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Abstract: Determination of zeros of first two kinds of Bessel functions and their derivatives by fast and 

reliable accurate calculations is essential to determine the necessaryTransverse Electric (TE) and Transverse 

Magnetic (TM) modes supported by the Circular Waveguides (CWGs). Here, a fast computational algorithm 

design based on the numerical Newton-Raphson (N-R) method to determine the first n zeros ofthese special 

functions is being presented. Our suggestion involves: scanning the given function in the selected domain 

according to the selectednumber of iteration steps (or, number of domain division) and finding their zeros by 

the N-R method in each step. One of the repeated roots and roots out of the domain are rejected and the 

remaining roots are re-sorted by the optional bubble sorting algorithm. Consequently, related TE and TM 

modes of the circular waveguide determining the electromagnetic wave behavior is obtained successfully. Our 

design running under the free “Wolfram CDF player” software has been opened to the users for free in the 

web page of our institution. Results of a sample application of our design to a specific CWG regarding these 

modes along with the cut-off frequencies and propagating electromagnetic wave frequencies are being 

presented. 

 

Keywords:Bessel functions, Circular waveguides, Cylindrical waveguides, Lossless medium, TE modes, TM 

modes, Numerical root finding, Newton-Raphson method 

 

 Newton-Raphson Temelli Kökleri Bulma Algoritması Tasarımı ve 

Dairesel Dalgakılavuzlarına Uygulamaları 
  

Özet: Dairesel dalgakılavuzlarının (DDK) desteklediği Transvers Elektrik (TE) ve Transvers Manyetik (TM) 

modların belirlenmesinde, ilk iki türden Bessel fonksiyonlarının ve türevlerinin sıfırlarının hızlı ve güvenilir 

doğruluklarda hesaplanarak tespiti elzemdir. Burada, bu özel fonksiyonlarınistenen aralıkta ilk n sıfırını 

bulan, Newton-Raphson (N-R) temelli, hızlı hesaplama yapabilen bir algoritma tasarımı sunulmaktadır. 

Önerimiz, fonksiyonun seçilen iterasyon adım sayısına göre (veya domain bölme sayısına göre), seçilen tanım 

aralığında taranmasınıve her adımda köklerin N-R yöntemiyle bulunmasını içermektedir. Bulunan tekrarlı 

köklerden biri ve girilen tanım aralığı dışında bulunan kökler atılmakta ve geriye kalan kökler, opsiyonel 

olarak konulan köpük (bubble) sıralama algoritmasına göre tekrardan sıralanmaktadır. Netice itibariyle, 

elektomanyetik dalga davranışlarını belirleyen, dairesel dalgakılavuzlarının TE ve TM modları başarıyla elde 

edilmektedir. Ücretsiz “Wolfram CDF player” altında çalışan tasarımımız, kurumumuzun ilgili internet 

adresinden kullanıcıların hizmetine ücretsiz olarak sunulmuştur. Tasarımımızın özel bir DDK’na örnek 

uygulamasının modlara, kesme frekansına ve ilerleyen dalga frekansına ilişkin sonuçları sunulmaktadır. 

 

Anahtar kelimeler: Bessel fonksiyonları, Dairesel dalga klavuzları, Kayıpsız ortam, Silindirik dalga 

klavuzları, TE modlar, TM modlar, Numerik kök bulma, Newton-Raphson metodu 
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1. Introduction 

 

Special functions having infinite zeros in the entire domain implying finite zeros in a given 

subdomain; like trigonometric functions, Bessel functions, Airy functions, etc., have various 

fundamental applications in physical and engineering sciences where finding their zeros as accurate 

and as fast as possible in the desired domains is essential, i.e.; [1—14]. Since analytical or 

numerical solutions in finding roots of such functions are always not appropriate, various numerical 

and analytical approximation techniques have been improved [14—23]. For example, Bessel 

functions as we study here are defined exactly as infinite series: 
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     (1b) 

 

where             are the Bessel functions of first and second kind with index   and   is the 

gamma function. We can see that their exact numerical calculations as well as finding their zeros 

are impractical but they can be calculated by some approximations according to the situations such 

as asymptotic approximations, approximations for large Bessel indices, various numerical 

approximation techniques, etc., as  given in fundamental textbooks [6—9,14—23]. 

