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Abstract: Determination of zeros of first two kinds of Bessel functions and their derivatives by fast and
reliable accurate calculations is essential to determine the necessaryTransverse Electric (TE) and Transverse
Magnetic (TM) modes supported by the Circular Waveguides (CWGSs). Here, a fast computational algorithm
design based on the numerical Newton-Raphson (N-R) method to determine the first n zeros ofthese special
functions is being presented. Our suggestion involves: scanning the given function in the selected domain
according to the selectednumber of iteration steps (or, number of domain division) and finding their zeros by
the N-R method in each step. One of the repeated roots and roots out of the domain are rejected and the
remaining roots are re-sorted by the optional bubble sorting algorithm. Consequently, related TE and TM
modes of the circular waveguide determining the electromagnetic wave behavior is obtained successfully. Our
design running under the free “Wolfram CDF player” software has been opened to the users for free in the
web page of our institution. Results of a sample application of our design to a specific CWG regarding these
modes along with the cut-off frequencies and propagating electromagnetic wave frequencies are being
presented.

Keywords:Bessel functions, Circular waveguides, Cylindrical waveguides, Lossless medium, TE modes, TM
modes, Numerical root finding, Newton-Raphson method

Newton-Raphson Temelli Kokleri Bulma Algoritmasi Tasarimi ve
Dairesel Dalgakilavuzlarina Uygulamalar:

Ozet: Dairesel dalgakilavuzlarimin (DDK) destekledigi Transvers Elektrik (TE) ve Transvers Manyetik (TM)
modlarm belirlenmesinde, ilk iki tiirden Bessel fonksiyonlarinin ve tiirevlerinin sifirlarinin hizli ve giivenilir
dogruluklarda hesaplanarak tespiti elzemdir. Burada, bu ozel fonksiyonlarinistenen aralikta ilk n sifiri
bulan, Newton-Raphson (N-R) temelli, hizli hesaplama yapabilen bir algoritma tasarimi sunulmaktadir.
Onerimiz, fonksiyonun segilen iterasyon adim sayisina gore (veya domain bdlme sayisina gore), segilen tanim
araliginda taranmasmive her adimda koklerin N-R yontemiyle bulunmasini igermektedir. Bulunan tekrarl
koklerden biri ve girilen tanim araligi disinda bulunan kokler atilmakta ve geriye kalan kokler, opsiyonel
olarak konulan kopiik (bubble) siralama algoritmasia gore tekrardan siralanmaktadir. Netice itibariyle,
elektomanyetik dalga davraniglarini belirleyen, dairesel dalgakilavuzlarinin TE ve TM modlar1 basartyla elde
edilmektedir. Ucretsiz “Wolfram CDF player” altinda calisan tasarimimiz, kurumumuzun ilgili internet
adresinden kullanicilarin hizmetine {icretsiz olarak sunulmustur. Tasarimimizin 6zel bir DDK’na 6rnek
uygulamasinin modlara, kesme frekansina ve ilerleyen dalga frekansina iligskin sonuglari sunulmaktadir.

Anahtar kelimeler: Bessel fonksiyonlari, Dairesel dalga klavuzlari, Kayipsiz ortam, Silindirik dalga
klavuzlari, TE modlar, TM modlar, Numerik kok bulma, Newton-Raphson metodu
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1. Introduction

Special functions having infinite zeros in the entire domain implying finite zeros in a given
subdomain; like trigonometric functions, Bessel functions, Airy functions, etc., have various
fundamental applications in physical and engineering sciences where finding their zeros as accurate
and as fast as possible in the desired domains is essential, i.e.; [1—14]. Since analytical or
numerical solutions in finding roots of such functions are always not appropriate, various numerical
and analytical approximation techniques have been improved [14—23]. For example, Bessel
functions as we study here are defined exactly as infinite series:

o (—l)k x 2k+m
Jm(x) = Zk:om(g) ,mell* (1a)
Jm(x) cos(mm)—J_m (x) if m et
Y, (x) = sin(mm) ’ (1b)
m )y Jm () cos(pm)—J_m ()] . +
lim,,_,,, pryz ] ,if mell

where J,,(x)&Y,,(x) are the Bessel functions of first and second kind with index m and I" is the
gamma function. We can see that their exact numerical calculations as well as finding their zeros
are impractical but they can be calculated by some approximations according to the situations such
as asymptotic approximations, approximations for large Bessel indices, various numerical
approximation techniques, etc., as given in fundamental textbooks [6—9,14—23].

