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Öz: Süperdoymuş bir buhar içinde damlacık oluşumu sırasında saf bir numunenin davranışı ve yarı sıvı-
gaz faz eğrisi altındaki kararlı bölgedeki büyük genlikli yoğunluk dalgalanmaları sonucunda buhar fazından 
damlacıklar oluşumu süreçleri araştırılmıştır. Fisher modeli temelinde, çeşitli doyma oranları için, kritik su 
damlacıklarının oluşumu esnasındaki serbest enerji değişimleri damlacık yarıçapının bir fonksiyonu olarak 
hesaplanmıştır. Damlacık yüzeyinin küresel şekil alması ile yüzey serbest enerjisi ile bağlantılı olan toplam 
entropinin azalmasını tanımlayan geometrik terimin kritik damlacık oluşumlarını tanımlayan toplam serbest 
enerjide anlamlı değişmelere neden olduğu gözlenmiştir. 

 
Anahtar kelimeler: Süperdoyma oranı, damlacık oluşumu, doyma yoğunluğu.

 
 

Free Energy Change of Droplet Formation in a Supersaturated Vapor 
 

Abstract: The behavior of the pure substances during the condensation of liquid droplets in a 
supersaturated vapor and, the mechanism of homogeneous nucleation of vapor to liquid droplets that may occur 
as a result of large amplitude density fluctuations within the coexistence line in the metastable region have been 
investigated. The free energy change accompanying the formation of a critical water drop is calculated as a 
function of droplet radius for various saturation ratios on the basis of Fisher’s model. It is observed that a 
geometric term due to the fact that the surface of a drop relaxes to spherical shape which reduces the total 
entropy associated with the surface free energy, produces significant changes in total free energy change of 
critical droplet formation. 

 
Keywords: Supersaturation ratio, droplet formation, saturation density.

 
 

1. Introduction 

Here in this study we discuss only the 

behavior of the pure substances during the 

condensation of liquid droplets in a 

supersaturated vapor, so that the processes 

by which condensation is initiated are 

homogeneous. This is important not only for 

our understanding of physical processes 

involved in condensation or liquid fracture 

but also for natural and industrial processes. 

Metastable fluid states are observed both 

theoretically and experimentally in the 

liquid-gas phase transition region, where the 

fluids have very distinguishing properties 

(Schmidt et al., 1997; Ogul, 1998; 

Kalikmanov and van Dongen, 1995; 

Goodman at al., 1984; Ogul and Atav, 2003; 

Fisher, 1982; Abraham, 1979; Vicentini et 

al., 1985). It is instructive to investigate the 

thermodynamic properties of fluids under 

extreme conditions of low densities and high 

temperatures. Besides their general interest 
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for the abovementioned applications, these 

studies are also very important for our 

understanding of the behavior of heat fluxes 

in thermal systems.  

The development of density 

inhomogeneities in any initially 

homogeneous matter can be classified as 

spinodal decomposition and nucleation of 

droplets. Spinodal decomposition occurs as 

a result of growth of small amplitude 

fluctuations to such an extent that the matter 

is disrupted and it breaks up within the 

isothermal spinodal line. During the 

nucleation of localized region, however, 

droplets may be formed as a result of large 

amplitude fluctuations everywhere within 

the coexistence line. In this paper, we shall 

concentrate on investigating the free energy 

change accompanying the formation of a 

critical water drop in the framework of 

Fisher’s droplet model (Fisher, 1967), rather 

than presenting empirical corrections for 

calculating nucleation rate in order to make 

a comparison with experimental data.  

