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ABSTRACT 
 

In many stability problems, the investigation of pure imaginary roots for a polynomial family is very important. Given a pure 

imaginary complex number, the set of all images of uncertainty vectors is called the value set corresponding to this pure 

imaginary complex number. The question whether these sets contain the origin is very important from robust stability point of 

view of a polynomial family. Cutoff frequency guarantees the noninclusion of the origin to the value set for large frequencies. 

In this paper, we give a procedure for more strict estimation of cutoff frequency and applications of the obtained result to the 

constant inertia problem of a polynomial family. 
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POLİNOM AİLELERİ İÇİN KESME FREKANSI HESABI 

 

ÖZET 
 

Kararlılık problemlerinde, polinom ailesinin pür imajiner köklerinin araştırılması oldukça önemlidir. Pür imajiner bir kompleks 

sayı verildiğinde, belirsizlik vektörlerinin görüntülerinin kümesi bu kompleks sayıya karşılık gelen değer kümesi olarak 

adlandırılır. Değer kümelerinin orijini kapsayıp kapsamadığı sorusu, polinom ailesinin gürbüz kararlılığı açısından çok 

önemlidir. Kesme frekansı, daha büyük frekanslar için değer kümesinin orijini içermemesini garanti eder. Bu çalışmada, kesme 

frekansını daha iyi belirlemek için bir prosedür verilmiştir ve elde edilen sonuçlar polinom ailesinin sabit inersiyon problemine 

uygulanmıştır. 

 

Anahtar Kelimeler: Kesme frekansı, Sabit regüler inersiyon, Multilineer polinom aileleri, Hurwitz kararlılık 

 

 

1. INTRODUCTION 
 

The robust stability and root clustering of polynomials have attracted much attention in control theory 

(see [1-3] and reference therein). We consider a more general case where the coefficients of a 

polynomial depend on uncertainty parameters. A powerful tool for analyzing stability of a polynomial 

family in the frequency domain is the value set approach. The value set depends on the chosen frequency 

which varies in the positive real axis. In this paper our aim is determine an upper bound for the active 

frequencies. 

 

Let 

𝑝(𝑠) = 𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎1𝑠 + 𝑎0      (1) 

be a fixed polynomial. 𝑝(𝑠) is said to be Hurwitz stable if all its roots lie in the open left half plane. 

 

Let polynomial family be defined by 

𝑝(𝑠, 𝑞) = 𝑎𝑛(𝑞)𝑠𝑛 + 𝑎𝑛−1(𝑞)𝑠𝑛−1 + ⋯ + 𝑎1(𝑞)𝑠 + 𝑎0(𝑞)     (2) 
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where the uncertainty vector 𝑞 belongs to a box 𝑄, where 

𝑄 = {(𝑞1, 𝑞2, … , 𝑞𝑙) ∈ ℝ: 𝑞𝑖
− ≤ 𝑞𝑖 ≤ 𝑞𝑖

+, 𝑖 = 1,2, … , 𝑙}      (3) 

and the functions 𝑎𝑖: 𝑄 → ℝ (𝑖 = 1,2, … , 𝑙) are continuous. 

 

Denote the set of all polynomials 𝑝(𝑠, 𝑞) by 𝒫, that is 

𝒫 = {𝑝(𝑠, 𝑞): 𝑞 ∈ 𝑄} .       (4) 

𝒫 is said to be multilinear family if each coefficient function 𝑎𝑖(𝑞) is an affine linear with respect to 

each component of 𝑞 ∈ 𝑄. The family 𝒫 is said to be robust Hurwitz stable if for each 𝑞 ∈ 𝑄 the 

polynomial 𝑝(𝑠, 𝑞) is Hurwitz stable. 