Today, it is possible to retrieve nearly exact values of such special functions, their derivatives and
zeros by entering very simple commands to the conventional mathematical and engineering
software such as Mathematica, Maple, etc., whose principles are based on such improved
approximation techniques [24—26]. Here we suggest a very fast and accurate numerical method
based on the conventional Newton-Raphson (N-R) method given in [27—29] to find the zeros of
the Bessel functions of the first two kinds and their derivatives in a desired domain. Our algorithm
involves scanning these functions in the given domain with the given number of domain divisions
(which also implies the iteration number for scanning the radius domain) and finding their zeros for
each division by the numerical N-R method. One of the repeated roots are rejected as well as the
roots out of the domain and the remaining roots are re-sorted by the optional bubble sorting
algorithm given in [34—39].

A waveguide is a structure that guides waves, such as sound waves or electromagnetic waves where
the latter is our case here. They enable a signal to propagate with minimal loss of energy by
restricting expansion to one dimension or two. This is a similar effect to waves of water constrained
within a canal. Without the physical constraint of a waveguide, signals will typically be radiated
and decreased according to the inverse square law as they expand into three dimensional space.
There are different types of waveguides for each type of wave. The original and most common is a
hollow conductive metal pipe used to carry high frequency radio waves, particularly microwaves
regarding the electromagnetic waveguides (EMWGs), or simply;| waveguides (WGs). It might also
be filled with any medium or some combinations of media to form a dielectric waveguide. Our
hallow-conductive metal pipe might be rectangular to be called a parallel plate waveguide (PPWG)
or circular (cylindrical) to be called a circular (or cylindrical) waveguide (CWG) [9—14]. In
EMWGs we have three common modes which determine the behavior of the electromagnetic wave
to be guided: i) TE modes (Transverse Electric) where there is no electric field in the direction of
propagation, ii) TM modes (Transverse Magnetic) where there is no magnetic field in the direction
of propagation, iii) TEM modes (Transverse Electro Magnetic) where there is neither electric nor
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magnetic field in the direction of propagation. For the CWG only the first two of them are
supported.

In CWG design and analyses, roots of such special functions are essential since they are used to
define these modes to characterize the electromagnetic behavior of the CWG. Related
electromagnetic wave parameters such as cut-off frequencies below which the wave can not
propagate (severely attenuated), frequency bandwidth in which it can operate to transmit the
electromagnetic wave, propagating wave frequencies, wavelengths and wave impedances (which
give a relationship between the electric and magnetic components of the propagating
electromagnetic wave), etc. are characterized by these modes [9—14]. We use only the first kinds
of Bessel functions and their derivatives to find the related Transverse Magnetic (TM) and
Transverse Electric (TE) modes supported by the CWG in the Electromagnetic Wave Theory,
respectively [9—14]. Our design running under the free “Wolfram CDF player” software (where
CDF stands for Computable Document Format [30—32]) is open to the users for free in the web
page given in [33]. A general appearance of it while running is given in Figure 1 and Figure 2. Our
design is made up of two parts: i) Finding roots: to find the roots of these special functions and their
derivatives by the suggested algorithm (shown in Figure 1), ii) Apply to a specific CWG: Apply the
roots of the required functions among them to determine the modes and find some of the
electromagnetic parameters of a specific CWGwhose parameters are selected by the user (shown in
Figure 2).

& NR_based_rootfinder_for_the_cicular_wavequides.cdf - Wolfram CDF Player - |EI|£|
File Edit ‘Window Help
=
WOLFRAM CDF Player =] I 4r IIDU% ﬂ Published under FreeCDF™ terms »
rY
Find roots | &pply to a specific CWG | =
[
Mewton—Raphson Based Rook Finder and Sorter for Bessel Functions of bwo kinds (1, (01&Y, (9] and Their Derivatives
|
Friin | 01
H of domain 1
[o.1 — 2w
CORATH: —LLIiI—I—I:I division ta scan _| 100
— '_JI 51.1 [o =]+ &l=]| =
[5L1 —| !|+| R|3|:|
| show withMithoutl
function: IJm[X:l 'l Eessel indice [m): Il VI update e
[ [tm=1,n=1)+3.83171, |Err.|=3.20057 x 18] , | |
[im=1,n=2}—7.81559, |Err.|=2.92489x 18 %] ,
[im=1,n=3)=18.1735, |Err.|=1.47865%187°] , [im=1,n=4]-13.3237,|Err.|=0.] ,
[im=1,n=5)-16.4786, |Err.|=2.8788x182%] , [i(m=1,n=61-19.6159, |Err.|=1.99879x187F] ,
[im=1,n=7)=22.7601, |Err.|=2.68129%187°] , [(m=1,n=8)-=25.9@837,|Err.|=6.] ,
[im=1,n=9)-=23.8468, |Err.|=8.] , [(m=1,n=18)-32.1897, |Err.|=2.1768x18¢] ,
[im=1,n=11)-+35.3323, |Err.|=4.37685x187F] ,
[im=1,n=12)-+38.4748, |Err.|=9.25226x18"] ,
[im=1,n=13)-+41.6171, |Err.|=7.84963 218" ,
[{m=1,n=14)-+44.7593, |Err.|=2.77566 2 187F] ,
[{m=1,n=15)—+47.9815, |Err.|=3.99682 x 187F] ,
[ {m=1,n=16]-+51.8435, [Err.|=3.82877 x187°] |
Dresigned bor D, . Deniz, Adnan Menderes University, cdenizi@adu.edu tr, 2015,
=
[ 100% ~ 7

