebands can be confused with 

muscle activity, they can represent sensory 

processing, movement control, memory, and 

attention besides emotions [24]. Thus, we 

filtered the signals between 0.5 and 100 Hz 

using a bandpass filter.  

 
Table 2. Feature list used in the study. 

Feature 

Types 
Features 

Statistical 

Measures 

Time 

Signal 

Amplitude 
Mean, 

Standard 

Deviation, 

Skewness, 

Kurtosis, 

Entropy 

TK Energy 

Operator 

Frequency PSD 

Time-

Frequency 

WD 

VMD 

HHT 

Nonlinear 

HE 

- 

MSE 

DFA 

CD 

Hjorth params 

 

After preprocessing, time, frequency, time-

frequency, and nonlinear features of EEG 

signals belonging to four channels were 

extracted. Statistical measurements of signal 

amplitudes and Teager-Keiser(TK) energy 

values: mean, standard deviation, skewness, 

kurtosis, and entropy values form the time 

properties of signals. Statistical measures of 

the signal’s Power Spectral Density (PSD) 

values were extracted for frequency features. 

Wavelet Decomposition (WD) [25], Hilbert-

Huang Transform (HHT) [26], and 

Variational Mode Decomposition (VMD) 

[27] methods were applied to the signals to 

obtain time-frequency features. Finally, the 

nonlinear features of the signals were 

extracted to define irregularities and long-

range dependencies because of the EEG 

signals’ nonlinear nature. Hurst Exponent 

(HE), Detrended Fluctuation Analysis 

(DFA), Multiscale Sample Entropy (MSE), 

Correlation Dimension (CD), and Hjorth 

Parameters are the extracted nonlinear 

features [28-30]. The total feature amount 

was 844 for four channels: 40 time features, 
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140 frequency features, 620 time-frequency 

features, and 44 nonlinear features. The 

features used in this study to represent MI 

EEG signals are given in Table 2. 

 

2.3. Classification Schemes 

 

After feature extraction, the classifications 

were realized using Ensemble Subspace 

Discriminant (EnsSubDisc) with 5-fold 

Cross Validation. Ensemble learning 

improves the performance of known 

classifiers using random subspace 

(randomizes the learning over a random 

subspace), bagging (trains several networks 

over random data and takes the average of 

the prediction results), or boosting (changes 

the weights of several trained networks 

based on their performance) methods [31]. 

The signals were classified based on four 

classification schemes: subject-independent, 

subject-specific, subject-adaptive, and BCI-

dependent. 

 

Subject-Specific: In this classification 

scheme, the network is trained and tested for 

each subject using only the same subject’s 

data. 

 

Subject-Independent: Subject-

Independent is the scheme where all the data 

belonging to the subjects except one is used 

for training. The remaining subject’s data is 

tested using the trained network. This is 

called the leave-one-subject-out (LOSO) 

paradigm for evaluation [10]. 

 

Subject-Adaptive: In this classification 

scheme, the data obtained from all the 

subjects are mixed and separated as train and 

test sets. Thus, the data is evaluated as a 

whole, and the performance changes due to 

subjects can be eliminated. The data are 

divided randomly, so we used the average 

results of 5 iterations to generalize the 

performance of the scheme. 

 

BCI-Dependent: The network is trained 

using the data belonging to the subject, 

familiar with a BCI system. The other 

subjects’ data are tested using this trained 

network. Thus, the effects of BCI familiarity 

on other subjects can be evaluated. 

 

As it is understood, subject-independent and 

BCI-dependent classification schemes use 

transfer learning, meaning that the patterns 

learned from a subject can be transferred to 

another [32]. After all the classification 

schemes were used, the extracted features 

were analyzed for the best-performed 

scheme based on the different types of 

features. The whole feature space was 

analyzed using a feature selection algorithm 

called Neighborhood Component Analysis 

(NCA) to find their ranks based on their 

effectiveness. NCA changes the feature 

weights by maximizing the pairwise distance 

of prediction accuracies and assigning a 

penalty parameter to all the features causing 

misclassifications. It is a highly accurate 

algorithm [33]. The EEG signals were 

classified using 844, 800, 750, 700, 650, 

600, 550, 500, 450, 400, 350, 300, 250, 200, 

150, 100, and 50 features based on their rank 

to find the most effective minimum feature 

space. The flowchart of the study is given in 

Figure 2 for a better understanding of the 

procedure. 
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Figure 2 The flowchart of the study indicating the performances of classification  

schemes and feature selection. 

