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Abstract – Eco-efficiency is an emerging manufacturing trend aimed at improving manufacturing companies’ 

sustainability balance sheets. Eco-efficiency practices focusing on energy or material flows are critical to 

reducing the environmental footprint of manufacturing processes of sustainable companies. This paper presents 

development of a new integrated energy and GHG emissions monitoring model and system that combines 

business intelligence (BI) with eco-efficiency to aid managerial decision making at various levels of a 

manufacturer. This combination enables near real-time calculation of eco-efficiency metrics key to green 

manufacturing companies, such as energy consumption/production output, and tracks the progress over time. By 

using critical BI techniques such as star-schema data models and contextualization, energy or GHG emissions 

associated with production activity can be allocated dynamically, and Key Performance Indicators (KPIs) such 

as value-added energy and non value-added energy can be calculated for eco-decision making. 

Keywords – Eco-efficiency, energy monitoring, business intelligence, sustainable manufacturing 

1. INTRODUCTION 

At the fundamental level, eco-efficiency means, 

“doing more with less”. World Business Council for 

Sustainable Development (WBCSD) first coined the 

term in 1991 and defines eco-efficiency as being 

“achieved by the delivery of competitively proceed 

goods and services that satisfy human needs and bring 

quality of life, while progressively reducing 

ecological impacts and resource intensity throughout 

the life-cycle, to a level at least in line with Earth’s 

estimated carrying capacity”. It is also expressed by 

the generic formula [1]: 

Eco-efficiency = Economic value (added) / 

Environmental impact (added) 

Five aspects of eco-efficiency have been identified in 

order to strategically implement in business: 

1) Optimized processes for minimization of 

resources 

2) Eco-innovation in manufacturing by using new 

knowledge to make old products more resource 

efficient to produce and use 

3) Waste-recycling by using by-products of one 

industry as resources for another 

4) Networks/virtual organizations for sharing 

resources thereby increase the effective use of 

physical assets 

5) New services like leasing products which can 

spur a shift to product durability and recycling 

 

In this regard, maximizing energy efficiency for 

processes and hence reducing carbon footprint lies in 

the heart of eco-efficiency. Current research in this 

aspect focuses on energy efficiency in manufacturing 

and reduction of GHG emissions by better quantifying 

and correlating energy consumption between 

production activities. From manufacturing point of 

view, there are three main drivers for energy 

efficiency initiatives: 1) Rising energy prices due to 

scarcity of the specific resources 2) New 

environmental regulations with their associated costs 

for GHG emissions, 3) Shift in customer purchase 

behavior with regard to “green” products and services 

[2]. Eco-efficiency, particularly energy consumption 

and related GHG emissions can be analyzed at two 

levels in a manufacturing company: 1) the plant, and 

2) processes. In this context, direct energy is defined 
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as the energy used by various manufacturing 

processes (such as turning, boring or painting) 

required to manufacture a part, whereas indirect 

energy is categorized as the energy consumed by 

activities in order to maintain the environment (such 

as lighting, heating or cooling) [3]. In essence, in a 

manufacturing facility, to provide high level of energy 

visibility, determination of energy performance 

indicators and effective energy metering is the key 

[4]. 

Gutowski et al. was the first to introduce an exergy 

framework in order to estimate unit process energy 

requirements for manufacturing processes [5]. Kara 

and Li further advanced this model by studying 

empirical models in order to characterize the 

relationship between unit energy consumption and 

process variables [6]. Their studies mainly relate 

Material Removal Rate (MRR) to Specific Energy 

Consumption (SEC) using an empirical equation with 

validation on four different machine tools for turning 

and milling operations. Avam and Xirouchakis 

developed a methodology for estimation of the 

variable energy requirements of a machine tool 

system (MTS) for part machining in 2.5D [7]. By 

reading APT files as an input, this method estimates 

the mechanical energy requirements of the spindle 

and feed axes with respect to 2.5D machining 

strategies (i.e. face, contour or pocket milling) by 

taking into account steady state and transition regimes 

of the MTS. Furthermore Rajemi et al. investigated 

optimum tool life for minimum energy of a turning 

process, revealing that optimum condition for 

minimum costs does not necessarily satisfy the 

minimum energy criterion [8]. Recently, in various 

other manufacturing processes, energy estimation is 

gaining attention as well. For instance Paralikas et al. 

developed a model to estimate energy efficiency of 

cold roll forming process [9]. Another research stream 

is making progress in energy measurement for process 

monitoring and energy optimization in eco-efficiency 

initiatives. One of the earliest microcomputer based 

energy monitoring system was developed by Yu et al. 

and named as EMOPIN. EMOPIN was able collect 

production and energy data from a plant and process 

them into meaningful indicators [10]. More recently, 

Vijayaraghavan and Dornfeld applied event stream 

processing techniques in order to automate the 

monitoring and analysis of energy consumption 

systems [11].  