Figure 1. An appearance of the “Find roots” part of the designed software while running (“show
with error” is activated here)

Since finding these modes are essential, we find them first and apply to a specific CWG to show its
success as a sample application in the second part of our design. Here, parameters of a specific
CWG regarding guide radius, guide permittivity and permeability (we assume lossless media) and
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applied wave frequency are selected by the user via the user control panel as shown in Figure 2.
Then, it calculates the related cut-off and propagating wave frequencies among these
electromagnetic parameters. We intentionally calculate only these two essential parameters for
simplification here to show its success with a sample application, however, other parameters can be
added when required.

In Section 2, we present and discuss the fundamentals of the circular waveguides.In Section 3, we
present the designed algorithm to find and sort the zeros of these special functions and their
derivatives. In Section 4 we present the results of sample applications of our design which involves
a specific CWG where cut off frequencies and propagating wave frequencies for the associated
modes are calculated.

@ NR_based_rootfinder_for_the_cicular_waveguides.cdf - Wolfram CDF Player _ 10|
File Edit ‘Window Help
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medium & ¢ JI 1 mediurm .t JI 1
[1 o I Y e | [1 =[]+ == =

show withiwithout
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[ [™{m=1,n=1)-3.8317@6, |Err.|=1.5548977%108", (£.-2.3036998, £.-1.2998159)GHz] ,
[TM{m=1,n=2)+7.8155867, |Err.|=3.8589536%187"°, (F.=4.2179138, f.=0)GHz] ,
[TM{m=1,n=3)>18.173468, |Err.|=1.4786499x107"°, (f.=6.1164965, f.=8)GHZ] ,
[TM{m=1,n=4)>13.323632, |Err.|=8., [f.=8.8184753, ,=08)GHz] ,
[TMim=1,n=5)+16.47@63, |Err.|=2.8787392x197°, (f.=9.9024787, f.=@)GHz] |

Dezigned by Dr. C. Deniz, Adnan Menderes University, cdenizi@adu.edu.tr, 2016,

-

[ 100% ~ 7
Figure 2. An appearance of the “Apply to a specific CWG” part of the designed software while
running (“show with error” is activated here)

2. Application to Circular Waveguides in Electromagnetic Wave Theory

The circular waveguide is occasionally used as an alternative to the rectangular waveguide. Like
other waveguides constructed from a single, enclosed conductor, the circular waveguide supports
theTransverse Electric (TE) and Transverse Magnetic (TM) modes only. Field configurations of
some low lying TE# and/or TM?# modes in a circular waveguide are given as an example in Figure
3.
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Figure 3: Field configurations of some low lyingTE# and/or TM? modes in a circular waveguide
(Solid curves: for the electric field component, dashed curves: for the magnetic field components.
Figures are from [12, p. 492])

Transverse Electric and Magnetic (TEM) modes supported by some other kinds of waveguides such
as coaxial or parallel plate waveguides are not supported by the circular waveguides [12—14]. In
other words, TEM does not exist in the CWG as in common to all one-conductor-type EMWGs
[12—14]. By saying TE or TM mode, transverse to z-direction (TE? or TM?) is conventionally
implied, as we follow here. If any other direction in which the electric or magnetic field component
of the electromagnetic wave were transverse, it would be specifically defined, such as TE* and
TM~* for TE and TM modes transverse to the x-direction [12].