 

3. RESULTS AND DISCUSSION 

 

The performances of classification schemes 

are given in Table 3. From the results, it can 

be surmised that the subject-specific scheme 

is more accurate than the others for this 

dataset with %78.3 average accuracy. 

Interestingly, the third subject’s 

classification results are equivalent to the 

BCI familiar subject’s results. However, 

when we look at the subject-independent 

results, it is obvious that a BCI-familiar 

subject’s data can be classified successfully 

with a network trained with the data of other 

subjects unfamiliar with a BCI system. A 

subject-adaptive classification is the next 

successful classification scheme after 

subject-specific. Also, the standard 

deviation is very small for all the iteration 

results. The BCI-dependent scheme is the 

least successful one, with an average 

accuracy of 55.8%. This low accuracy 

means that the trained network cannot 

recognize the patterns of the subjects 

because they are unfamiliar with a BCI 

system. The samples can be inconsistent. 

Only the results of the four subjects were 

used to calculate the average testing 

accuracy. The first subject’s classification 

result is the trained network’s validation 

performance. 

 

The next procedure was about the 

effectiveness of the feature types on the 

classification performance. Thus, we chose 

the best classification scheme, which is 

subject-specific. 

 

Table 3 Test accuracies obtained for all the classification schemes. (S1-S5: Subjects, Acc: Accuracy, 

Std. Dev.: Standard Deviation, Val: Validation) 

Classification Scheme 
Test Acc (%) for Each Participant Average 

Acc (%) 

Std. 

Dev. S1 S2 S3 S4 S5 

Subject-Specific 95.7 58.3 95.8 70.8 70.8 78.3 15.0 

Subject-Independent 99.5 56.9 58.8 57.5 60.0 66.5 16.5 

Subject-Adaptive 72.3 75.9 75.9 71.7 74.1 74.0 1.8 

BCI-Dependent 94.7(Val) 60.6 65.0 51.2 46.3 55.8 7.4 

 

Table 4 gives the classification results 

belonging to different types of features. It is 

seen from the results that time features are 

more effective for the first three subjects. 

Frequency features are the most effective, 

with an average accuracy of 75.7%. The 

standard deviation is 5.4, meaning that all 

subjects have consistent frequency features. 
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Time-frequency features are especially 

effective for the first subject and are the 

second best, with a 73.3% average accuracy. 

Nonlinear features are the least discriminant 

features, with a 66.9% average accuracy. 

However, they are consistent for all subjects 

with a standard deviation value of 5.0. 

 

Table 4 Test accuracies obtained for all feature types belonging to the subject-specific classification 

scheme. (S1-S5: Subjects, Acc: Accuracy, Std. Dev.: Standard Deviation) 

Feature Type 
Test Acc (%) for Each Participant (Subject-Specific) Average 

Acc (%) 

Std. 

Dev S1 S2 S3 S4 S5 

Time 91.3 68.8 75.0 58.3 50.0 68.7 14.2 

Frequency 78.3 66.7 75.0 75.0 83.3 75.7 5.4 

Time-Frequency 97.8 68.8 75.0 66.7 58.3 73.3 13.4 

Nonlinear 73.9 68.8 70.8 58.3 62.5 66.9 5.0 

We determined the effects of feature types 

on the subject-specific right-hand and left-

hand MI EEG classification. Nevertheless, 

they did not reach the highest accuracy of 

78.3% obtained from a subject-specific 

classification using all the features. Also, it 

is not enough to evaluate the feature types in 

themselves. For example, a feature among 

the nonlinear features can be more effective 

than one among the frequency features. 

Thus, we applied the NCA feature selection 

algorithm to the whole feature space. After 

determining the ranks of all features, we 

have classified the signals using 844, 800, 

750, 700, 650, 600, 550, 500, 450, 400, 350, 

300, 250, 200, 150, 100, and 50 features, to 

find the most effective minimum feature 

space. The best classification average 

accuracy of 80.4% was obtained using 250 

features, which can be seen in Figure 3. The 

results are generally close to each other and 

over 72% until the classification accuracy 

drops to 69.1% and 66.1%, with 100 and 50 

features, respectively. Table 5 shows the true 

positive rates and the classification 

accuracies for all subjects with 250 features. 