 

Today, it is possible to retrieve nearly exact values of such special functions, their derivatives and 

zeros by entering very simple commands to the conventional mathematical and engineering 

software such as Mathematica, Maple, etc., whose principles are based on such improved 

approximation techniques [24—26]. Here we suggest a very fast and accurate numerical method 

based on the conventional Newton-Raphson (N-R) method given in [27—29] to find the zeros of 

the Bessel functions of the first two kinds and their derivatives in a desired domain. Our algorithm 

involves scanning these functions in the given domain with the given number of domain divisions 

(which also implies the iteration number for scanning the radius domain) and finding their zeros for 

each division by the numerical N-R method. One of the repeated roots are rejected as well as the 

roots out of the domain and the remaining roots are re-sorted by the optional bubble sorting 

algorithm given in [34—39].  

 

A waveguide is a structure that guides waves, such as sound waves or electromagnetic waves where 

the latter is our case here. They enable a signal to propagate with minimal loss of energy by 

restricting expansion to one dimension or two. This is a similar effect to waves of water constrained 

within a canal. Without the physical constraint of a waveguide, signals will typically be radiated 

and decreased according to the inverse square law as they expand into three dimensional space.  

There are different types of waveguides for each type of wave. The original and most common is a 

hollow conductive metal pipe used to carry high frequency radio waves, particularly microwaves 

regarding the electromagnetic waveguides (EMWGs), or simply;| waveguides (WGs). It might also 

be filled with any medium or some combinations of media to form a dielectric waveguide. Our 

hallow-conductive metal pipe might be rectangular to be called a parallel plate waveguide (PPWG) 

or circular (cylindrical) to be called a circular (or cylindrical) waveguide (CWG) [9—14]. In 

EMWGs we have three common modes which determine the behavior of the electromagnetic wave 

to be guided: i) TE modes (Transverse Electric) where there is no electric field in the direction of 

propagation, ii) TM modes (Transverse Magnetic) where there is no magnetic field in the direction 

of propagation, iii) TEM modes (Transverse Electro Magnetic) where there is neither electric nor 
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magnetic field in the direction of propagation. For the CWG only the first two of them are 

supported. 

 

In CWG design and analyses, roots of such special functions are essential since they are used to 

define these modes to characterize the electromagnetic behavior of the CWG. Related 

electromagnetic wave parameters such as cut-off frequencies below which the wave can not 

propagate (severely attenuated), frequency bandwidth in which it can operate to transmit the 

electromagnetic wave, propagating wave frequencies, wavelengths and wave impedances (which 

give a relationship between the electric and magnetic components of the propagating 

electromagnetic wave), etc. are characterized by these modes [9—14]. We use only the first kinds 

of Bessel functions and their derivatives to find the related Transverse Magnetic (TM) and 

Transverse Electric (TE) modes supported by the CWG in the Electromagnetic Wave Theory, 

respectively [9—14]. Our design running under the free “Wolfram CDF player” software (where 

CDF stands for Computable Document Format [30—32]) is open to the users for free in the web 

page given in [33]. A general appearance of it while running is given in Figure 1 and Figure 2. Our 

design is made up of two parts: i) Finding roots: to find the roots of these special functions and their 

derivatives by the suggested algorithm (shown in Figure 1), ii) Apply to a specific CWG: Apply the 

roots of the required functions among them to determine the modes and find some of the 

electromagnetic parameters of a specific CWGwhose parameters are selected by the user (shown in 

Figure 2).  

 

 
Figure 1. An appearance of the “Find roots” part of the designed software while running (“show 

with error” is activated here) 

 

Since finding these modes are essential, we find them first and apply to a specific CWG to show its 

success as a sample application in the second part of our design. Here, parameters of a specific 

CWG regarding guide radius, guide permittivity and permeability (we assume lossless media) and 
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applied wave frequency are selected by the user via the user control panel as shown in Figure 2. 

Then, it calculates the related cut-off and propagating wave frequencies among these 

electromagnetic parameters. We intentionally calculate only these two essential parameters for 

simplification here to show its success with a sample application, however, other parameters can be 

added when required. 