These modes have characteristic cut-off frequencies, below which electromagnetic energy is
severely attenuated. Circular waveguide’s round cross section makes it easy to machine, and it is
often used to feed conical horns. Further, the TE,, modes of circular waveguide have very low
attenuation. General properties of the TE and TM modes can be summarized as follows [9—14]:

2.1. TE modes

The transverse electric to z (TE?) modes can be derived by letting the vector potential 4 and F be
equal to the followings:
A=0 (2a)
F = a,F(p,9,2) (2b)
from which we have
V2E(p,®,2) + B*F,(p,®,2) = 0

(32)
whose solution gives:
E(p,8,2) = [AUm(Bop) + B1Ym(B,p)] X [C; cos(m@) + D, sin(m)]
X [Aze /BzZ + ByePz7] (3b)
where
Bs + 7 = p? (4)

and J,,&Y,, are the Bessel functions of first and second kind respectively. The constants
{A1, B1,Cy, Dy, A3, B3, m, B, B} can be calculated by using the following boundary conditions:
Ey(p=0a,0,2z) =0 (5a)
E,(p=a0,z)=0 (5b)
from which we get
Fy(p,8,2) = A (Bop) X [C; cos(m®) + D, sin(m@)] x Aze ™=z (6)
Then, the electric field component E; can be calculated from

+ _ laF;(p'Q)'Z)
E¢(p,®,Z)—g ap

and by applying the boundary condition for Eg in (5a), we get:

(72)

36



Deniz, C. ECJSE 2017 (1) 32-45

Eg(p=a,(b,z)=0=>]’m(ﬁp)=0=>ﬁp=x% (7b)

where y',., represents the nth zero (n = 1, 2, 3, ...) of the derivative of the Bessel function J,,(x) of
the first kind of order m (m =0,1,2,3,...). The smallest value of y',,, corresponds to y';; =
1.8412 (m = 1,n = 1).

Using (4) and (7b), 8, of the mn mode can be written as follows:

| Jﬁ=m'ﬁ>ﬁp=%

(Bmn =3 0, p=p.=p,=51m (8a)

a

i 83 - B2 = 1 (B2 - 2, <, =

where Cut-off is defined when S,y = 0, namely:
Be = w\pe = (f)mn = %\/TL_S (8b)

where (f;)mn IS the cut-off frequency above which the related TE mode propogates with the guide
wavelength:

21
A =
9 (Bz)mn

(8c)

2.2. TM modes

Similarly, the transverse magnetic to z (TM?#) modes can be derived by letting the vector potential A
and F be equal to the followings:

F=0 (9a)
A=a,A,(p 0 2) (9b)

from which we have
V?A,(p,8,2) + p?A,(p,®,2) = 0 (10a)

whose solution gives:
Az(p,8,2) = [A)m(Bop) + B1Ym(B,p)] X [C; cos(m®) + D, sin(m@)]
X [Aze~/Bz7 4 ByelBz7] (10b)
where
Bs + BZ = p? (11)
and J,,&Y,, are the Bessel functions of first and second kind respectively. The constants
{A1, B1,Cy, Dy, A3, B3, m, B, B} can be calculated by using the following boundary conditions:
Es(p=0a0,2z)=0 (12a)
E,(p=a0,2) =0 (12b)
from which we get
Ar(p,@,z) = an]m(ﬁpp) X [C, cos(m®) + D, sin(m®)] x Aze /B (13a)
Then, the electric field component E;f can be calculated from

B (0,0,2) = —j = (25 + ) A (0, ® 13
Z ,D; yZ) = Ja)us apZ ,8 Z(p' 'Z) ( )
and by applying the boundary condition in (12b) to (13b), we get

E,(p=a,0,2)=0=Jn(B,) =0=p, =42 (13c)
where y,.. represents the nth zero (n = 1, 2, 3, ...) of the Bessel function J,,,(x) of the first kind of

order m (m =0,1,2,3,...). The smallest value of y,,, corresponds to y,; = 2.4049 (m = 0,n =
1).
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Using (13c) and (11), 5, of the mn mode can be Written as follows:

1/ pr— g = |82 - (E22) > g, = 2o
— Xmn

(B2)mn = 0, B=B:=8 (14)

CAL ) (Bzm)" — g2, p < g, = 2mm
/ J(E .

where Cutoff is defined when Bzimn) = 0, namely
Be = a)c\/ﬁ = (fc)mn = 2:%};—8 (15)
where (f.)mn is the cut-off frequency above which the related TM mode propogates with the guide

wavelength given in eq. (8c). Since the cutoff frequencies of the TE,, and TM,,, modes are
identical (o, = x1n); they are referred to also as degenerate modes.