 

Theorem 1 (Zero Exclusion Condition, [1, p. 113]) Suppose that the polynomial family 𝒫 given by (4) 

has invariant degree and at least has one stable member 𝑝(𝑠, 𝑞0). Then 𝒫 is robustly stable if and only 

if 𝑧 = 0 is excluded from the value set 𝐴(𝜔) = {𝑝(𝑗𝜔, 𝑞):  𝑞 ∈  𝑄} at all nonnegative frequencies, i.e., 

0 ∉ 𝑝(𝑗𝜔, 𝑄) 

for all frequencies 𝜔 ≥ 0. 

 

Theorem 1 gives a graphical test for robust stability of the family 𝒫. By watching the value set 𝑝(𝑗𝜔, 𝑄) 

as 𝜔 varies from 0 to +∞, we can check, by inspection, the condition 0 ∉ 𝑝(𝑗𝜔, 𝑄). This raises the 

following question: Can we find possible small cutoff frequency 𝜔𝑐 > 0 such that 0 ∉ 𝑝(𝑗𝜔, 𝑄) for all 

≥ 𝜔𝑐 ? 

 

One estimation for 𝜔𝑐 comes from classical bounds on the roots of a polynomial. It is well-known that 

the roots of a fixed positive coefficient polynomial 𝑝(𝑠) = 𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎1𝑠 + 𝑎0 lie in the 

disc of radius 

𝑅 = 1 +
max{𝑎0, 𝑎1, … , 𝑎𝑛−1}

𝑎𝑛
 

 

with center at the origin (see [4, p. 123], Theorem (27.2)). Hence for any 𝜔 > 𝑅, 𝑠 = 𝑗𝜔 can not be a 

root of the polynomial 𝑝(𝑠). From this it follows that for the polynomial family 𝑝(𝑠, 𝑞) with 𝑎𝑛(𝑞) > 0 

for all 𝑞 ∈ 𝑄, an appropriate cutoff frequency may be given as 

 

𝜔𝑐 = 1 +
max {max

𝑞
𝑎0(𝑞) , max

𝑞
𝑎1(𝑞) , … , max

𝑞
𝑎𝑛−1(𝑞)}

min
𝑞

𝑎𝑛(𝑞)
. 

(5) 

Calculation of the cutoff frequency by (5) gives large value as usually. Therefore, the 

minimization of 𝜔𝑐 becomes an important problem the consideration of which is the subject of 

the next section. 

 

2. MINIMIZATION OF 𝝎𝒄 

 

Consider family (2), where 𝑎𝑖(𝑞) (𝑖 = 0,1, … , 𝑛) are continuous in 𝑞. Consider pure imaginary root 

𝑠 = 𝑗𝜔. We show that the nonexistence of such a root is equivalent to the nonexistence of a common 

solution of two polynomial equations defined on a box. Similar system of two equations for discrete 

polynomial families has been obtained in [5]. 

 

Suppose that the number 𝑠 = 𝑗 𝜔 is a root of 𝒫 and 𝜔 ≠ 0. Then 𝑠 = −𝑗 𝜔 is also a root, and there exist 

𝛼0(𝑞), 𝛼1(𝑞), . . . , 𝛼𝑛−2(𝑞) such that 
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𝑎0(𝑞) + 𝑎1(𝑞)𝑠 + ⋯ + 𝑎𝑛(𝑞)𝑠𝑛 = (𝑠 − 𝑗𝜔)(𝑠 + 𝑗𝜔)(𝛼0(𝑞) + 𝛼1(𝑞)𝑠 + ⋯ + 𝛼𝑛−2 (𝑞)𝑠𝑛−2) 
(6) 

 = (𝑠2 + 𝜔2)(𝛼0(𝑞) + 𝛼1(𝑞)𝑠 + ⋯ + 𝛼𝑛−2 (𝑞)𝑠𝑛−2) 

 

is valid. Taking 𝑡 = 𝜔2 in (6), it follows that the equalities 

 𝑡𝛼0(𝑞) = 𝑎0(𝑞) 

(7) 

 𝑡𝛼1(𝑞) = 𝑎1(𝑞) 