 

In Section 2, we present and discuss the fundamentals of the circular waveguides.In Section 3, we 

present the designed algorithm to find and sort the zeros of these special functions and their 

derivatives. In Section 4 we present the results of sample applications of our design which involves 

a specific CWG where cut off frequencies and propagating wave frequencies for the associated 

modes are calculated. 

 

 
Figure 2. An appearance of the “Apply to a specific CWG” part of the designed software while 

running (“show with error” is activated here) 

 

2. Application to Circular Waveguides in Electromagnetic Wave Theory 

 

The circular waveguide is occasionally used as an alternative to the rectangular waveguide. Like 

other waveguides constructed from a single, enclosed conductor, the circular waveguide supports 

theTransverse Electric (    and Transverse Magnetic (  ) modes only. Field configurations of 

some low lying     and/or     modes in a circular waveguide are given as an example in Figure 

3.  
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Figure 3: Field configurations of some low lying    and/or     modes in a circular waveguide 

(Solid curves: for the electric field component, dashed curves: for the magnetic field components. 

Figures are from [12, p. 492]) 

 

Transverse Electric and Magnetic (   ) modes supported by some other kinds of waveguides such 

as coaxial or parallel plate waveguides are not supported by the circular waveguides [12—14]. In 

other words, TEM does not exist in the CWG as in common to all one-conductor-type EMWGs 

[12—14]. By saying    or    mode, transverse to  -direction (    or    ) is conventionally 

implied, as we follow here. If any other direction in which the electric or magnetic field component 

of the electromagnetic wave were transverse, it would be specifically defined, such as     and 

    for    and    modes transverse to the  -direction [12].  

 

These modes have characteristic cut-off frequencies, below which electromagnetic energy is 

severely attenuated. Circular waveguide’s round cross section makes it easy to machine, and it is 

often used to feed conical horns. Further, the      modes of circular waveguide have very low 

attenuation. General properties of the    and    modes can be summarized as follows [9—14]: 

 

2.1. TE modes 

 

The transverse electric to z (   ) modes can be derived by letting the vector potential   and   be 

equal to the followings: 

                                                                                      (2a) 

                        (2b) 

from which we have 

                                    
(3a) 

whose solution gives: 

                                                      

     
         

       (3b) 

where  

       
    

          (4) 

and       are the Bessel functions of first and second kind respectively. The constants 

                            can be calculated by using the following boundary conditions: 

                   (5a) 

                        (5b)  

from which we get  

                                                
         (6) 

Then, the electric field component   
  can be calculated from 

  
         

 

 

   
        

  
      (7a) 

and by applying the boundary condition for   
  in (5a), we get: 
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   (7b) 

 

where      represents the  th zero (         ) of the derivative of the Bessel function       of 

the first kind of order   (           ). The smallest value of      corresponds to      
       (       ). 

Using (4) and (7b),    of the    mode can be written as follows: 

       

 
 
 

 
              

    

 
 
 

      
   
 

 

                   
    

 

             
    

 
 
 

         
   
 

 

    (8a) 

 

where Cut-off is defined when         , namely: 

                
   
 

      
      (8b) 

 

where        is the cut-off frequency above which the related    mode propogates with the guide 

wavelength: 

        
  

      
      (8c) 

 

2.2. TM modes 

 

Similarly, the transverse magnetic to z (   ) modes can be derived by letting the vector potential   

and   be equal to the followings: 

           (9a) 

                  (9b) 

from which we have 

                              (10a) 

whose solution gives: 

                                                      

     
         

        (10b) 

where 

  
    

             (11) 

and       are the Bessel functions of first and second kind respectively. The constants 

                            can be calculated by using the following boundary conditions:  

                  (12a) 

                   (12b) 

from which we get  

  
                                             

       (13a) 

Then, the electric field component   
  can be calculated from 

  
           

 

   
 
  

   
      

            (13b) 

 

and by applying the boundary condition in (12b) to (13b), we get 

                          
   

 
  (13c) 

where     represents the  th zero (         ) of the Bessel function       of the first kind of 

order   (           ). The smallest value of     corresponds to      2.4049 (      
 ). 
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Using (13c) and (11),    of the    mode can be written as follows: 

       

 
 
 

 
              

   

 
 
 

      
   

 

                   
   

 

             
   

 
 
 

         
   

 

    (14) 

where Cutoff is defined when         , namely: 

                
   

      
       (15) 

where        is the cut-off frequency above which the related    mode propogates with the guide 

wavelength given in eq. (8c). Since the cutoff frequencies of the      and      modes are 

identical (   
     ); they are referred to also as degenerate modes. 

