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Abstract— The healthcare industry is looking for ways on using 

artificial intelligence effectively. Decision support systems use 

AI (Artificial Intelligence) models that diagnose cancer from 

radiology images. These models in such implementations are not 

perfect, and the attackers can use techniques to make the models 

give wrong predictions. It is necessary to measure the robustness 

of these models after an adversarial attack. The studies in the 

literature focus on models trained with images obtained from 

different regions (lung x-ray and skin dermoscopy images) and 

shooting techniques. This study focuses on thyroid ultrasound 

images as a use case. We trained these images with VGG19, 

Xception, ResNet50V2, and EfficientNetB2 CNN models. The 

aim is to make these models make false predictions. We used 

FGSM, BIM, and PGD techniques to generate adversarial 

images. The attack resulted in misprediction with 99%. Future 

work will focus on making these models more robust with 

adversarial training. 

Keywords— Adversarial Attack, CNN Models, Thyroid 

Ultrasound Images, Machine Learning, Deep Learning 

I. INTRODUCTION

Today, applications of artificial intelligence such as 

object detection, voice recognition, recommendation 

systems, credit risk estimations, and disease diagnosis are 

widely used in many sectors such as health, finance, robotics, 

agriculture, marketing, and education.  AI is increasingly 

used in the healthcare industry, especially in radiology (1). 

Applications developed using artificial intelligence in cancer 

diagnosis allow radiologists to make faster and more reliable 

diagnoses. Several models are used for different diseases and 

cancer types of the brain (2), skin (3), breast (4), lung (3) and 

thyroid (5) using different types of medical images. Models 

trained with these images usually have successful results. 

Researchers continue to try new techniques with new data 

and new models. 

Artificial intelligence is a black box application that 

can predict a situation by learning from structured or 

unstructured data. In cases where mathematics and statistics 

cannot conclude, they can catch patterns in the data and reach 

the correct result with high accuracy rates. Classical machine 

learning algorithms have been used successfully and continue 

to be used for a long time. However, classical machine 

learning algorithms cannot achieve the desired success in 

some areas like image recognition or natural language 

processing. We can use deep learning to overcome this 

problem. Learning has become better by adding multiple 

hidden layers to artificial neural networks. We can achieve 

deeper learning with this method and capture the patterns 

between the inputs better. CNN models, which are different 

versions of neural networks, are used for image recognition 

and classification, but these models are open to adversarial 

attacks. The attackers can use several attack methods to fool 

artificial intelligence models.  These can cause the models to 

give false results. This can have unacceptable outcomes in the 

healthcare industry.  

In this study, we applied attack techniques to 

evaluate thyroid ultrasound images. This data type was 

chosen as the literature lacked using attack techniques 

against a model trained with thyroid ultrasound images. We 

are using a two-output model developed for the diagnosis 

of thyroid cancer. This model returns whether the patient 

has cancer based on the input image. In this study, we tested 

VGG19, Xception, ResNet50V2, and EfficientNetB2 CNN 

models against the adversarial images generated using 

FGSM, BIM, and PGD techniques on an ultrasound image 

dataset. The major contribution of this paper is to show that 

artificial intelligence models trained for thyroid diagnosis 

using thyroid ultrasound images have a vulnerability to 

adversarial images. 

We give a literature survey and present a brief 

background on Convolutional Neural Networks models for 

medical diagnosis and Adversarial Attacks to these models in 

section 2.   In section 3, the method is given. The 

implementation is presented in section 4. The discussion is 

given in section 5. Finally, we conclude in section 6 with a 

hint of future works. 

II. FUNDAMENTALS

A. Literature Survey 

Finlayson et. al trained three models with three 

different datasets in their study (3). These are fundoscopy 

images for diabetes disease, x-ray images for pneumothorax 

disease, and dermoscopy images for skin cancer. They have 

performed successful white-box PGD attacks on the trained 

models. Bortsova et al. conducted black box attacks on 

diabetes, pneumothorax, and pathology data and achieved 

successful results (6). Alexandra et al. used FGSM, and 

JSMA techniques on a model developed for brain and lung 

cancer diagnosis and achieved successful results (7). 