 𝛼0(𝑞) + 𝑡𝛼2(𝑞) = 𝑎2(𝑞) 
 𝛼1(𝑞) + 𝑡𝛼3(𝑞) = 𝑎3(𝑞) 

 ⋮ ⋮ ⋮ 
 𝛼𝑘−2(𝑞) + 𝑡𝛼𝑘(𝑞) = 𝑎𝑘(𝑞) 

 ⋮ ⋮ ⋮ 
 𝛼𝑛−4(𝑞) + 𝑡𝛼𝑛−2(𝑞) = 𝑎𝑛−2(𝑞) 

 𝛼𝑛−3(𝑞) = 𝑎𝑛−1(𝑞) 
 𝛼𝑛−2(𝑞) = 𝑎𝑛(𝑞) 

are satisfied. 

 

Elimination of 𝛼0(𝑞), 𝛼1(𝑞), . . . , 𝛼𝑛−2(𝑞) from (7) reduces the system of equations (7) into the system 

 𝑓1(𝑡, 𝑞) = 0, 
(8) 

 𝑓2(𝑡, 𝑞) = 0. 
If 𝑛 is odd, this system has the form 

𝑓1(𝑡, 𝑞): = 𝑎0(𝑞) − 𝑡𝑎2(𝑞) + 𝑡2𝑎4(𝑞) + ⋯ + 𝑡
𝑛−1

2 𝑎𝑛−1(𝑞) = 0 
 

𝑓2(𝑡, 𝑞) ≔ 𝑎1(𝑞) − 𝑡𝑎3(𝑞) + 𝑡2𝑎5(𝑞) + ⋯ + 𝑡
𝑛−1

2 𝑎𝑛(𝑞) = 0 

If 𝑛 is even, then 

𝑓1(𝑡, 𝑞): = 𝑎0(𝑞) − 𝑡𝑎2(𝑞) + 𝑡2𝑎4(𝑞) + ⋯ + 𝑡
𝑛
2𝑎𝑛(𝑞) = 0 

 
𝑓2(𝑡, 𝑞) ≔ 𝑎1(𝑞) − 𝑡𝑎3(𝑞) + 𝑡2𝑎5(𝑞) + ⋯ + 𝑡

𝑛−2
2 𝑎𝑛−1(𝑞) = 0 

 

For example, assume that 𝑛 = 5. Then the system (8) becomes 

 𝑎0(𝑞) − 𝑡𝑎2(𝑞) + 𝑡2𝑎4(𝑞) = 0, 
(9) 

 𝑎1(𝑞) − 𝑡𝑎3(𝑞) + 𝑡2𝑎5(𝑞) = 0. 
 

Thus we obtain the following result: 

 

Theorem 2 (𝑡∗, 𝑞∗) ∈ (0, ∞) × 𝑄 is a solution of the system (8) if and only if 𝑝(𝑗 𝜔∗, 𝑞∗) = 0, where 

𝑡∗ = 𝑤∗
2. Equivalently, 𝑝(𝑗 𝜔, 𝑞) ≠ 0 for all (𝑡, 𝑞) ∈ [𝜔1, 𝜔2] × 𝑄 if and only if equtaion (8) has no 

solution on [𝑡1, 𝑡2] × 𝑄 where 𝑡1 = 𝜔1
2, 𝑡2 = 𝜔2

2. 

 

Proof: Assume that (𝑡∗, 𝑞∗) ∈ (0, ∞) × 𝑄 is a solution of (8): 
𝑓1(𝑡, 𝑞) = 0,

𝑓2(𝑡, 𝑞) = 0.
 

Then by (6), (7) the polynomial 𝑎0(𝑞∗) + 𝑎1(𝑞∗)𝑠 + ⋯ + 𝑎𝑛(𝑞∗)𝑠𝑛 has roots 𝑠 = ±𝑗𝜔∗, where  

𝑡∗ = 𝜔∗
2, that is 𝑝(𝑗 𝜔∗, 𝑞∗) = 𝑝(−𝑗 𝜔∗, 𝑞∗) = 0. 