In addition to micro-planning, macro-planning 

approaches are also important for energy efficiency in 

order to characterize inter-process relationships of 

energy consumption during manufacturing. 

Vijayraghavan and Dornfeld suggested that value-

added and non value-added discrimination is required 

for micro-level planning, and feature by feature 

analyses are necessary for macro-level planning to 

analyze energy at temporal scales [11]. Furthermore, 

Weinert et al. developed an energy-blocks 

methodology in order to create a macro-level planning 

framework for energy-efficient production systems 

[12]. By modeling each operating state of a 

manufacturing machine and its corresponding energy 

consumption, this method is intended to optimize a 

chain of processes with a sequence of operating states. 

Manufacturing system simulation, including relevant 

energy flows and related dynamics for all factory 

subsystems is also another key approach in macro-

level modeling and what-if analyses of energy 

efficiency in manufacturing systems [13,14]. 

2. BUSINESS INTELLIGENCE IN 

MANUFACTURING  

Business intelligence (BI) is a set of methodologies, 

processes, architectures, and technologies that 

transform raw data into meaningful and useful 

information for business-level users in order to 

support timely and correct decision making [15]. It 

can be defined as the ability to extract actionable 

insight from data available to the organization, both 

internal and external, for the purposes of supporting 

decision making and improving corporate 

performance [16]. 

 

Figure 1. Layers of BI technology stack 

Although what is known as business intelligence has 

been evolving over the last 35 years, in the 1990s, 

three technological enablers boosted BI applications 

and made BI a worldwide trend in IT. These are:  data 
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warehouse technologies, extract transform and load 

(ETL) tools, and powerful end-user analytical 

software with online analytical processing (OLAP) 

capabilities. Furthermore, the widespread adoption of 

internet tools and powerful user interface tools, such 

as OBIEE from Oracle, Business Object and 

NetWaver BI from SAP, SAS BI from SAS Institute 

,and Cognos from IBM, enable business users to make 

informed business decisions with real-time data that 

can put a company ahead of its competitors [17]. Most 

BI vendors offer robust, scalable, well-integrated 

platforms with rich and broad BI functionality. 

However architecting and implementing enterprise BI 

solutions is still a complex and costly endeavor, and 

the goal of plug-and-play or out-of-the-box BI 

solutions remains elusive. Despite technological 

advances, for each BI implementation the most 

important critical success factor remains concept and 

metric definitions that underpin system architecture 

and analytics [18]. Hence sustainable production 

indicators that can be found in literature are major 

drivers and starting point of a BI architecture and 

implementation [19]. 

A typical BI system has three major components: a 

data warehouse for source data; business analytics, 

comprised of a collection of tools and business rules 

for manipulating, mining and analyzing the data in the 

data warehouse; and a user interface for performance 

monitoring (e.g., dashboards and KPI repositories) 

(Figure 1). Among these three technology stacks in a 

typical BI implementation, the presentation layer, 

with its role-based views and interactive dashboards, 

is the most customizable because modifying it 

requires the least amount of IT expertise and a 

relatively short amount of time. The development of a 

solid, yet expandable data warehouse requires 

advanced IT skills and usually takes the most time 

during a BI implementation. Business analytics, 

which serves as a middle layer between the data 

warehouse and the dashboards requires a level of 

expertise somewhere in between. However, its design 

is most critical, as it is the foundation for flexibility 

that enables development of various different 

dashboards requested by broad range of users.  

  

 

Figure 2. Core EMI capabilities [28] 

Enterprise Manufacturing Intelligence (EMI) is a term 

introduced by AMR to describe emerging BI 

applications in the manufacturing domain that are 

designed to provide business owners and 

manufacturing managers a multi-site view of 

production performance and KPIs as opposed to 

standard speeds, feeds, and throughputs provided by 

traditional manufacturing performance reporting 

[21,22]. EMI frameworks can connect to and extract 

data from a highly diverse set of sources ranging from 

shop floor instruments, to historians (temporal data 

stores), to operational data stores and other relational 

stores. Core EMI capabilities are: 1) aggregation of 

data from a variety of real-time and back-end data 

sources; 2) contextualization of data elements from 

disparate sources such as process variables, product 

quality or yield data; 3) analysis of data by calculating 

a range of KPIs using raw process performance and 

cost-based information from ERP; and 4) 

visualization by providing an intuitive graphical 

representation of intelligence, enabling users to drill 

down from multi-plant representations to individual 

systems as required (Figure 2) (Smith , 2008b). 

Advanced process simulation, data mining and 

modeling applications are special cases of enterprise 

manufacturing intelligence. 

The Sustainable Management Ecosystem model 

highlights three areas that relate directly to sustainable 

business practices [23]: 

1) Environmental compliance: Historically, core 

activities include environmental health and 

safety, as well as labor regulations and 

philanthropy. 