 

2. Material and Methods 

2.1. Phase Instabilities Below the 

Critical Point 

The main purpose of this study is to 

explore the physical mechanisms leading to 

formation of liquid droplets as a result of 

density fluctuations in the phase transition 

region. For orientation, we point out the fact 

that the phase diagram is determined by van 

der Waals-type equation of state. The locus 

of the points satisfying the condition that 

0=∂∂ TnP )/( , forms the spinodal line in 

the n-T plane, where P denotes the pressure, 

T the temperature and n the molecule 

number density. In other words, one may 

determine the dynamically unstable region 

by means of the bulk modulus B, 

Tn
Pn

V
PVB )(

∂
∂

=
∂
∂

−=            (1) 

where B is positive because an 

increase in pressure causes a decrease in 

volume. This condition for the spinodal line 

can be applied only to a single component 

liquid. For a multicomponent liquid, the 

corresponding criteria is considerably more 

complicated. At the equilibrium density the 

bulk modulus is positive 0>∂∂ TnP )/( , and 

the liquid matter is stable to small-

amplitude, long-wavelength density 

fluctuations. The liquid matter will be 

dynamically unstable when the bulk 

modulus is negative 0<∂∂ TnP )/( . As the 

density decreases, matter enters a metastable 

region where it is thermodynamically 

unstable with respect to separation into 

liquid and gas phases. However, the matter 

in this region is stable to small long-

wavelength density fluctuations. This is 

because the bulk modulus is still positive in 

the metastable region. When the bulk 

modulus is zero 0=∂∂ TnP )/( , metastable 

region ends, and matter becomes unstable to 
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small density fluctuations. In this paper, we 

will not pretend to give a detailed account of 

the relation between spinodal line and the 

homogeneous nucleation, instead we refer 

the reader to Abraham (1979), Lienhard and 

Karimi (1981), where it was shown that the 

limit of  homogeneous nucleation lies very 

close to the spinodal line. 

The coexistence line in n-T plane can 

be determined by equating the pressure and 

chemical potentials of liquid and gas phases 

as T),P(nT),P(n 21 =  and )Τ,(µ = )Τ,(µ 1 2nn . 

The critical temperature Tc is determined by 

0)/( =∂∂ TnP  and 0)/( 22 =∂∂ TnP . Phase 

diagram has an inflection point at Tc. In 

other words, at the critical temperature Tc 

the surface between the two phases 

disappears (this is because the surface 

tension vanishes at Tc), and only the gas 

phase is possible above this temperature. 

The corresponding vapor pressure and 

density are called critical pressure Pc and 

critical density nc, respectively. In this 

paper, we shall primarily concentrate on the 

droplet formation as a result of the 

nucleation of localized region in between 

coexistence and spinodal line, where the 

density is significantly less than  critical 

density nc. 

2.2. Nucleation and Droplet 

Formation 

We shall now discuss droplet and 

bubble formations. By a droplet we mean a 

small volume of liquid phase at equilibrium 

surrounded by the vapor phase of the liquid; 

by a bubble we mean a small volume of 

vapor trapped by a thin film with two 

surfaces on each side of the film. 

Homogeneous nucleation of bubbles is 

formally very similar to the homogeneous 

nucleation of droplets. In the nucleation of 

liquid droplets, the subcritical droplets are in 

mechanical equilibrium with the surrounded 

vapor phase (but not in thermodynamic 

equilibrium until critical size r* is reached). 

In the homogeneous nucleation of bubbles, 

however, the vapor phase in a bubble is in 

thermodynamic equilibrium with the 

surrounding liquid, but not in mechanical 

equilibrium until the critical size is reached. 

Droplet formation occurs in the portion of 

the region between the isothermal spinodal 

line and the coexistence line where the 

densities are less than the critical density 

(metastable vapor), while bubble formation 

can occur in the portion of the region 

between isothermal spinodal line and the 

coexistence line for the densities grater than 

the critical density (metastable liquid). 

Because of the similarity, we deliberately set 

aside the bubble formation and concentrate 

on the derivations for the nucleation of 

critical droplets: The probability of 

formation of a droplet can be estimated by 

calculating the free energy change G∆

accompanying the formation of the drop of 

radius r and containing A molecules. This 
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probability is proportional to )/exp(- * kTG∆ . 