Conversely, if 𝑝(𝑗 𝜔∗, 𝑞∗) = 0 then from (6), (7) it follows that 𝑓1(𝑡∗, 𝑞∗) = 𝑓2(𝑡∗, 𝑞∗) = 0, where  

𝑡∗ = 𝜔∗
2. Consequently, (𝑡∗, 𝑞∗) is a solution of (8). 

 

From now on we consider multilinear polynomial family (see Section 1). The following extremal 

property of a scalar multilinear function defined on a box is well-known. 
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Theorem 3 (Extremal property, [1, p. 245])  Suppose 𝑄 is a box in ℝ𝑙 with the set of extreme points 

{𝑞𝑖} and 𝑓: 𝑄 → ℝ is multilinear. Then both the maximum and minimum of 𝑓(𝑞) are attained at extreme 

points. That is 

 max
𝑞∈𝑄

𝑓(𝑞) = max
𝑖

𝑓(𝑞𝑖), 
 

 min
𝑞∈𝑄

𝑓(𝑞) = min
𝑖

𝑓(𝑞𝑖). 

 

Let the family (2) be given, where the functions 𝑎𝑖(𝑞) are multilinear (𝑖 = 0,1, … , 𝑛). In system (8) both 

𝑓1 and 𝑓2 are multilinear on 𝑞 and polynomially dependent on 𝑡. 

The system (8) is almost multilinear and the variables (𝑡, 𝑞) vary on the box [𝜔1
2, 𝜔2

2] × 𝑄. This system 

can be multilinearized by introducing new variables (see [5]). Indeed, if system (8) contains 𝑡𝑘 as the 

greatest power of 𝑡, we can replace 𝑡𝑘 by the product 𝑡1𝑡2 … 𝑡𝑘 where 𝑡1, 𝑡2, …, 𝑡𝑘, are new variables 

and add new equations 𝑡2 − 𝑡1 = 0, 𝑡3 − 𝑡1 = 0, …, 𝑡𝑘 − 𝑡1 = 0 to the system (8) (we set 𝑡1 = 𝑡). This 

new extended system will then be multilinear and Theorem 3 will be applicable. For example, assume 

that 𝑛 = 5. Then the system (9) is transformed into 

 𝑎0(𝑞) − 𝑡1𝑎2(𝑞) + 𝑡1𝑡2𝑎4(𝑞) = 0 

  𝑎1(𝑞) − 𝑡1𝑎3(𝑞) + 𝑡1𝑡2𝑎5(𝑞) = 0 
 𝑡2 − 𝑡1 = 0 

where (𝑡1, 𝑡2, 𝑞) ∈ [𝜔1
2, 𝜔2

2] × [𝜔1
2, 𝜔2

2] × 𝑄. 

 

Given a multilinear family 𝑝(𝑠, 𝑞), our aim is to find possible small 𝜔𝑐. To this end we suggest the 

following algorithm. 

 

Algorithm 1 
i) Given family (2). Write the corresponding system (8) and multilinearize it. 

ii) Find 𝜔𝑐 from (5). 

iii) Construct the intervals [
𝜔𝑐

2

2
, 𝜔𝑐

2], [
𝜔𝑐

2

4
,

𝜔𝑐
2

2
], [

𝜔𝑐
2

8
,

𝜔𝑐
2

4
], … . 

iv) Take the first interval [
𝜔𝑐

2

2
, 𝜔𝑐

2] and check for nonexistence of a root of the obtained multilinear 

system on the extended box [
𝜔𝑐

2

2
, 𝜔𝑐

2] × ⋯ × [
𝜔𝑐

2

2
, 𝜔𝑐

2] × 𝑄 by using Theorem 2. If the nonexistence 

of a root is satisfied then replace [
𝜔𝑐

2

2
, 𝜔𝑐

2] by [
𝜔𝑐

2

4
,

𝜔𝑐
2

2
] and continue. 

v) If nonexistence of a root on some box  [
𝜔𝑐

2

2𝑘+1 ,
𝜔𝑐

2

2𝑘 ] × ⋯ × [
𝜔𝑐

2

2𝑘+1 ,
𝜔𝑐

2

2𝑘 ] × 𝑄 can not be verified then stop. 