 

 

3. Finding Oscillatory Zeros via Newton-Raphson (N-R) Method in a Given Domain 

 

3.1. The Newton-Raphson (N-R) method 

 

In numerical analysis, Newton's method (also known as the Newton–Raphson method), named after 

Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to 

the roots (or zeroes) of a real-valued functions: 

                 (16) 
The Newton–Raphson method in one variable is implemented as follows [27—29]: 

The method starts with a function   defined over the real numbers  , the function's derivative   , 
and an initial guess    for a root of the function  . If the function satisfies the assumptions made in 

the derivation of the formula and the initial guess is close, then a better approximation    is  

      
     

      
       (17) 

Geometrically,        is the intersection of the  -axis and the tangent of the graph of  at 

         . The process is repeated as 

        
     

      
       (18) 

until a sufficiently accurate value is reached. This algorithm is first in the class of Householder's 

methods, succeeded by Halley's method. The method can also be extended to complex functions 

and to systems of equations. Today, it is very easy to find the zero of such functions,     , around 

   by applying the Newton-Raphson method in any computational program such as mathematica 

with the following simple command [24]: 

                                                                (19a) 

Here, mathematica uses Newton-Raphson method starting from    and finds the nearest zero to it. 

Or, alternatively [24]; 

                                (19b) 

finds roots between      and     starting from   . Since the default method in the simpest case in 

mathematica is Newton-Raphson Method, method option may not be specified in these commands 

when used in “FindRoot“ given in (19a)—(19b) where iteration continues until        in (18) 

vanishes to the default “working precision value of Mathematica. “Working precision” value can 

also be set to any specific value along with the other optional parameters like “accuracy goal”and 

“precision goal” if desired [24]. 
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3.2. The Bubble Sorting 

 

Bubble sorting, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly 

steps through the list to be sorted. Each pair of adjacent items in the list are compared and swapped 

if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which 

indicates that the list is sorted. The algorithm, which is a comparison sort, is named for the way 

smaller or larger elements "bubble" to the top of the list. Main algorithm of the conventional Bubble 

sorting given below is widely studied in the literature(also including introductory textbooks) [34—

36]: 

begin BubbleSort(list) 

   for all elements of list 

      if list[i] > list[i+1] 

         swap(list[i], list[i+1]) 

      end if 

   end for 

   return list 

end BubbleSort 

Although the algorithm is simple and popular, it is normally known to be too slow and impractical 

for most problems involving large datum to be sorted even when compared to the insertion sorting 

algorithm [34—36]. It is practical if the element number is not too large as our case here. We also 

prefer it here since it needs tiny code size and requires relatively little memory. Advantages and 

disadvantages of the bubble sorting is well analyzed in details in [36]. 

 

3.3. Extensions of the N-R method to find roots in a given domain 

 

Newton-Raphson method given in Section 3.1 above finds only one root around   . So, we can 

extend it to find zeros in a given domain       by the following designed algorithm: 

Step 1: Set precision:       and input the followings:  

function:  , domain:            , domain division number:   

Step 2: For     to   

     
         

 
 

      Find root by the N-R Method {          } 

       If              then       
       Else       
       End if 

End For 

Step 3: Remove one of the repeated roots out the precision  . 

Step 4: Apply bubble sorting (optional) 

 

Here in Step 1, the function  , domain:            , number of domain division (or, scanning 

iteration number):   and working precision:   is inserted by the user. In Step 2, we scan the given 

function  , in the given domain:             with scanning step number:    In each step with step 

number  , we find the  th zero    around            
         

 
 by the Newton-Raphson 

method and assign it to    if the root is in the domain             . In Step 3, we remove the 

repeated roots out the precision  . Since different initial guess values (=   ) in each iteration in 

step 2 can give very close values in our N-R method, we have chosen        in our 

calculationsto distinguish them here. As an example, if two roots        are very close to each other 

with satisfying the condition:          , it assumes that roots    and     with      are 

repeated and one of them is rejected. In Step 3, we sort the roots by the conventionalBubble sorting 

given in[34—36].This part is optional since we scan the domain in the ascending order, however, it 
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guarantees the roots found to be sorted when running with very small or large domain division 

values where some of the roots might not be found in the ascending order. 