3. Finding Oscillatory Zeros via Newton-Raphson (N-R) Method in a Given Domain
3.1. The Newton-Raphson (N-R) method

In numerical analysis, Newton's method (also known as the Newton—Raphson method), named after
Isaac Newton and Joseph Raphson, is a method for finding successively better approximations to
the roots (or zeroes) of a real-valued functions:
x:f(x)=0 (16)
The Newton—Raphson method in one variable is implemented as follows [27—29]:
The method starts with a function f defined over the real numbers x, the function's derivative f’,
and an initial guess x, for a root of the function f. If the function satisfies the assumptions made in
the derivation of the formula and the initial guess is close, then a better approximation x; is
X, = xp — L) (17)
f1(x0)
Geometrically, (x4,0) is the intersection of the x-axis and the tangent of the graph of fat
(x0, f (x0). The process is repeated as
Xn+1 = Xn — f’((zz)) (18)
until a sufficiently accurate value is reached. This algorithm is first in the class of Householder's
methods, succeeded by Halley's method. The method can also be extended to complex functions
and to systems of equations. Today, it is very easy to find the zero of such functions, f(x), around
xo by applying the Newton-Raphson method in any computational program such as mathematica
with the following simple command [24]:
FindRoot[f,{x, xy}, Method —> {"Newton","StepControl" —> None}] (19a)
Here, mathematica uses Newton-Raphson method starting from x, and finds the nearest zero to it.
Or, alternatively [24];

FindRoot[f,{x, X0, Xmin» Xmax} (19b)
finds roots between x,,,;, and x,, . starting from x,. Since the default method in the simpest case in
mathematica is Newton-Raphson Method, method option may not be specified in these commands
when used in “FindRoot“ given in (19a)—(19b) where iteration continues until f'(x,) in (18)
vanishes to the default “working precision value of Mathematica. “Working precision” value can
also be set to any specific value along with the other optional parameters like “accuracy goal”and
“precision goal” if desired [24].
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3.2. The Bubble Sorting

Bubble sorting, sometimes referred to as sinking sort, is a simple sorting algorithm that repeatedly
steps through the list to be sorted. Each pair of adjacent items in the list are compared and swapped
if they are in the wrong order. The pass through the list is repeated until no swaps are needed, which
indicates that the list is sorted. The algorithm, which is a comparison sort, is named for the way
smaller or larger elements "bubble” to the top of the list. Main algorithm of the conventional Bubble
sorting given below is widely studied in the literature(also including introductory textbooks) [34—
36]:
begin BubbleSort(list)
for all elements of list
if list[i] > list[i+1]
swap(list[i], list[i+1])
end if
end for
return list
end BubbleSort

Although the algorithm is simple and popular, it is normally known to be too slow and impractical
for most problems involving large datum to be sorted even when compared to the insertion sorting
algorithm [34—36]. It is practical if the element number is not too large as our case here. We also
prefer it here since it needs tiny code size and requires relatively little memory. Advantages and
disadvantages of the bubble sorting is well analyzed in details in [36].

3.3. Extensions of the N-R method to find roots in a given domain

Newton-Raphson method given in Section 3.1 above finds only one root around x,. So, we can
extend it to find zeros in a given domain [a, b] by the following designed algorithm:

Step 1: Set precision: m = 0.01and input the followings:

function: f, domain: [X,in, Xmaxl], domain division number: n

Step2:Fori=1ton

Xmax—Xmin
Ax = ———=

n
y; <Find root by the N-R Method {f, xo; < i X Ax}
If Xmin = Xi = Xmax then Xi < Vi
Else x; « {}
End if
End For
Step 3: Remove one of the repeated roots out the precision m.
Step 4: Apply bubble sorting (optional)

Here in Step 1, the function f, domain: [Xmin, Xmax], NUMber of domain division (or, scanning
iteration number): n and working precision: m is inserted by the user. In Step 2, we scan the given
function £, in the given domain: [X;nin, Xmax] With scanning step number: n. In each step with step
number i, we find the ith zero x; around xg; < i X Ax =i X x"“”‘nﬂ by the Newton-Raphson

method and assign it to x; if the root is in the domain x,,,;, < X; < Xjmax- 1N Step 3, we remove the
repeated roots out the precision m. Since different initial guess values (=xg;) in each iteration in
step 2 can give very close values in our N-R method, we have chosen m = 0.01 in our
calculationsto distinguish them here. As an example, if two roots x;&x;, are very close to each other
with satisfying the condition:|x; — x;,| < m, it assumes that roots x; and x;, with i =i’ are
repeated and one of them is rejected. In Step 3, we sort the roots by the conventionalBubble sorting
given in[34—36].This part is optional since we scan the domain in the ascending order, however, it
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guarantees the roots found to be sorted when running with very small or large domain division
values where some of the roots might not be found in the ascending order.

