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ABSTRACT.  This paper deals with a class of nonlinear fractional boundary value problems at resonance with
Caputo-Fabrizio fractional derivative. We establish some new necessary conditions for the existence of positive
solutions for the fractional boundary value problems at resonance by using the Leggett-Williams norm-type theorem
for coincidences due to O’ Regan and Zima. Some examples are constructed to support our results.
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1. INTRODUCTION

This paper is concerned with positive solutions of the following two-point fractional boundary value problem
(FBVP)

CEDTu(x) + f(x,u(x)) =0, ae(1,2], xel0,1], (1.1)
uw(0)=0, «'0)=u'(), (1.2)

where CFODT is the Caputo-Fabrizio derivative of order @ which has non-singular kernel defined below, f € C([O, 1] x

[0, o0), [0, 00)) is a L'-Carathéodory function. FBVP (1.1) happens to be resonance because the following linear FBVP

CEDTu(x) + Au(x) =0,, ae(1,2], xel0,1],
u(0)=0, ' 0)=u(1)

has an eigenvalue A = 0.

Over the recent decades, FBVPs have received much attention and have been extensively investigated due to their
valuable role in the mathematical modelling of physical phenomena in the science and engineering [16,20,24] . There
exist many papers devoted to the existence of solutions or positive solutions for nonresonant FVPs. ( see, e.g, [2,
9,10,12,13,29,31]). In [2], existence results for sequential fractional integro-differential equations and inclusions
with non-local boundary conditions have been presented. Nonlinear fractional boundary value problems with integral
boundary conditions have been considered in [9]. Positive solutions of nonlinear fractional differential equations
have been studied in [29]. Uniqueness results for fractional boundary value problems have been established in [12].
New results on uniqueness of fractional differential equations have been also established in [13]. Positive solutions
for a nonlocal fractional boundary value problems have been presented in [29]. Uniqueness results for higher order
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fractional differential equations have been presented in [31]. Unlike the nonresonant case, the study of the existence of
positive solutions of FBVPs at resonance requires more efforts and there are limited works on this direction. The main
tool in proving the existence of positive solution to FBVPs at resonance includes the coincidence degree theory and
Leggett—Williams norm-type theorem. We cite some recent papers on FBVPs at resonance [17,18,21,22,28,30]. The
existence of positive solutions for multi-point boundary value problems at resonance using the Leggett—Williams norm-
type theorem due to O’Regan and Zima has been studied in [17]. With the help of the coincidence degree theory due to
Mawhin and constructing suitable operators, [18] has studied the existence of solutions to boundary value problems of
fractional differential equations at resonance. In [21], solvability of three-point nonlinear FBVP at resonance using the
Riemann-Liouville fractional derivative has been established by means of the coincidence degree theory. The authors
in [22] have studied a resonant functional boundary value problem of fractional order using the coincidence degree
theory of Mawhin. The existence of positive solution for a class of second-order m -point boundary value problems
under different resonant conditions using the Leggett—Williams norm-type theorem due to O’Regan and Zima has been
presented in [28]. The authors in [30] have considered three-point FBVP and have established sufficient conditions for
the existence of positive solutions using the fixed point index theory and iterative technique.

To the best of the author’s knowledge, the existing studies are mostly devoted to FBVPs at resonance using the
Riemann-Liouville or Caputo fractional derivatives. There is no contribution on FBVPs at resonance with the Caputo-
Fabrizio fractional derivative. The main goal of this paper is to fill this gap in the literature. The key ingredient
in our analysis is the Leggett-Williams norm-type theorem for coincidences due to O’Regan and Zima [25]. The
main feature of the Caputo-Fabrizio fractional derivative is that the kernel which consists of the convolution of the
classical derivative with the exponential function is not singular [11]. Although the kernel of this new fractional
operator is not singular, it has heterogeneous properties as the commonly used fractional derivative operator [6]. This
new fractional derivative operator has been further investigated by some authors. Some linear fractional differential
equations involving this new fractional derivative have been studied in [23]. Maximum principle of FBVPs using the
Caputo-Fabrizio fractional derivative has been studied in [3, 5, 19]. The existence and uniqueness of the solutions
for FBVPs involving this new fractional derivative have been extensively studied in the literature [1, 3, 6, 8, 26, 27].
Numerical solution of the space-time Caputo-Fabrizio fractional derivative with applications to groundwater pollution
equation has been investigated in [7] and the mathematical modelling of wave movement on the surface of shallow
water with the Caputo-Fabrizio fractional derivative has been studied in [4]. The Caputo-Fabrizio fractional derivative
operator has been further used for modelling many physical phenomena including mass-spring-damper system [15,32],
fractional Fisher’s equation [5], elasticity model [11], Lienard model [15] and KdV-Burgers equation with fractional
order [4, 14].