 

4.Results 

 

4.1. Zeros of Trigonometric functions 

 

Our suggestion has been tested first for the trigonometric functions with  

                (20a) 

whose exact zeros are: 

                      (20b) 

These results have also been obtained numerically by our algorithm. Some of these results for the 

Sine function is given in Table 1 as follows: 

 

Table 1. Results for                                       
Root # ( ) 1 2 3 4 5 6 7 8 9 

Exact -12.5664 -9.42478 -6.28319 -3.14159 0 3.14159 6.28319 9.42478 12.5664 

Our 

algorithm 
-12.5664 -9.42478 -6.28319 -3.14159 0 3.14159 6.28319 9.42478 12.5664 

Abs. Error 0 0 0 0 0 0 0 0 0 

Similarly, we obtained the numerical values of zeros of the cosine function: 

                
 

 
                   (21) 

In both cases we obtain the zeros with zero error. 

 

4.2. Zeros of Bessel functions and their derivatives 

 

Results for Bessel functions of first two kinds and their derivatives for various index values are 

given in Table 2a—2d as follows: 

Table 2a.Results for                                      

  

  

0 1 2 3 4 

1 2.404825558 3.83170597 5.135622302 6.380161896 7.588342435 

2 5.52007811 7.01558667 8.41724414 9.76102313 11.06470949 

3 8.653727913 10.17346814 11.61984117 13.01520072 14.37253667 

4 11.79153444 13.32369194 14.79595178 16.22346616 17.61596605 

5 14.93091771 16.47063005 17.95981949 19.40941523 20.82693296 

6 18.07106397 19.61585851 21.11699705 22.58272959 24.01901952 

7 21.21163663 22.76008438 24.27011231 25.7481667 27.19908777 

8 24.35247153 25.90367209 27.42057355 28.90835078 30.37100767 

9 27.49347913 29.04682853 30.5692045 32.06485241 33.53713771 

10 30.63460647 32.18967991 33.71651951 35.21867074 36.69900113 

11 33.77582021 35.33230755 36.86285651 38.37047243 39.8576273 

12 36.91709835 38.47476623 40.00844673 41.52071967 43.01373772 

13 40.05842576 41.61709421 43.15345378 44.66974312 46.16785351 

14 43.19979171 44.759319 46.29799668 47.81778569 49.32036069 

15 46.34118837 47.90146089 49.44216411 50.96502991 52.4715514 
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Table 2b. Results for     
                                  

                 

  

0 1 2 3 4 

1 3.83170597 1.841183781 3.054236928 4.201188941 5.317553126 

2 7.01558667 5.331442774 6.706133194 8.015236598 9.282396285 

3 10.17346814 8.536316366 9.969467823 11.34592431 12.68190844 

4 13.32369194 11.7060049 13.17037086 14.58584829 15.96410704 

5 16.47063005 14.86358863 16.34752232 17.78874787 19.1960288 

6 19.61585851 18.01552786 19.51291278 20.97247694 22.40103227 

7 22.76008438 21.16436986 22.67158177 24.14489743 25.58975968 

8 25.90367209 24.31132686 25.82603714 27.31005793 28.76783622 

9 29.04682853 27.45705057 28.97767277 30.47026881 31.93853934 

10 32.18967991 30.60192297 32.12732702 33.62694918 35.10391668 

11 35.33230755 33.7461829 35.27553505 36.78102068 38.26531699 

12 38.47476623 36.88998741 38.42265482 39.93310862 41.4236665 

13 41.61709421 40.03344405 41.56893494 43.08365266 44.57962314 

14 44.759319 43.17662897 44.71455353 46.23297108 47.73366752 

15 47.90146089 46.31959756 47.85964161 49.38130009 50.88615915 

Table 2c. Results for                                      

  