4.Results
4.1. Zeros of Trigonometric functions

Our suggestion has been tested first for the trigonometric functions with
f(x) = Sinx (20a)
whose exact zeros are:
x, =nm,n=04+1,12,.. (20b)
These results have also been obtained numerically by our algorithm. Some of these results for the
Sine function is given in Table 1 as follows:

Table 1. Results for f = Sinx, X;min = —13, Xppax = 13,1 =100,m = 0.01
6

Root # (n) 1 2 3 4 5 7 8 9
Exact -12.5664 | -9.42478 | -6.28319 | -3.14159 | 0 [ 3.14159 | 6.28319 | 9.42478 | 12.5664
Our -12.5664 | -9.42478 | -6.28319 | -3.14159 | 0 | 3.14159 | 6.28319 | 9.42478 | 12.5664

algorithm

Abs. Error 0 0 0 0 0 0 0 0 0

Similarly, we obtained the numerical values of zeros of the cosine function:
1
f(x) =Cosx = x, = (n +E) m,n=0+14+2, .. (21)

In both cases we obtain the zeros with zero error.
4.2. Zeros of Bessel functions and their derivatives

Results for Bessel functions of first two kinds and their derivatives for various index values are
given in Table 2a—2d as follows:

Table 2a.Results for f = J,,(x), Xmin = 0, Xmax = 53,n = 100,m = 0.01

v 0 1 2 3 4
n
1 2.404825558 | 3.83170597 | 5.135622302 | 6.380161896 7.588342435
2 5.52007811 7.01558667 8.41724414 9.76102313 11.06470949
3 8.653727913 | 10.17346814 | 11.61984117 | 13.01520072 14.37253667
4 11.79153444 | 13.32369194 | 14.79595178 | 16.22346616 17.61596605
5 14.93091771 | 16.47063005 | 17.95981949 | 19.40941523 20.82693296
6 18.07106397 | 19.61585851 | 21.11699705 | 22.58272959 24.01901952
7 21.21163663 | 22.76008438 | 24.27011231 | 25.7481667 27.19908777
8 24.35247153 | 25.90367209 | 27.42057355 | 28.90835078 | 30.37100767
9 27.49347913 | 29.04682853 | 30.5692045 | 32.06485241 | 33.53713771
10 30.63460647 | 32.18967991 | 33.71651951 | 35.21867074 | 36.69900113
11 33.77582021 | 35.33230755 | 36.86285651 | 38.37047243 39.8576273
12 36.91709835 | 38.47476623 | 40.00844673 | 41.52071967 | 43.01373772
13 40.05842576 | 41.61709421 | 43.15345378 | 44.66974312 | 46.16785351
14 43.19979171 44.759319 46.29799668 | 47.81778569 | 49.32036069
15 46.34118837 | 47.90146089 | 49.44216411 | 50.96502991 52.4715514
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Table 2b. Results for f = J,(x), Xpin = 0, Xpmax = 53,1 = 100, m = 0.01

v 0 1 2 3 4
n
1 3.83170597 | 1.841183781 | 3.054236928 | 4.201188941 | 5.317553126
2 7.01558667 | 5.331442774 | 6.706133194 | 8.015236598 | 9.282396285
3 10.17346814 | 8.536316366 | 9.969467823 | 11.34592431 | 12.68190844
4 13.32369194 | 11.7060049 | 13.17037086 | 14.58584829 | 15.96410704
5 16.47063005 | 14.86358863 | 16.34752232 | 17.78874787 | 19.1960288
6 19.61585851 | 18.01552786 | 19.51291278 | 20.97247694 | 22.40103227
7 22.76008438 | 21.16436986 | 22.67158177 | 24.14489743 | 25.58975968
8 25.90367209 | 24.31132686 | 25.82603714 | 27.31005793 | 28.76783622
9 29.04682853 | 27.45705057 | 28.97767277 | 30.47026881 | 31.93853934
10 32.18967991 | 30.60192297 | 32.12732702 | 33.62694918 | 35.10391668
11 35.33230755 | 33.7461829 | 35.27553505 | 36.78102068 | 38.26531699
12 38.47476623 | 36.88998741 | 38.42265482 | 39.93310862 | 41.4236665
13 41.61709421 | 40.03344405 | 41.56893494 | 43.08365266 | 44.57962314
14 44.759319 | 43.17662897 | 44.71455353 | 46.23297108 | 47.73366752
15 47.90146089 | 46.31959756 | 47.85964161 | 49.38130009 | 50.88615915
Table 2c. Results for f =Y, (x), X;nin = 0, Xpnax = 53,n = 100,m = 0.01
v 0 1 2 3 4