Goodfellow et al. demonstrated that artificial 

intelligence models can be fooled by perturbing the input 

image with noise calculated by the FGSM algorithm (8). This 
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attack tries to calculate the noise in the direction of the 

gradient, which will increase the loss of the model in one step. 

After calculating the gradient, the minimum amount is added 

to the input image that makes the model cross the decision 

boundary. This amount of addition is adjusted with epsilon. 

In another study published in 2017 by Goodfellow et al., they 

introduced the BIM algorithm, which is the iterative version 

of the FGSM attack (9). This algorithm calculates minimum 

perturbation more effectively using multiple steps. At each 

step, the algorithm tries to find the minimum perturbation by 

gradually increasing the epsilon value. Madry et al. used the 

PGD method similar to the BIM algorithm in 2017 (10). 

Different algorithms in the literature will perturb the input 

data to make it wrongly guessed. Among them, Jacobian-

based Saliency Map Attack (11), DeepFool (12), Carlini & 

Wagner Attack (13), One Pixel Attack (14), and Adversarial 

Patch (15) are the leading effective attack techniques. Most 

of these studies have been tried on Image-Net (16), MNIST 

(17), and CIFAR (18) datasets and have shown successful 

results. 

B. Convolutional Neural Networks 

Convolutional neural network (CNN) is the most well-

established method among the numerous deep learning 

models (19). CNN can be applied to different fields such as 

image classification, object detection, time series, and natural 

language processing. In simple terms, the properties of the 

input data are extracted in the convolutional and pooling 

layers. These extracted features are turned into a vector, and 

the weights of the deep neural network are trained. The most 

important part here is the feature extraction part. The better 

the feature extraction part, the more accurately the parameters 

of dense layers can be calculated. Various techniques have 

been developed since the first feature extraction applications 

such as LeNet and AlexNet, VGG19, Resnet50V2, Xception, 

and EfficientNetB2 are the most widely used models.  

VGG19 (20) is a classic CNN model. Since the LeNet 

model, more convolution and pooling layers have always 

been added to the feature extraction part to achieve better 

results. VGG19 is a continuation of this tradition and consists 

of 16 convolution and 5 pooling layers in total. It has too 

many parameters and a high volume because the parameter 

feature mitigation layer is not applied. 

ResNet (21) architecture is a model developed as an 

alternative to traditional feature extraction architecture. 

Adding more convolution and pooling layers does not 

increase the accuracy values after a certain level. Adding 

more of these layers causes the gradient to vanish or explode 

after a while. A strategy called residual nets has been 

developed to prevent this and to get more efficient results in 

fewer layers. 

Xception (22), is a model based on the Inception 

model. It uses an approach called depthwise separable 

convolutions. It consists of blocks that try to capture different 

features with different filters. The model is formed from the 

combination of these blocks. 

EfficientNet (23), one of the most recently developed 

models, and its derivatives can be considered the best in its 

field now.  EfficientNet model versions are among the most 

successful feature extraction algorithms. It scales the model 

in depth, width, and resolution to get a better model. 

C.  Adversarial Attacks 

Adversarial attacks are attempts to fool artificial 

intelligence models. Barreno et al. listed these attacks and 

their types comprehensively for the first time in their study 

"Can Machine Learning be Secure" (24). Artificial 

intelligence security is discussed more comprehensively in 

the study called “The Security of Machine Learning” 

(25).  Attacks can be classified into different sub-categories 

such as the attacker's impact, knowledge, and specificity (26). 

1) Attacks based on the influence of the attacker :These

attacks are: causative attacks, evasion attacks and

exploratory attacks.

Causative attacks occur in the training part of the 

model. These attacks are also called poisoning attacks. Data 

is added to the dataset, which will cause the model parameters 

to be miscalculated during training. Data poisoning can be the 

swapping of labels of training data or specially crafted data. 

It is used in attacks against models that are constantly trained 

with new data coming from outside in real-world scenarios. 