  

0 1 2 3 4 

1 0.893576966 2.197141326 3.384241767 4.527024661 5.645147894 

2 3.957678419 5.429681041 6.793807513 8.097553763 9.361620615 

3 7.08605106 8.596005868 10.02347798 11.39646674 12.73014447 

4 10.22234504 11.74915483 13.20998671 14.62307774 15.99962709 

5 13.36109747 14.89744213 16.37896656 17.81845523 19.22442896 

6 16.50092244 18.04340228 19.53903999 20.99728475 22.4248106 

7 19.6413097 21.18806893 22.69395594 24.16623576 25.61026705 

8 22.78202805 24.33194257 25.84561372 27.32879985 28.78589366 

9 25.92295765 27.47529498 28.9950804 30.4869896 31.95468668 

10 29.06403025 30.61828649 32.14300226 33.64204938 35.11852953 

11 32.20520412 33.7610178 35.28979387 36.79479103 38.27866809 

12 35.34645231 36.90355532 38.43573349 39.94576723 41.43596063 

13 38.48775665 40.04594464 41.58101487 43.09536751 44.59101823 

14 41.62910447 43.1882181 44.72577712 46.24387443 47.74428809 

15 44.77048661 46.33039925 47.8701227 49.39149802 50.8961052 

Table 2d. Results for     
                                  

  

  

0 1 2 3 4 

1 2.197141326 3.683022857 5.002582931 6.253633208 7.464921737 

2 5.429681041 6.941499954 8.350724701 9.698787984 11.00516915 

3 8.596005868 10.12340466 11.57419547 12.97240905 14.33172352 

4 11.74915483 13.28575816 14.76090931 16.1904472 17.58443602 

5 14.89744213 16.44005801 17.93128594 19.38238845 20.80106234 

6 18.04340228 19.59024176 21.0928945 22.55979186 23.99700412 

7 21.18806893 22.73803472 24.24923168 25.72821319 27.17988669 

8 24.33194257 25.88431462 27.40214584 28.89067842 30.35396061 

9 27.47529498 29.02957582 30.55270888 32.04898401 33.5217971 

10 30.61828649 32.17411823 33.70158627 35.20426661 36.68504838 

11 33.7610178 35.31813446 36.84921342 38.35728168 39.84482697 

12 36.90355532 38.46175387 39.99588738 41.50855144 43.00191052 

13 40.04594464 41.60506662 43.14181784 44.65844873 46.15685955 

14 43.1882181 44.74813745 46.2871571 47.80724696 49.31008861 

15 46.33039925 47.89101407 49.43201847 50.95515126 52.46191104 
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Note that we preferred to use symbol   for the domain of the Bessel functions rather than   in our 

design in [33], since cylindrical coordinates are essential in the CWGs which we use in the second 

part of the user console. 

 

4.3. Applications to Circular Waveguides 

Table 3a.Results of the    modes for application to a specific CWG:            
                                                  , and         

 
  

  
CWG 

0 1 2 3 4 

1 
   
 

 2.404825558 3.83170597 5.135622302 6.380161896 7.588342435 

   2.294850557 3.656478347 4.900765322 6.088390916 7.241320189 

   4.442258538 3.410302934 0.991211007 0 0 

2 
   
 

 5.52007811 7.01558667 8.41724414 9.76102313 11.06470949 

   5.267639594 6.694757099 8.032315417 9.314642092 10.55870961 

   0 0 0 0 0 

3 
   
 

 8.653727913 10.17346814 11.61984117 13.01520072 14.37253667 

   8.257984558 9.708225588 11.08845459 12.42000299 13.71526666 

   0 0 0 0 0 

Table 3b. Results of the    modes for application to a specific CWG:             
                                                  , and         

                 

  
CWG 

0 1 2 3 4 

1 

    3.8170597 1.841183781 3.054236928 4.201188941 5.317553126 

   3.656478347 1.756984665 2.914563717 4.009064504 5.074376274 

   3.410302934 4.681132864 4.062673792 2.987875802 0 

2 

    7.01558667 5.331442774 6.706133194 8.015236598 9.282396285 

   6.694757099 5.087630734 6.399455231 7.648692069 8.857903317 

   0 0 0 0 0 

3 

    10.17346814 8.536316366 9.969467823 11.34592431 12.68190844 

   9.708225588 8.145942355 9.513554408 10.82706421 12.10195249 

   0 0 0 0 0 

 