1 0.893576966 | 2.197141326 | 3.384241767 | 4.527024661 | 5.645147894
2 3.957678419 | 5.429681041 | 6.793807513 | 8.097553763 | 9.361620615
3 7.08605106 | 8.596005868 | 10.02347798 | 11.39646674 | 12.73014447
4 10.22234504 | 11.74915483 | 13.20998671 | 14.62307774 | 15.99962709
5 13.36109747 | 14.89744213 | 16.37896656 | 17.81845523 | 19.22442896
6 16.50092244 | 18.04340228 | 19.53903999 | 20.99728475 | 22.4248106
7 19.6413097 | 21.18806893 | 22.69395594 | 24.16623576 | 25.61026705
8 22.78202805 | 24.33194257 | 25.84561372 | 27.32879985 | 28.78589366
9 25.92295765 | 27.47529498 | 28.9950804 | 30.4869896 | 31.95468668
10 29.06403025 | 30.61828649 | 32.14300226 | 33.64204938 | 35.11852953
11 32.20520412 | 33.7610178 | 35.28979387 | 36.79479103 | 38.27866809
12 35.34645231 | 36.90355532 | 38.43573349 | 39.94576723 | 41.43596063
13 38.48775665 | 40.04594464 | 41.58101487 | 43.09536751 | 44.59101823
14 41.62910447 | 43.1882181 | 44.72577712 | 46.24387443 | 47.74428809
15 44.77048661 | 46.33039925 | 47.8701227 | 49.39149802 | 50.8961052

Table 2d. Results for f = Y, (x), Xphin = 0, Xmax

=53,n=100,m = 0.01

v 0 1 2 3 4

1 2.197141326 | 3.683022857 | 5.002582931 | 6.253633208 | 7.464921737
2 5.429681041 | 6.941499954 | 8.350724701 | 9.698787984 | 11.00516915
3 8.596005868 10.12340466 11.57419547 12.97240905 14.33172352
4 11.74915483 13.28575816 14.76090931 16.1904472 17.58443602
5 14.89744213 | 16.44005801 | 17.93128594 | 19.38238845 | 20.80106234
6 18.04340228 | 19.59024176 21.0928945 22.55979186 | 23.99700412
7 21.18806893 | 22.73803472 | 24.24923168 | 25.72821319 | 27.17988669
8 24.33194257 | 25.88431462 | 27.40214584 | 28.89067842 | 30.35396061
9 27.47529498 | 29.02957582 | 30.55270888 | 32.04898401 33.5217971

10 30.61828649 | 32.17411823 | 33.70158627 | 35.20426661 | 36.68504838
11 33.7610178 35.31813446 | 36.84921342 | 38.35728168 | 39.84482697
12 36.90355532 | 38.46175387 | 39.99588738 | 41.50855144 | 43.00191052
13 40.04594464 | 41.60506662 | 43.14181784 | 44.65844873 | 46.15685955
14 43.1882181 4474813745 46.2871571 47.80724696 | 49.31008861
15 46.33039925 | 47.89101407 | 49.43201847 | 50.95515126 | 52.46191104
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Note that we preferred to use symbol p for the domain of the Bessel functions rather than x in our
design in [33], since cylindrical coordinates are essential in the CWGs which we use in the second
part of the user console.

4.3. Applications to Circular Waveguides

Table 3a.Results of the TM modes for application to a specific CWG: ¥min = 0, Xmax =
13, domain div.: n = 100, outp.digits = 10,R = 5cm, &, = u,, = 1,and f = 5GHz.

§ v owe 0 1 2 3 4

X.n | 2404825558 | 3.83170597 | 5.135622302 | 6.380161896 | 7.588342435

1 f. | 2.294850557 | 3.656478347 | 4.900765322 | 6.088390916 | 7.241320189
£, | 4.442258538 | 3.410302934 | 0.991211007 0 0

X, | 552007811 | 7.01558667 | 8.41724414 | 9.76102313 | 11.06470949

2 f. | 5.267639594 | 6.694757099 | 8.032315417 | 9.314642092 | 10.55870961
£, 0 0 0 0 0

X, | 8653727913 | 10.17346814 | 1161984117 | 13.01520072 | 14.37253667

3 f. | 8.257984558 | 9.708225588 | 11.08845459 | 12.42000299 | 13.71526666
£, 0 0 0 0 0

Table 3b. Results of the TE modes for application to a specific CWG: Yin = 0, Xmax =
13, domain div.: n = 100, outp.digits = 10,R = 5cm, & = u, = 1,and f = 5GHz.