Evasion attacks are performed on a trained model. The 

attacker makes an attempt to fool the model with perturbed 

data, that is, with adversarial examples. The attack occurs by 

adding noise to the data. Incorrect predictions are targeted by 

adding various noises. However, the important point here is 

that adversarial examples cannot be noticed by the human 

eye. Gradient-based adversarial example generation 

algorithms are the most successful noise addition methods. 

The study of Goodfellow et al. (8) can be considered a 

pioneer in applying this attack to images. Adversarial 

examples can be formed quickly and cheaply with their 

FGSM algorithm. 

Exploratory attacks are based on a trained model such 

as evasion. The purpose here is to gather information about 

the model. It can be used to launch another attack in the future 

based on the gathered information. 

2) Attacks based on the attacker knowledge: These

attacks are white box and black box attacks. In white

box attacks, the attacker knows the model and its

parameters. In black box attacks, the attacker does not

know the model and parameters.

3) Attacks based on attacker specificity: These attacks

are targeted and untargeted. In targeted attacks, the

perturbed data is asked to correctly predict a selected

class instead of the actual class. In untargeted attacks,

the aim is simply to misclassify the model.

III. METHOD

Thyroid ultrasound images were used as a dataset. 

These images are inherently noisy data (27). Therefore, more 

complex and deep models are more successful for feature 

extraction. Convolutional neural networks are used to train 

the data. Then Adversarial attack algorithms are used to 

attack the model. 
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A. Dataset 

We used a dataset of Thyroid Ultrasound images like 

Fig 1 from Kaggle for the training application (29). There are 

3282 cancer-free images and 4006 cancer-containing images 

in the dataset. The dataset is formed of training, testing, and 

validation sections. These sections are preprocessed for each 

model for training. 

B. Preprocessinn and Training 

Convolutional Neural Networks (CNN) are used in 

this study. CNN model is used in different architectures for 

training. Four different models (VGG19, Resnet50V2, 

Xception, and EfficientNetB2) are used. The 

characteristics of the models are given in Table 1. 

EfficientNetB2 expects each input pixel to be in the normal 

value range of 0-255 (23). Other models scale from 0-1 (20-

22). Data is fitted to each model during this preprocessing. 

TABLE I.  THE FEATURES OF THE MODELS 
Model Size 

(MB) 

Top-1 

Acc. 

Top-5 

Acc. 

Param. Depth 

VGG 19 549 71.3% 90% 90M 19 

ResNet50V2 98 76% 93% 93M 103 

Xception 88 79% 94.5% 94.5M 81 

EfficientNetB2 36 80.1% 94.9% 94.9M 186 

C. Attack Algorithms 

Three different attack algorithms were used for the 

attack. These are respectively FGSM, BIM, and PGD 

algorithms. The purpose of these attack algorithms is to 

perturb the input image. But the important thing here is that 

the perturbed image cannot be distinguished by the human 

eye. False estimates can also be given by adding noises like 

Gaussian noise (28), but the human eye can detect these 

images. Gradient-based algorithms are the most suitable 

algorithms for calculating minimum noise. 

The working principle is briefly as follows. During the 

training phase, many images are given to the model. A loss is 

calculated for each input. In backpropagation, the weights of 

the model are optimized with this calculated loss. The aim is 

to reduce the loss value of the model to the minimum value. 

Optimization is done with the gradient of the loss function. 

We try to reach the slope of the loss function close to zero. 

The aim is to maximize the loss function in the attack 

algorithms. For this, the gradient value is taken for each 

image pixel, and the mark function is used. Gradient values 

are the direction vector that shows how close they are to the 

correct class. A certain amount of these gradient values is 

added to the input image so that it crosses the correct class 

boundary. 

In the FGSM algorithm (1) shown in Equation (1), the 

amount of perturbation is found in one step. The signed 

gradient is multiplied by a certain epsilon value and added to 

the input image. It is an untargeted attack. The goal is to make 

another class guess. 