In other words the rate of nucleation at 

which critical droplets grow to become 

supercritical is given by 

)/exp(-KJ * kTG∆= .           (2) 

where k is the Boltzmann constant, T 

is the temperature and the constant K is 

determined from kinetic theory (Fisher, 

1967). On the other hand, we should remark 

here that the rate of nucleation at which 

critical droplets grow to become 

supercritical, strongly depends upon the free 

energy change of critical droplet formation 
*G∆ . Small variations in K are negligible 

because the behavior of J is dominated by 

the exponent G∆ . Therefore, it is usually 

satisfactory to consider the values of G∆  in 

the study of nucleation process. Here in this 

study, we have also considered G∆  to study 

homogeneous nucleation of vapor to liquid 

droplets. 

For our present purposes, let us 

concentrate on calculation of the total free 

energy change G∆  in creating a liquid 

droplet in the framework of Fisher’s droplet 

model (Fisher, 1967). In this model, we 

assume that the droplet is essentially of 

uniform density and spherical so that we 

have 3/1
0 Arr =  with )r 

3
4 ( 3π=V , where A 

represents number of molecules in drop, r 

the radius and V the volume of droplet. In 

our derivation, G∆  will consist of the 

following three terms. 

The first term is the well known 

surface free energy: The liquid droplets tend 

to have spherical shape, because a sphere 

has the smallest surface/volume ratio, 

among the geometrical objects. We can 

calculate the work of creating a droplet of 

radius r in a supersaturated vapor. When the 

radius of a spherical droplet changes from 

drr tor +  the change in surface area will be 

rdrrdrrdA πππ 84)(4 22 =−+=           (3) 

The work we need to change the 

surface area by an infinisitemal amount dA 

can be written 

dATdW )(σ=             (4) 

where the temperature dependent 

coefficient )(Tσ is called the surface 

tension. Integrating Eq.(4.2), we can identify 

the work of surface formation 
2

1 4)( rTW πσ=             (5) 

This work can be interpreted as the 

free energy change for the formation of 

liquid/vapor interface. The exact relation 

between the surface tension of a saturated 

fluid and equation of state (a relation 

between P-n-T), was derived by Van der 

Waals. The current literature contains many 

equations of state that represent 

thermodynamic data over a wide range of 

the values of P and T in the phase transition 

region (Shamsundar and Lienhard, 1993; 

Reid at al., 1987; Koyuncu at al., 2002; 
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Fletcher, 1993). Some of these equations are 

valid only for liquids, some only for vapors, 

and they produce separate correlation for 

different thermodynamic properties. 

Theoretical and experimental predictions for 

)(Tσ  indicate that the surface tension 

declines with increasing temperature and 

vanishes at the critical temperature, where 

the surface between two phases disappears. 

There exist various approximations to 

predict a reasonable relation between )(Tσ  

and T/Tc (Guggenheim, 1945). 

The second term is arising from the 

transition from vapor to liquid: The vapor 

phase can be prepared in the supersaturated 

state of metastable region and then droplets 

of liquid phase will be prepared outside the 

coexistence line. In order to study the 

evolution of a liquid droplet formation, we 

choose two points in the vapor and liquid 

phases, where the pressures of liquid and gas 

phases are equal but the densities are 

different. For a sufficiently slow process in a 

system of the Gibbs free energy G, volume 

V, pressure P, entropy S, number of particle 

N and chemical potential µ , we have the 

relation, 

dNSdTVdPdG µ+−=             (6) 

Assuming that the number of particles 

N is conserved we can write down 

VdPdG =  at fixed T. One may calculate the 

vapor pressure of a pressurized liquid by 

using the fact that at equilibrium we have 

µµ =g , and for any change that preserves 

equilibrium µµ dd g = . If the pressure P on 

the liquid is increased by dP, the chemical 

potential of the liquid changes by 

VdPd =µ  and the chemical potential of the 

vapor changes by Vdpd g =µ  where dp is 

the change in its vapor pressure p. If we use 

the ideal gas relationship pV = NkT then we 

can write 

dppNkTd g )/(=µ            (7) 

VdPd =µ .            (8) 

Using the fact that 

),(),( PTdPTd g µµ = , and performing the 

integration with respect to the fact that when 

there is an additional pressure ∆P on the 

liquid, the vapor pressure will be p2 (when 

there is no additional pressure acting on the 

liquid, the pressure experienced by the 

liquid is equal to the normal vapor pressure 

p1); then we obtain 

∫∫
∆+

=
Pp

p

p

p

VdP
p

dpNkT
1

1

2

1

           (9) 

PVppVnkTW ∆== )/ln( 122         (10) 

where 12 /p p  is called supersaturation ratio 

denoted by S0 and ( ) 334 prnnVN == . 