In this study, a positive solution of FBVP (1.1)-(1.2) means that a nonnegative solution # € C[0, 1] which has no
zero on [0, 1] solves the problem (1.1)-(1.2) and CED(Iyu e L'[0,1].

2. PRELIMINARIES AND USEFUL LEMMAS

This section introduces some definitions and useful lemmas that will be needed in the following.

Definition 2.1. [11,23]Let f € H'(a,b), a < band a € (0, 1]. The fractional Caputo-Fabrizio derivative is defined
as

Q-a)M(a) a
CF na _ ’
D0+u(x) = wﬁ exp( - 1= a()C - t))lx[ (t) dt, t> 0,
where M(«) is a normalization function with M(0) = M(1) = 1.

Definition 2.2. [23] The Caputo-Fabrizio fractional integral of order a € (0, 1) is defined as
2(1 —a) 2a %
CF ra
Tou(x) = u(x) + f u(s)ds.
0 2 - a)M(a) 2 - a)M(@) Jo
2(1 —a) 2a
+
C-o)M@) 2-a)M(a)

Imposing = 1, we can have an explicit expressing for M(a), « € (0, 1] given as

2
M(a) = m
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The high order Caputo-Fabrizio fractional of order o = @ + n for @ € (0, 1) and n € N is defined as
FDIu(x) == “F D, (°F D, u(x)).

AC[0, 1] denotes the space of absolutely continuous functions on the interval [0, 1] and ACy,.(0, 1] be the space
consisting of functions that are absolutely continuous on every interval [a, 1] C (0, 1].

Lemma 2.3. [11] Assume a > 0. For any u € L'(0, 1), we have

CF 7OCF 1y o u®0)
Zy™" Dyu(x) = u(x) - X xelo1], uerr(o1], 2.1)
k=0 !
CFDchIgu(x) = M(.x), Where n= [a] + 1. (22)

The Laplace transform of the Caputo-Fabrizio fractional of order o = a + n for « € (0,1) and n € N is given by [11]

SLLFNS) = " F(0) = 5 F1(0) - = f7(0)

s+a(l-ys)

LI Dgu|(s) =

3. MAIN RESULT
We need the following definition in proving the existence of positive solution.

Definition 3.1. A linear mapping L : dom L ¢ X — Y between two real normed spaces X and Y is called a Fredholm
mapping provided that

(i) The dimension of Ker L is finite
(ii) Im L is closed and its codimension is finite.

The Fredholm index Ind L of a Fredholm mapping L is defined to be the integer given by Ind L = dim Ker L —
codim Im L. In this paper, we consider Fredholm operator of index zero.
Consider the Banach space X = C[0, 1] with the sup-norm [|ullcc = maXyefo,17 [u(x)| and we set ¥ = L'[0, 1] with the

usual norm denoted by |Jul|; = fOl lu(t)| dt.
Define the set domL = {u € X : u € AC"[0,1],“4D{u(x) € ¥, u(0) = 0,u'(0) = w/(1)}. Let the operator
L :domL — Y be given by

Lu(x) = —CEDTu(x)},

where 1 <a <2.LetN : X — Y be defined as Nu(x) = f(x, u(x)), x € [0, 1]. Then, FBVP problem (1.1) is equivalent
to the equation Lu = Nu, u € domlL.