𝑋𝑎𝑑𝑣 = 𝑋 +  𝜖𝑠𝑖𝑔𝑛(𝛻𝑋 𝐽(𝜃, 𝑋, 𝑦))      (1) 

X is the image sent to the model for prediction. y is 

the correct label of the image. J is the loss function that 

calculates the loss of the input. ∇ calculates the gradients of 

the input according to the loss function. Gradients extracted 

with the Sign function are signed. The values obtained with 

the sign function are added to the input image by a certain 

amount of ϵ. Even if the image seems unchanged when 

viewed with the human eye, the image has changed 

mathematically. When the model is asked to predict with the 

adversarial example produced by the added noise, it 

maximizes the loss function, and the model predicts the input 

incorrectly. 

In the BIM algorithm shown in Equation (2), the 

amount of perturbation is found by increasing the epsilon 

value in each iteration. It is slower than FGSM, but more 

stable adversarial images can be obtained.  

𝑋0
𝑎𝑑𝑣 = 𝑋,   𝑋0

𝑎𝑑𝑣 = 𝐶𝑙𝑖𝑝𝑥, 𝜖{𝑋𝑁
𝑎𝑑𝑣 +  𝛼𝑠𝑖𝑔𝑛(𝛻𝑋 𝐽(𝜃, 𝑋𝑁

𝑎𝑑𝑣, 𝑦))}(2)

The PGD algorithm is the iterative version of the 

FGSM algorithm. It is a different version of the BIM 

algorithm. Unlike BIM, it uses random values at each 

iteration to find the best perturbation. 

IV. IMPLEMENTATION

The implementation steps are as in Fig 2 and each step 

is explained one by one.  

TABLE II. TRAINING PARAMETERS 
Training Parameters Selected Parameters 

Loss Function: Categorical Cross-Entropy 

Optimizer: Adamax 

Learning Rate: 0.001 

Batch-size: 30 

We selected four different CNN models for model training. 

The selected models were VGG19, ResNet50V2, Xception, 

and EfficientNetB2, respectively. Keras library is used. We 

used transfer learning with models whose weights were pre-

trained with image-net. We fine-tuned the dense layer 

according to the new model. The output layer is set to its new 

two classes. The model is trained with new data. Training 

parameters are as in the Table 2. 

FIG 1. THYROID ULTRASOUND IMAGE 
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As a result of the training, the test accuracy values 

were 0.93 for EfficientNetB2, 0.89 for Xception, 0.83 for 

Resnet50v2, and 0.72 for VGG19. The EfficientNetB2 model 

with the highest depth achieved the best accuracy. The 

Xception and ResNet50V2 model have similar parameter 

numbers and depth values. Although ResNet50V2 is slightly 

deeper than the Xception model in depth, it did not give a 

better result. This may be due to different model 

architectures. ResNetV2 uses deep residual networks and 

Xception uses depth-wise separable convolutions. VGG19 is 

the oldest model of all. It has traditional architecture and a 

large number of parameters. It is also heavy in size, but it is 

a shallow model. Therefore, we cannot say that it is very 

successful in complex images. 

FIG 2. IMPLEMENTATION STEPS 

We used the IBM Adversarial Robustness Toolbox 

library for implementing attacks (30). White-box targeted 

and white-box untargeted evasion attacks were performed on 

the trained models. These attacks are FGSM, BIM, and PGD 

attacks, respectively. The FGSM white box is an untargeted 

attack. BIM and PGD are white-box targeted attacks. The 

results are shown in Figs 3-6 and Table 3 and discussed in the 

next section. 

V. RESULT AND DISCUSSION 

In the graphs shown in Fig 3-4-5, each line represents 

the prediction accuracy of a model at different epsilon values. 

The positive part of the y-axis of the graph indicates that the 

model is classifying correctly. The corresponding values are 

the accuracy rate. The negative part of the y-axis of the graph 

is the false class prediction accuracy of the model deceived 

by the Adversarial image. 

The incorrect prediction accuracy rates of the models 

at different epsilon values with the FGSM technique are 

shown in Fig 3. Applying the FGSM attack to 

EfficientNetB2, Xception, and ResNet50V2 models added 

0.01 epsilon-generated noise to the input image. The 

adversarial images created with the added noise caused the 

models to predict incorrectly with an accuracy of 99%. 

Epsilon 0.01 was sufficient for BIM and PGD iterative 

attacks against these models. 