5. Conclusions 

 

We calculated zeros of the Bessel functions of first and second kinds with integer indices and their 

derivatives successfully by the suggested algorithm based on the conventional N-R root finding.In 

the first part of the user console of our design running in Mathematica cdf player (The “find roots” 

part), user selects the Bessel function of either kind (among the first two kinds and their derivatives) 

and selects its index value. Selected function is being scanned by the iteration number (which is 

equal to the number of domain division also selected by the user) through the domain (also selected 

by the user). After the application of the N-R root-finding for each division has been completed, 

repeated roots and roots out of the domain are rejected. We set the distinguish parameter by 

m=0.001 as optimum to decide such two close roots (as a consequence of the Newton-Raphson 

process with close initial guesses in each iteration step) to be repeated if they deviate more than this 

value as explained above. Finally, we sort the roots by the conventional Bubble sorting [34—36]. 

This final step is optional here since it becomes necessary for the number of division values which 

might be set to an inappropriate value causing some of the roots to be not in the correct ascending 

order. Since the domain is scanned from minimum to maximum in the ascending order, we 

normally get the roots in the ascending order. Actually, Bubble sorting has been known to be 

impractical when compared with the other sorting methods and there has been much effort for the 

enhancement of it, i.e., [37—39]. However, it works here very well without any modification since 

it needs little memory and we do not have too much roots to be processed to spend much time in 
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sorting. It is obvious that, when this optional part is removed by using the appropriate domain 

division values, it becomes very fast even for too much root values to be processed. Moreover, by 

applying some optimization and enhancement to the bubble sorting, or by using other sorting 

algorithms, speed can be increased for huge root values when this optional part is used. 

 

In the second part of the user console of our design, the TM and TE modes supported by the CWGs 

has been obtained successfully by using the results for the first kinds of Bessel functions and their 

derivatives obtained in the first part of the user console. User selects i) the CWG parameters: guide 

radius, wave frequency, relative permittivity and permeability of the guide medium (we study 

lossless and linear medium here), mode type to be calculated (TM or TE) and ii) Our roots finding 

parameter: Number of domain division. Output digit numbers to be displayed is also added for the 

cases where user wishes to round off the results to any specific digit number. In both parts of the 

user console, there is also a button with name “Show with/without Abs. Error” to activate or 

inactivate the appearance of the absolute error values calculated according to the following formula: 

          
   
     

                    
                          

                      (22) 

which would give zero when really the exact values (which might have huge numbers of digits) 

were used. We apply the related formulas given in Section 2 to find the related electromagnetic 

parameters of the CWG under question. Results are in a great consistence with the results given in 

[12—14] where the Newton-Raphson method is used, namely with a very slight difference of about 

       or less (even zero for some of the values) which is within the default working precision 

value of the Mathematica. Moreover, degenerate      and      modes where cutoff frequencies 

and wavelengths are common as given in [12—14] are also apparently seen in our results given in 

Table 2a and Table 2b with    
     . We also obtain    

         
         

         
      

for the same selected wave frequency values in a specific CWG as shown in Table 3a and Table 

3b.In Table 3a and 3b, results of the selected CWG parameters are given for the TE and TM modes 

with indices up to:              . However, results for much more index values can be 

obtained in the selected intervals via the user console. Table 3a and Table 3b shows that, the 

selected CWG when used with the selected frequency value (=5GHz), modes with      are not 

supported (wave can not propagate since severely attenuated) since the selected wave frequency is 

smaller than the cut-off frequency values of the related mode. For much detailed CWG analyses, 

other sorting algorithms are required to find the other electromagnetic parameters such as correct 

order of the all supported modes which will be necessary to determine the operating band-width of 

each mode. However, they can be calculated manually by using these results for the modes around 

the low lying dominant mode values as in [12—14]. Our design running under the free Wolfram cdf 

player, which is freely downloadable via [30] is freely open to the users via [33].  
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