The number  �̃�𝑐 = √𝜔𝑐
2

2𝑘 = 𝜔𝑐 ∙ 2−
𝑘

2 is a new cutoff frequency. 

 

Example 1 [1,  p. 183] Consider the model of an experimental oblique wing aircraft. The aircraft transfer 

function is 

𝑃(𝑠) =
64𝑠 + 128

𝑠4 + 3.7𝑠3 + 65.6𝑠2 + 32𝑠
. 

 

We replace 𝑃(𝑠) by the following interval plant family 𝒫 described by 

 𝑃(𝑠, 𝑞, 𝑟) =
𝑞1𝑠 + 𝑞0

𝑠4 + 𝑟3𝑠3 + 𝑟2𝑠2 + 𝑟1𝑠 + 𝑟0
 (10) 

with uncertainty bounds 90 ≤ 𝑞0 ≤ 166, 54 ≤ 𝑞1 ≤ 74, −0.1 ≤ 𝑟0 ≤ 0.1, 30.1 ≤ 𝑟1 ≤ 33.9, 

50.4 ≤ 𝑟2 ≤ 80.8, 2.8 ≤ 𝑟3 ≤ 4.6. 

 

For this interval plant family 𝒫, consider the problem of existence of a robustly stabilizing PI controller 
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𝐶(𝑠) = 𝐾1 +
𝐾2

𝑠
. 

Assume that 0.8 ≤ 𝐾1 ≤ 1.24, 0.01 ≤ 𝐾2 ≤ 0.84. The closed loop characteristic polynomial is 

𝑝(𝑠, 𝑞, 𝑟, 𝐾1, 𝐾2) = 𝑠5 + 𝑟3𝑠4 + 𝑟2𝑠3 + (𝑟1 + 𝑞1𝐾1)𝑠2 + (𝑟0 + 𝑞0𝐾1 + 𝑞1𝐾2)𝑠 + 𝑞0𝐾2. (11) 

This polynomial family is multilinear. Calculation 𝜔𝑐 by (5) gives 𝜔𝑐 = 269.1. Now apply Algortihm 

1 to reduce 𝜔𝑐. After 4 steps we arrive at the value 𝜔𝑐 = 16.81875. The above intervals for the 

parameters 𝐾1 and 𝐾2 are taken from [1] (see [1], p. 186, Fig. 11.5.2) where by using Routh tables the 

set of robust stabilizing parameters are obtained graphically. In the next section, we will prove that the 

set of all (𝐾1, 𝐾2) satisfying 0.8 ≤ 𝐾1 ≤ 1.24, 0.01 ≤ 𝐾2 ≤ 0.84 are stabilizing by using Sixteen Plant 

Theorem and the value 𝜔𝑐 = 16.81875. 

 

3. CONSTANT REGULAR INERTIA PROBLEM FOR A MULTILINEAR FAMILY 
 

Let polynomial (1) with 𝑎𝑛 ≠ 0 be given. Define the ordered triple (𝑛1, 𝑛2, 𝑛3) where 

𝑛1 + 𝑛2 + 𝑛3 = 𝑛 and 𝑛1 is the number of roots in the open left half plane, 𝑛2 is the number of roots on 

the imaginary axis and 𝑛3 is the number of roots in the open right-half plane. The ordered triple 

(𝑛1, 𝑛2, 𝑛3) is called the inertia of polynomial (1). If polynomial (1) is Hurwitz stable then its inertia is 

(𝑛, 0,0). In the case of 𝑛2 = 0 the inertia is called regular. 