FIG 3. MISCLASSIFICATION ACCURACY RATES OF 100 

DIFFERENT EPSILON VALUES BETWEEN 0-0.2 ON FOUR 

DIFFERENT CNN MODELS USING THE FGSM TECHNIQUE. 

As can be seen in Fig. 3, different outputs were 

obtained in the ResNet50V2 model as a result of the 

perturbation made by the FGSM technique. The model 

predicted incorrectly with the epsilon values mentioned 

earlier and passed the decision boundary. However, we saw 

that it again came to the correct prediction region in some 

intervals. The model, which made an incorrect prediction at 

epsilon values between 0.04 and 0.06, started to make an 

accurate prediction between 0.06 and 0.08 epsilon values 

again. It continued to predict incorrectly at 0.08 and higher 

values. Images were perturbed with epsilon values between 0 

and 16 to examine whether models at higher epsilon values 

obtained a similar result. 

As shown in Fig 4, the situation seen for ResNet50V2 

was also seen for EfficientNetB2 in the examination with 

epsilon values of 0-16. In Xception and VGG19, it was 

observed that the accuracy of false predictions increased in 

direct proportion to the increase in epsilon. 

FIG 4. MISCLASSIFICATION ACCURACY RATES OF 100 

DIFFERENT EPSILON VALUES BETWEEN 0-16 ON FOUR 

DIFFERENT CNN MODELS USING THE FGSM TECHNIQUE. (THE

BLUE AND ORANGE LINES ARE BELOW THE RED LINE, AS THEY 

HAVE SIMILAR VALUES.) 

As seen in Fig 5, these deviations in FGSM do not 

exist in BIM and PGD, which are the iterative methods of 

obtaining adversarial images. The accuracy rate of incorrect 

estimation increased with the increase in the epsilon value of 

iterative methods. This experiment proves that iterative 

methods are more powerful and stable techniques. 



Journal of Emerging Computer Technologies 
Ceyhan and Karaarslan 

46 

FIG 5. MISCLASSIFICATION ACCURACY RATES OF 100 

DIFFERENT EPSILON VALUES BETWEEN 0-0.2 ON FOUR 

DIFFERENT CNN MODELS USING THE PGD TECHNIQUE. (THE 

ORANGE LINE IS BELOW THE RED LINE, AS THEY HAVE SIMILAR

VALUES.) 

Another interesting result is that the VGG19 model, 

which has the highest number of parameters but the lowest 

depth, is more difficult to fool than other models. 

EfficientNetB2 was the second strongest model, which was 

hard to fool. Xception and ResNet50V2 were the most easily 

fooled models. These may have different causes, such as 

depth and model architecture. As depth increases and model 

architectures change, it can cause blind spots on models to 

increase. 

The images mostly gave good results with different 

epsilon values. There can always be exceptions. Some of the 

images can fool different models with different amounts of 

perturbation. 

The creation process of adversarial images is shown 

in Fig 6, and all the hostile images generated are shown in 

Table 3. The original image in the table has thyroid disease. 

When the prediction is made with trained models, cancer can 

be detected. After adding noise with attack algorithms, %99 

percent of non-cancerous prediction was provided. The 

remarkable point is that the added noises cannot be 

distinguished by the human eye. 

TABLE III. ADVERSARIAL IMAGES PRODUCED WITH DIFFERENT MODELS AND ATTACK ALGORITHMS 
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FIG 6. ADVERSARIAL IMAGE GENERATION FROM THE 

EFFICIENTNETB2 MODEL WITH THE FGSM ALGORITHM. 

(FORMULA 1) 

VI. CONCLUSION 

In the study, we tried attack algorithms on thyroid 

ultrasound images on the widely used models. The models 

incorrectly predicted with early every perturbed image. 

Artificial intelligence models trained from thyroid ultrasound 

images are successfully fooled. The possibility of cheating 

each model with different amounts of perturbation values is 

shown. These weaknesses form a problem that needs to be 

fixed. Artificial intelligence models developed for diagnosis 

need to be made stronger against attacks. In the continuation 

of the study, we aim to work on more robust models against 

these attacks with adversarial learning. 
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