This equation represents the free energy 

change for the transfer at constant 

temperature and pressure of a droplet from 

the vapor into the liquid phase. In the 

context of molecular physics it is a good 

approximation to use the ideal gas 
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relationship between chemical potential and 

pressure at fixed T. However, one should 

bear in mind that this generally will not be a 

very good approximation for a nearly 

degenerate Fermi gas. Summation of the 

contributions from Eq.(5) and (10) will give 

the total free energy change to create a 

droplet  

0
32

1 ln
3
44 SnkTrrG 






−=∆ πσπ .        (11) 

The third term is a geometric term 

which can be added to take into account of 

the fact that the surface closes on itself 

which reduces the total entropy associated 

with the surface free energy, which was 

suggested by Fisher (1967) for the first time 

as 

AkTW ln3 τ=           (12) 

with 3/1
0 Arr =  and )r 

3
4 ( 3π=V , where we 

assume that droplets are of uniform density. 

As a result of the contribution by W3, 

Eq.(11) will be of the form  

 

( )00
32

2 ln3ln
3
44 rrkTSnkTrrG τπσπ +






−=∆        (13) 

 

The first term on the right-hand side of 

(13) gives the change in free energy on 

formation the liquid/vapor interface, the 

second term arises from the transition from 

vapor to liquid and the third term is the 

geometric term where we have used the fact 

that  ( )3
0rrA = for the numerical 

calculations. In the classical or van der 

Waals-like limit the critical exponent is 

given by 3/7=τ  and we find that 

Ar °= 925.10  for water drops. 

Differentiation of (13) with respect to r, 

yields 

03ln48 2
0 =+− ∗

∗∗

r
kTrSnkTr τππσ        (14) 

A critical size droplet can only exist if 

it can attain a size greater than the critical 

radius r*. When r < r* droplets will tend to 

evaporate particles (or breakup) to get rid of 

their surface energy, therefore instead of 

growing it evaporates. Whereas if r > r*, 

they tend to grow by accumulating particles 

from the vapor and thereby lowering the free 

energy. This means that the droplet reaches 

more stable levels with additional 

molecules. 

Variation of the free energy change 
*G∆ as a function of the critical radius r* 

obtained from Eq.(13) for water is shown in 

Fig.1. In this figure, we have also shown the 

results obtained from Eq.(11) to see the 

effect of geometric term given by Eq.(12). 

This approach in terms of the free energy 

change was also applied for a nucleonic 

liquid-gas phase transitions in nuclear 
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reactions (Goodman et al., 1984). Recently, 

Fisher’s model has been successfully 

applied to heavy ion collisions to calculate 

discoverable quantities such as nucleonic 

vapor pressure, evaporation enthalpy and 

surface energy (Elliott et al., 2002). 

However, in order to make a comparison 

with experimental results and the predictions 

of theoretical approaches such as Fisher’s 

model and density functional theory, one 

should perform the measurements of the 

nucleation rate. Therefore, the empirical 

corrections to the classical approaches may 

be used to investigate the variation of the 

rate of nucleation in terms of supersaturation 

ratio and temperature (see for example 

Dillmann and Meier (1991), Wolk and Strey 

(2002) and references therein). 
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Figure 1. Free energy change of droplet formation as 
a function of droplet radius, for various saturation 
ratios at T=293 (K) for water. Solid and dotted lines 
represent the results obtained from Eqs.(11) and (13), 
respectively.  