) v cwe 0 1 2 3 4
Yon 3.8170597 | 1.841183781 | 3.054236928 | 4.201188941 | 5.317553126
1 f. | 3.656478347 | 1.756984665 | 2.914563717 | 4.009064504 | 5.074376274
f, | 3.410302934 | 4.681132864 | 4.062673792 | 2.987875802 0
Yun | 7.01558667 | 5.331442774 | 6.706133194 | 8.015236598 | 9.282396285
2 f. | 6.694757099 | 5.087630734 | 6.399455231 | 7.648692069 | 8.857903317
£, 0 0 0 0 0
Xun | 10.17346814 | 8.536316366 | 9.969467823 | 11.34592431 | 12.68190844
3 f. | 9.708225588 | 8.145942355 | 9.513554408 | 10.82706421 | 12.10195249
£, 0 0 0 0 0

5. Conclusions

We calculated zeros of the Bessel functions of first and second kinds with integer indices and their
derivatives successfully by the suggested algorithm based on the conventional N-R root finding.In
the first part of the user console of our design running in Mathematica cdf player (The “find roots”
part), user selects the Bessel function of either kind (among the first two kinds and their derivatives)
and selects its index value. Selected function is being scanned by the iteration number (which is
equal to the number of domain division also selected by the user) through the domain (also selected
by the user). After the application of the N-R root-finding for each division has been completed,
repeated roots and roots out of the domain are rejected. We set the distinguish parameter by
m=0.001 as optimum to decide such two close roots (as a consequence of the Newton-Raphson
process with close initial guesses in each iteration step) to be repeated if they deviate more than this
value as explained above. Finally, we sort the roots by the conventional Bubble sorting [34—36].
This final step is optional here since it becomes necessary for the number of division values which
might be set to an inappropriate value causing some of the roots to be not in the correct ascending
order. Since the domain is scanned from minimum to maximum in the ascending order, we
normally get the roots in the ascending order. Actually, Bubble sorting has been known to be
impractical when compared with the other sorting methods and there has been much effort for the
enhancement of it, i.e., [37—39]. However, it works here very well without any modification since
it needs little memory and we do not have too much roots to be processed to spend much time in
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sorting. It is obvious that, when this optional part is removed by using the appropriate domain
division values, it becomes very fast even for too much root values to be processed. Moreover, by
applying some optimization and enhancement to the bubble sorting, or by using other sorting
algorithms, speed can be increased for huge root values when this optional part is used.

In the second part of the user console of our design, the TM and TE modes supported by the CWGs
has been obtained successfully by using the results for the first kinds of Bessel functions and their
derivatives obtained in the first part of the user console. User selects i) the CWG parameters: guide
radius, wave frequency, relative permittivity and permeability of the guide medium (we study
lossless and linear medium here), mode type to be calculated (TM or TE) and ii) Our roots finding
parameter: Number of domain division. Output digit numbers to be displayed is also added for the
cases where user wishes to round off the results to any specific digit number. In both parts of the
user console, there is also a button with name “Show with/without Abs. Error” to activate or
inactivate the appearance of the absolute error values calculated according to the following formula:

|Jsn(Xmn)|, for the TM modes
Abs.Err.= {Um()(mn)LfOT the TE modes '™ = 0,1,2,..,.n=1,2,3,.. (22)
which would give zero when really the exact values (which might have huge numbers of digits)
were used. We apply the related formulas given in Section 2 to find the related electromagnetic
parameters of the CWG under question. Results are in a great consistence with the results given in
[12—14] where the Newton-Raphson method is used, namely with a very slight difference of about
~10716 or less (even zero for some of the values) which is within the default working precision
value of the Mathematica. Moreover, degenerate TE,,, and TM,, modes where cutoff frequencies
and wavelengths are common as given in [12—14] are also apparently seen in our results given in
Table 2a and Table 2b with g, = X1n. We also obtain (fT™)o, = (FF) 1 F™M)on = (FFE) 1n
for the same selected wave frequency values in a specific CWG as shown in Table 3a and Table
3b.In Table 3a and 3b, results of the selected CWG parameters are given for the TE and TM modes
with indices up to: my,q, = 4&Ny,q, = 3. However, results for much more index values can be
obtained in the selected intervals via the user console. Table 3a and Table 3b shows that, the
selected CWG when used with the selected frequency value (=5GHz), modes with f, = 0 are not
supported (wave can not propagate since severely attenuated) since the selected wave frequency is
smaller than the cut-off frequency values of the related mode. For much detailed CWG analyses,
other sorting algorithms are required to find the other electromagnetic parameters such as correct
order of the all supported modes which will be necessary to determine the operating band-width of
each mode. However, they can be calculated manually by using these results for the modes around
the low lying dominant mode values as in [12—14]. Our design running under the free Wolfram cdf
player, which is freely downloadable via [30] is freely open to the users via [33].
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