Throughout the paper, we assume that the operator L is a Fredholm operator of index zero, that is, /mL is closed and
dimKer L = codimIm L < co. This assumption guarantees that there are two projections P : X - X, Q:Y - Y
such that

ImP=KerlL, KerQ=ImL,
X=KerLeKerP, Y=ImL®ImQ.

It follows that L|gom rnkerp — Im L is invertible. We denote the inverse by Kp. The generalized inverse of L is denoted
by Kpp : Y — dom L N Ker P and is defined by Kpp = Kp(I — Q).

Definition 3.2. Let L : dom L c— X — Y be a Fredholm operator and Z be a metric space. A mapping N : Z — Y is
called L-compact on Z provided that ON : Z — Y is continuous and bounded and KppN : Z — X is compact on Z.

Definition 3.3. The function f satisfies the Carathéodory conditions with respect to L'[0, 1] if the following conditions
hold:

(f1) For each u € R, the mapping x — f(x, u) is Lebesgue measurable on [0, 1],

(f2) For a.e. x € [0, 1], the mapping u — f(x, u) is continuous on R,

(f3) For each r > 0, there exists a nonnegative ¢,(x) € L'[0, 1] such that, for a.e. x € [0, 1] and every u such that
lu] < r, we have |f(x, u)| < ¢,(x).

In order to prove the existence of a positive solution of the equation Lu = Nu, we will need the following coincidence
degree theorem due to O’ Regan and Zima [25].
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Lemma 3.4. Let L : domL c X — Y be a Fredholm operator of index zero and N : X — Y be L-compact on Q.
Assume that the following conditions are satisfied:

(1) Lx # ANx for every (x, 2) € ((dom L\ Ker L) N Q) x (0, 1),
(2) Nx ¢ ImL for every x € Ker L N 9Q,
(3) deg(ONlkerr» QN KerL,0) # 0, where Q : Y — Y is a projection such that Im L = Ker Q.

Then, the equation Lu = Nu has at least one solution in dom L N Q.

Lemma 3.5. Let L be defined as above, then
KerL={ueX|ukx)=cxc €R,Vxel0,1]},

1
ImL = {v €Y f [(a —Dw(s) — (2 - a/)v'(s)]ds = 0}.
0
Proof. From (2.2), the equation Lu = 0 has a solution u(x) = ¢¢ + c;x. Applying the boundary conditions (1.2) implies

u(x) = c1x, thus we have the first assertion.
For v € Im L, there exists u € dom L such thatv = Lu € Y. Using (2.1), we have

u(x) = 1) f v(s)ds + h f (x = s)v(s)ds + ¢y + c1x. 3.1

From the boundary condition u(O) =0, we find ¢y = 0 and that

N 2-a a-1 x
u'(x) = M(a—l)v(x)+M(a—1)f0 v(s)ds + cy.

Now the boundary condition #’(0) = u’(1) implies that v satisfies fol [(a - v(s) = 2 - a)v’(s)]ds = 0. Thus, we

get the second assertion. On the other hand, suppose v € Y and satisfies fol [ (@—-1Dv(s) -2 - a)v’(s)]ds = 0. Let
u(x) = I v(x), then u € dom L and 4 DY (u(x) = v(x). So that, v € Im L. The proof is completed. o

Lemma 3.6. Let L : domL C X — Y be defined as above. Then the operator L is a Fredholm operator of index zero
and the linear continuous projector operators P : X — X and Q : Y — Y can be defined as

Pu(x) = u'(0)x, Vxe[0,1],

1 1
0 = — [ [t~ - 2= fds,

and the linear operator Kp : ImL. — dom L N Ker P can be expressed as

va=% xv(s)ds+ T f (x = $)v(s)ds.

Proof. Tt is easy to see that
Py = Pu, ImP=KerL, X =KerL®KerP. (3.2)

Moreover, we observe that Ker Q = ImL. For y € Y, we can easily get that 9%y = Qy, i.e. Q : Y — Y is a projection.