 

Theorem 4 Let multilinear family (2) be given, assume that the point 𝑠 = 0 is not a root of 𝒫 and 𝒫 has 

at least one polynomial with regular inertia (𝛼, 0, 𝛽). Then 𝒫 has constant regular inertia (𝛼, 0, 𝛽) if and 

only if the system (8) has no solution on [0, 𝜔𝑐
2] ×  𝑄 ⊂ ℝ𝑙+1. 

 

After finding a suitable 𝜔𝑐 by using the results from the previous section, we get the following algorithm 

for checking the inertia of a multilinear family. 

 

Algorithm 2 

i) Let multilinear family (2) be given and the least one polynomial has regular inertia (𝛼, 0, 𝛽). Using 

Theorem 3, check the nonexistence of the root 𝑠 = 0. Otherwise 𝒫 has no constant regular inertia 

(𝛼, 0, 𝛽). 

ii) Obtain the equations 𝑓1(𝑡, 𝑞) = 0, 𝑓2(𝑡, 𝑞) = 0. 
iii) Multilinearize this system by replacing 𝑡 = 𝑡1 and introducing new variables 𝑡1, 𝑡2, …, 𝑡𝑘 and new 

equation 

 𝑓1(𝑡1, 𝑡2, … , 𝑡𝑘 , 𝑞) = 0,  
𝑓1(𝑡1, 𝑡2, … , 𝑡𝑘 , 𝑞) = 0,  

(12) 
 𝑡2 − 𝑡1 = 0, 

𝑡3 − 𝑡1 = 0, 

⋮ 
𝑡𝑘 − 𝑡1 = 0 

 

where (𝑡1, 𝑡2, … , 𝑡𝑘 , 𝑞) ∈ [0, 𝜔𝑐
2] × ⋯ × [0, 𝜔𝑐

2] × 𝑄 ⊂ ℝ𝑘+𝑙. 

iv) Using Theorem 3, calculate the ranges of all functions (12). If at least one range does not contain 

zero, then stop. The family 𝒫 has regular inertia (𝛼, 0, 𝛽). Otherwise apply the next step. 

 

Example 2 Consider again the characteristic polynomial (11). According to the Sixteen Plant Theorem, 

the family (11) is robust stable if and only if all 16 Kharitonov polynomials are stable [1, p. 182]. All 

Kharitonov polynomials are affine with respect to (𝐾1, 𝐾2) and have members with inertia (5,0,0). We 

have applied Algorithm 2 to all Kharitonov polynomials. As a result, all 16 families have regular inertia 

(5,0,0) and each (𝐾1, 𝐾2) from the rectangle 0.8 ≤ 𝐾1 ≤ 1.24, 0.01 ≤ 𝐾2 ≤ 0.84 is stabilizing for the 
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plant (10) (see Figure 1 and Table 1). Numbers of required steps for each Kharitonov polynomial are 

given in Table 1. 

 

 
Figure 1: The set of robust stabilizing parameters and the rectangle 

0.8 ≤ 𝐾1 ≤ 1.24, 0.01 ≤ 𝐾2 ≤ 0.84 

 

Table 1. For Example 2, the numbers of steps are given in the second column 
 

Kharitonov polinomial families correspond to the polynomial family (11) steps 

𝑝1,1(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 80.8𝑠3 + (54𝐾1 + 30.1)𝑠2 + (90𝐾1 + 54𝐾2 − 0.1)𝑠 + 90𝐾2 62 
𝑝1,2(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 50.4𝑠3 + (54𝐾1 + 33.9)𝑠2 + (90𝐾1 + 54𝐾2 + 0.1)𝑠 + 90𝐾2 48 
𝑝1,3(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 50.4𝑠3 + (54𝐾1 + 30.1)𝑠2 + (90𝐾1 + 54𝐾2 + 0.1)𝑠 + 90𝐾2 44 
𝑝1,4(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 80.8𝑠3 + (54𝐾1 + 33.9)𝑠2 + (90𝐾1 + 54𝐾2 − 0.1)𝑠 + 90𝐾2 42 