As expected, the best classification accuracy 

belongs to the BCI familiar subject, while 

the least classification accuracy belongs to 

the fourth subject. The more accurate 

classified direction is the left one, with an 

82.1% true positive rate. 

 
Table 5 Classification accuracies and true positive rates of the classes obtained using 250 features 

found more discriminant after the NCA application. (S1-S5: Subjects, R: Right-direction, L: Left-

direction, Acc: Accuracy, Std. Dev.: Standard Deviation) 

Classes 
Test Acc (%) for Each Participant (250 Features) Average Acc 

(%) Std. 

Dev. 

S1 S2 S3 S4 S5 

R 92.3 69.2 84.6 78.6 66.7 78.3 

L 100.0 86.4 90.9 50.0 83.3 82.1 

Acc 95.7 77.1 87.5 66.7 75.0 80.4 10.1 

 

In Table 6, a comparison of our study with 

other studies in the literature is given. As 

seen, the majority of the studies are about the 

subject-specific scheme. For the subject-

specific scheme, in terms of accuracy, our 

study comes second after [17], which also 

has the least standard deviation value. Our 

study has given the best performance with a 

subject-specific scheme for our dataset, in 

which the paradigm is not related to any limb 

movement but movement directions. 

However, [9], who tried two classification 

schemes, and [10], who tried three 

classification schemes, obtained the 

maximum average accuracies with subject-

independent and subject-adaptive schemes, 

respectively.  
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Figure 3 Test accuracies for different  

amounts of features of which ranks were 

determined using the feature selection  

algorithm NCA. 

On the other hand, our study is not 

successful enough with subject-independent 

and subject-adaptive schemes. On the 

positive side, our subject-adaptive scheme 

yielded over 70% accuracy, which the 

studies in the literature generally obtained, 

and the standard deviation value is the least 

among the other studies. The BCI-dependent 

scheme has the least average accuracy, with 

55.8%, but there are no other studies for 

comparison purposes. 

 

Table 6. Comparison with the other studies in the literature. 

Classification 

Scheme 
Study Method 

Average 

Acc 

Std. 

Dev. 

Subject-Specific 

[13] TLCSD 74.9 15.4 

[14] TSSM-LDA 75.5 13.2 

[15] FBCSP-CNN 74.5 14.5 

[16] CSP-RLDA 77.0 12.9 

[4] CSP-CNN 73.0 - 

[5] STFT-CNN 74.2 - 

[6] 3D CNN 75.0 7.3 

[7] STFT-Capsule 77.0 - 

[17] FAWT-MDS 85.3 3.7 

[18] MFTL 72.5 10.0 

[8] ELM 78.5 14.3 

[9] CNN-Feature Fusion 71.3 15.9 

[10] CNN 63.5 14.3 

Our Study EnsSubDisc-NCA 80.4 10.1 

Subject-Independent 

[9] CNN-Feature Fusion 74.2 15.8 

[10] CNN 84.2 10.0 

[11] EEGSym CNN 84.7 11.7 

[12] MS-En-CNN 85.4 10.2 

Our Study EnsSubDisc 66.5 16.5 

Subject-Adaptive 
[10] CNN 86.8 11.4 

Our Study EnsSubDisc 74.0 1.8 

BCI-Dependent Our Study EnsSubDisc 55.8 7.4 

 

4. CONCLUSION 

 

In this study, we have examined different 

classification schemes to determine their 

effects and performances while training 

networks to classify right-direction and left-

direction MI EEG signals. The best 

classification performance belongs to the 

subject-specific scheme, unlike in the 

literature where subject-independent and 

subject-adaptive schemes were more 

successful. The minimum feature space was 

found using NCA with 250 features for 

maximum accuracy of 80.4%. Our study was 

most successful using the subject-specific 

scheme, while the others were not. The 

subject-adaptive scheme was the next 

successful one. There are very few studies in 

the literature that use classification schemes 

other than the subject-specific scheme. Our 
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study was the first one that uses BCI-

dependent classification scheme. The result 

will be more meaningful if there are more 

studies about BCI dependency. For a more 

effective BCI system, more classification 

schemes must be examined and the studies 

about other existing classification schemes 

must be increased. Also, feature spaces can 

be chosen for each subject separately and 

simultaneously to create a more adaptive 

BCI system. 
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