Sety=(Qy—0y)+ Qy. Then,y— QyeKerQ =ImL, QyelmQ.Itis easy to see that Im O N ImL = {0}. Thus, we
have Y = Im L @ Im Q. This, together with (3.2), means that L is a Fredholm operator of index zero.

With the help of (3.1), one can prove that Kp is the inverse of Ll 1nkerp- Therefore, the proof is now completed.

m]

Lemma 3.7. Assume Q C X is an open bounded subset and dom L N Q # @, then the operator N is L-compact on Q.

Proof Since f : [0,1] X [0,00) — [0, ) is a L!'-Carathéodory function, we infer that QN(Q) is continuous and
bounded and Kp(I — Q)N(Q) is continuous due to the Lebesgue dominated convergence theorem. By the Arzeld-Ascoli
theorem, we shall prove Kp(I — Q)N : X — X is equicontinuous.

Since f a L'-Carathéodory function, for each r > 0, there exists a constant r > 0 such that |(I — Q)Nu| < M for
lul < r,ae. x€[0,1], where M := ||¢,ll 1) -
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ForO<x; <x, <1, |ul <r, wehave

1 &
IKp(I = QNu (x2) = Kp(I = QNu (x| < > [I 2- a)f (I = Q)Nu(s)ds
(@=1) x

#@=D(1 [ a=mds+ [ oo - ONusids )

K 2_ 2
< m[(xz —xp) + (x5 — xl)),
where K := max{M,2-«, %}. The right-hand side of the above inequality tends to zero as x, — x;, thus we have proved
that Kp(I — Q)N(Q) is equicontinuous. It follows from Ascoli-Arzela theorem that Kp(I — Q)N : Q — X is compact.
The proof is completed.

We are now in a position to prove our main results. We need to impose the following conditions.

HD 1f(xwl < () + g0)lul, ¥, g € C[0,1]

with M(o — 1) - 2max{2 — a,a — 1}|lgll< > O.
(H2) There exists a ¢y > 0 such that Yu € R with |u| > ¢ and

o [ fO‘ |(@ = DNu(s) - 2 - a)(Nu(s))’]ds] £ 0.

Lemma 3.8. Suppose the conditions (H1) and (H2) hold true, then the set Q1 = {u € domL\KerL | Lu = ANu, 1 €
(0, 1)} is bounded.

Proof. Foru € Q;, we have u € dom L\ Ker L and Nu € Im L. By Lemma 3.5, f0‘ |(@=1)Nu(s)-2-a)(Nu(s)y |ds = 0.
Using the condition (H2), there exists xq such that |u(xy)| < ¢o. From the equation Lu = ANu, u(0) = 0, we have the
following equation with L = —4

M(a-T)
u(x) = L[(Z —-) fx Nu(s)ds+ (a@—-1) fx(x - s)Nu(s)ds] + 1’ (0)x. (3.3)
0 0
Hence, using the condition (H1) we obtain
| (0)x0] < co + ﬁ[(z - ) fo INu(s)|ds + (@ — 1) fo xo(xo — )INu(s)lds]

<co+ ﬁ[ jo‘xo INu(s)|ds + ﬁxo(xo - s)INu(s)Ids]

A
<o+ = (Wlloo + llglleolleellco) »

M(a-1)
where A = max{2 — @, @ — 1} Then, plugging this into the equation (3.3) gives ||u|| < co + % (Il + lglloollzelloo) -
. N coM(a — 1) + 2A|Yllw ,
Therefore, the condition M(a — 1) — 2A||g|l~ > 0 implies that |Ju|| < = M,, So Q; is bounded.
. M(a - 1) - 2Allgllw
The proof is now completed. O

Lemma 3.9. Suppose (H2) holds, then the set
Q) ={u|lueKerL, NuelmlL}isbounded.