𝑝2,1(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 80.8𝑠3 + (74𝐾1 + 30.1)𝑠2 + (166𝐾1 + 74𝐾2 − 0.1)𝑠 + 166𝐾2 44 
𝑝2,2(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 50.4𝑠3 + (74𝐾1 + 33.9)𝑠2 + (166𝐾1 + 74𝐾2 + 0.1)𝑠 + 166𝐾2 116 
𝑝2,3(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 50.4𝑠3 + (74𝐾1 + 30.1)𝑠2 + (166𝐾1 + 74𝐾2 + 0.1)𝑠 + 166𝐾2 38 
𝑝2,4(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 80.8𝑠3 + (74𝐾1 + 33.9)𝑠2 + (166𝐾1 + 74𝐾2 − 0.1)𝑠 + 166𝐾2 38 
𝑝3,1(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 80.8𝑠3 + (54𝐾1 + 30.1)𝑠2 + (166𝐾1 + 54𝐾2 − 0.1)𝑠 + 166𝐾2 110 
𝑝3,2(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 50.4𝑠3 + (54𝐾1 + 33.9)𝑠2 + (166𝐾1 + 54𝐾2 + 0.1)𝑠 + 166𝐾2 50 
𝑝3,3(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 50.4𝑠3 + (54𝐾1 + 30.1)𝑠2 + (166𝐾1 + 54𝐾2 + 0.1)𝑠 + 166𝐾2 40 
𝑝3,4(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 80.8𝑠3 + (54𝐾1 + 33.9)𝑠2 + (166𝐾1 + 54𝐾2 − 0.1)𝑠 + 166𝐾2 52 

𝑝4,1(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 80.8𝑠3 + (74𝐾1 + 30.1)𝑠2 + (90𝐾1 + 74𝐾2 − 0.1)𝑠 + 90𝐾2 42 
𝑝4,2(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 50.4𝑠3 + (74𝐾1 + 33.9)𝑠2 + (90𝐾1 + 74𝐾2 + 0.1)𝑠 + 90𝐾2 60 
𝑝4,3(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 4.6𝑠4 + 50.4𝑠3 + (74𝐾1 + 30.1)𝑠2 + (90𝐾1 + 74𝐾2 + 0.1)𝑠 + 90𝐾2 36 
𝑝4,4(𝑠, 𝐾1, 𝐾2) = 𝑠5 + 2.8𝑠4 + 80.8𝑠3 + (74𝐾1 + 33.9)𝑠2 + (90𝐾1 + 74𝐾2 − 0.1)𝑠 + 90𝐾2 42 

 

4. CONCLUSIONS 

 

In this work, two procedures are given for strict estimation of cutoff frequency and the constant inertia 

problem of a polynomial family. The cutoff frequency for a multilinear polynomial family obtained by 

the classical calculations can be minimized by Algorithm 1. After finding a suitable 𝜔𝑐, the inertia of 

this family can be checked by Algorithm 2. An application of these algorithms to an interval plant family 

is also provided.  

 

 



Büyükköroğlu and Çelebi / Anadolu Univ. J. of Sci. and Tech. B – Theoretical Sci. 5 (1) – 2017 
 

76 

ACKNOWLEDGMENTS 

The authors would like to thank the Editor and referees for the valuable comments. 

 

REFERENCES 

 

[1] Barmish BR. New Tools for Robustness of Linear Systems. Macmillan, New York, 1994. 

 

[2] Bhattacharyya SP. Chapellat H and Keel LH. Robust Control: The Parametric Approach. Prentice 

Hall PTR, 1995. 

 

[3] Petersen IR, Tempo R. Robust Control of Uncertain Systems: Classical Results and Recent 

Developments. Automatica, 50, pp 1315-1335, 2014. 

 

[4] Marden M. Geometry of Polynomials. American Mathematical Society, Providence, R.I., 1966. 

 

[5] Akyar H, Büyükköroğlu T and Dzhafarov V. On stability of parametrized families of polynomials 

and matrices, Abstract and Applied Analysis, vol. 2010, Article ID 687951, 16 pages, 2010. 