 

 

3. Results and Discussion 

It is instructive to study homogeneous 

nucleation of water vapor to liquid droplets 

for our understanding of the basis of most of 

the theoretical treatments of heterogeneous 

nucleation. The results of our calculations 

for water are presented in Fig.1. Free energy 

changes of droplet formation as a function 

of droplet radius are calculated from Eq.(11) 

and Eq.(13). As can be seen from this figure 

when 1S0 = , the curve refers to unsaturated 

vapor that means there is no droplet 

formation. The results for water obtained 

from Eq.(11) follow the same trend with 

those given in Boucher (1969). A geometric 

term ATk lnτ  due to the fact that the 

surface relaxation to a spherical shape 

reduces the total entropy associated with the 

surface has been taken into account through 

Eq. (13). As can be seen from Fig.1, this 

geometric term produce significant changes 

in the process of droplet formation by means 

of surface free energy. We haven’t seen the 

present application for water anywhere else. 

When 2S0 = , Eq.(13) produces a free 

energy deviation of greater than 8 % from 

that obtained from Eq.(11). As can be seen 

from the figure, this deviation increases with 

increasing supersaturation ratio. When 

5S0 = , for example, we find a deviation of  

% 25. However, this effect may be 

negligible for the values 2 S0 < , where r* > 
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15 
o
A . It is also important to emphasize that 

the region of 0rr < is inaccessible due to the 

finite volume of molecules, which was not 

considered in the previous studies. When the 

radius is 
o
A65.15=r  we have 2S0 = , 

whereas when 
o
A10=r , 3S0 = . The 

calculations for 5S0 > , is unreliable because 

in this region radius of a droplet is less than 
o
A7  (approximately 50 molecules) and the 

basis of the calculation is suspect. This is 

because the connection between statistical 

mechanics and thermodynamics is usually 

established in the limits of large number of 

molecules. A similar calculation can be 

performed for nucleation of bubbles in water 

liquid under negative pressure. In Fig.2, we 

present the variations of supersaturation 

ratio as a function of radius of droplets at 

293 K. It is seen from this figure that surface 

free energy by means of Eq.(12) is very 

effective at small values of  critical radius 

r*. 

Our purpose in this paper is not to 

examine the experimental data in detail, but 

a cursory glance at the literature, however, 

shows that various experimental techniques 

have been used for the measurement of 

nucleation rates over extended ranges of J, T 

and S0 (see for example Wolk and Strey 

(2002) and references therein). In these 

studies, empirical correction functions to the 

classical nucleation theory have been used to 

predict nucleation rates, and a good 

agreement between nucleation theory and 

experiment is observed. As for the spinodal 

decomposition for water, experimental 

results are quite difficult to obtain 

particularly in the neighborhood of the 

spinodal limit of water liquid under tension. 

In this respect, we can cite Poole et al. 

(1993), for details. 
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Figure 2. Variation of supersaturation ratio with 
critical radius at 293 (K) for water droplets. Solid and 
dotted lines represent the results obtained from the 
differentiations of Eqs.(11) and (13), respectively. 

 

In summary, we have presented a 

transparent derivation of the mechanism for 

the critical droplet formation process in a 

classical (non-quantal) approach on the basis 

of Fisher’s model, and applied the results for 

water.  We should point out that we consider 

only pure bulk material, so that the 

processes are homogeneous. This is possible 

in the laboratory, but in the outside world 

nucleation is initiated by minute dust 

particles or other kinds of foreign matter, so 
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that the process is heterogeneous. These 

particles provide a surface to which water 

molecules can attach and grow to the 

droplets. In the case of droplets of water in 

the moist air at room temperature the 

nucleation is initiated at 1.01 S0 ≤ , by 

suspended foreign particles, and 

progressively at higher  S0 values are 

reached. In the absence of foreign particles 

(pure water), initial drops will tend to 

evaporate at such small values of  S0  due to 

an initial tendency to condense is overcome 

by a heightened tendency to evaporate. 

In conclusion, it is seen from Fig.2 

that a geometric term given by Eq.(12) 

produces significant changes in the surface 

free energy, which is crucial especially for 

the small values of r*. Therefore, further 

analysis of the free energy change of the 

droplet formation would be worthwhile to 

provide better predictions for the nucleation 

rates.  
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