Proof. For u € Q,, for some constant ¢ we have u(x) = cx and N (cx) € Im L = Ker Q. Thus, we have Q(N(cx)) = 0
which means that

1
f [(@ = DN (es)ds - (2 = a)(N (cs))'ds = 0.
0
Using the condition (H2), we obtain that |u| < ¢(. This implies 2, is bounded. The proof is now completed. O

Lemma 3.10. Suppose (H2) holds, then the set
Qs ={ueKerL|Au+(1-2)0ONu=0,4¢€ [0, 1]} is bounded.
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Proof. For u € Q3 we have u(x) = cx for some constant ¢ and
1 1
Acx + (1 - /l)m f [(@=DN(cs) =2 —a)N(cs))]ds =0. (3.4)
- 0

If A =1, then ¢ = 0 and we are done. If A € [0, 1) and |u| > ¢, then by (H2) we infer that,

1
1- /l)ﬁ j; [(@ = 1)N(cs) — (2 — a)N'(cs)]ds > 0.

This together with (3.4) leads to Acpx < 0. Since x € [0, 1], A4 € [0, 1), one has to have ¢y < 0, a contradiction. As a
result, )3 is bounded. |

Theorem 3.11. Suppose (H1) —(H2) hold true and f is a L'-Carathéodory function with the propriety that f(x,u) 0
for x € Q. Then, the problem (1.1)-(1.2) has at least one solution in X.

Proof. Let Q be an open and bounded such that Q = Ufllen, where Q,,,n = 1,2, 3 is given in above lemmas 3.8-3.10.
It follows from Lemma 3.6 and Lemma 3.7 that L is a Fredholm operator of index zero and N is L-compact on Q. In
the light of Lemma 3.8 and Lemma 3.9, the conditions (1) and (2) of Lemma 3.4 are satisfied. Define

H(u, ) = tAu + (1 — )QONu.

It follows from Lemma 3.10 that H(u,1) # 0 for u € Ker L N Q. Since the degree is invariant with respect to a
homotopy, for u € Ker L N 0Q we have
deg (ONlkerr » QN Ker L, 0) = deg(H(+,0), QN Ker L,0)
=deg(H(-,1),Q2 N KerL,0)
=deg(xl,QNKerL,0)#0.

Thus, the condition (3) of Lemn_la 3.4 is satisfied. Consequently, by Lemma 3.4, there exists at least one solution to the
equation Lx = Nx in dom L N Q. Therefore, the BVP (1.1) has at least one solution that is not identically zero since
f(x,u) # 0 for x € Q. Therefore, the proof is completed. O

4. EXAMPLES
In this section, we give numerical examples to illustrate our theoretical results.
Example 4.1. Consider the following FBVP at resonance
3
PDu(x) = f(x,u(x)), 0<x<l1, 4.1)
u0)=0, u(0)=u(1),
where
Fw = =10+ 2o
xu) =7 (u 7€
Define y/(x) =4, g(x) = 1. Then, we have f(x,u) < [(x)| + g(x)|u| and M(g - 1) -2(3/2-1)3 = 3 > 0. Thus, (HI)

is fulfilled. Moreover, we take ¢y = 11 and (H2) is satisfied. Then, by Theorem 3.11, the FBVP (4.1) has at least one
positive solution.

Example 4.2. Consider the FBVP (4.1) with
5 1 )
f(x,u) = 3 + m(x + D(u”(x) + u(x)).

Define ¢/(x) = 3, g(x) = %. Then, we have f(x,u) < |y(x)| + g(x)lu| and M(g - 1) -2(3/2-1)3 = I > 0. Thus,

(H1) is fulfilled. Moreover, we take ¢y = 1 and (H2) is satisfied. Then, by Theorem 3.11, the FBVP (4.1) has at least
one positive solution.
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5. CoNCLUSION

We present new results on the existence of positive solutions for the Caputo-Fabrizio fractional differential equation
at resonance assuming that the growth conditions on the nonlinear function hold. The main tool in proving the existence
of positive solution is the the Leggett-Williams norm-type theorem for coincidences due to O’ Regan and Zima. Some
numerical examples are given to illustrate the efficiency of the theoretical results.
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