2) Communication: Companies must effectively 

communicate sustainability performance beyond 

their four walls. 
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3) Operational efficiency: Reduce GHG emissions 

by consuming green energy and reducing overall 

energy use. 

 
Figure 3. Forecasted shift in sustainability eco-system 

[23] 

With pressure from increased legislation, significant 

improvement in energy efficiency can be achieved by 

upgrading EMI systems through a perfect marriage of 

energy efficiency and BI (Figure 3) [24]. Market 

analysis by AMR shows that operational and energy 

efficiency enabled by BI will grow significantly over 

the next decade [23]. 

3. An Integrated Energy and GHG Monitoring 

System: Sustainability Sensor Data Management 

Our objective is to improve a manufacturing 

company’s sustainability balance sheet by driving 

improvements in multiple dimensions such as 

organization, facilities and equipment hierarchy. With 

this goal in mind, we designed and developed an 

integrated energy consumption and GHG monitoring 

system that is compatible with several shop floor 

automation hardware vendors – Sustainability Sensor 

Data Management (SSDM). 

SSDM offers comprehensive sustainability features: 

1) Tracks multiple aspects of sustainability (e.g., 

electricity, gas, water, fuel) and calculates related 

costs and GHG emissions. 

2) Directly integrates with meters, environmental 

management systems and building automation 

systems. Collects energy consumption and 

emissions data. 

3) Allocates a GHG emissions inventory for any 

entity in an equipment, organization or facilities 

hierarchy via Virtual Metering. 

4) Identifies specific opportunities for improving 

energy efficiency and reducing emissions using a 

navigation hierarchy. 

5) Collects and correlates energy data with 

production activity. Enables reconfiguration of 

production system parameters to optimize energy 

consumption and reduce GHG emissions. 

6) Includes out-of-the-box hierarchical dimensions, 

dashboards and KPI repositories, thereby 

minimizing customization time for SMEs. 

7) Supports industry standard ISA-95 which defines 

integration models and terminology for enterprise 

and shop floor control systems. 

3. AN INTEGRATED ENERGY AND GHG 

MONITORING SYSTEM: SUSTAINABILITY 

SENSOR DATA MANAGEMENT 

Our objective is to improve a manufacturing 

company’s sustainability balance sheet by driving 

improvements in multiple dimensions such as 

organization, facilities and equipment hierarchy. With 

this goal in mind, we designed and developed an 

integrated energy consumption and GHG monitoring 

system that is compatible with several shop floor 

automation hardware vendors – Sustainability Sensor 

Data Management (SSDM). 

SSDM offers comprehensive sustainability features: 

1) Tracks multiple aspects of sustainability 

(e.g., electricity, gas, water, fuel) and calculates 

related costs and GHG emissions. 

2) Directly integrates with meters, 

environmental management systems and building 

automation systems. Collects energy consumption and 

emissions data. 

3) Allocates a GHG emissions inventory for any 

entity in an equipment, organization or facilities 

hierarchy via Virtual Metering. 

4) Identifies specific opportunities for 

improving energy efficiency and reducing emissions 

using a navigation hierarchy. 

5) Collects and correlates energy data with 

production activity. Enables reconfiguration of 

production system parameters to optimize energy 

consumption and reduce GHG emissions. 

6) Includes out-of-the-box hierarchical 

dimensions, dashboards and KPI repositories, thereby 

minimizing customization time for SMEs. 
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7) Supports industry standard ISA-95 which 

defines integration models and terminology for 

enterprise and shop floor control systems. 

3.1. System architecture 

The system architecture of SSDM provides flexibility 

and extensibility to enable rapid customization of 

rule-based dashboards at multiple levels of a factory 

(Figure 4). Here, we describe four major software 

components of the system: 

1) Shop floor data collection modules  

SSDM collects energy consumption information 

from energy and emission measurement systems 

as well as production activity information from 

shop floor automation and process control 

systems. Energy and emission measurement 

systems include environmental management 

systems, energy meters, and emission sensors. 

Shop floor systems include programmable logic 

controllers, CNC machines, robot controllers, 

etc. 

2) Contextualization engine 

SSDM includes a contextualization engine that 

correlates production data from the automation 

and process control systems with energy 

consumption data from the energy and emission 

measurement systems. This correlation provides 

important contextual information to better 

inform energy management decisions. The 

contextualized energy consumption data are 

presented as KPIs. 

3) Sustainability data model 

The manufacturing operations and sustainability 

data model is a model that complies with ISA-

95. The data model is constructed as a 

hierarchical structure of entities such as sites and 

equipment.  Users of the manufacturing 

operations and sustainability data model can 

model a specific manufacturing operation using 

the hierarchy.  

4) Role-based dashboards  

Data provided by the various components of the 

hierarchy are stored in the manufacturing 

operations and sustainability data model so that 

summaries, such as dashboards reflecting current 

manufacturing operational conditions, can be 

provided.  End users of the energy management 

system include personnel at various levels in the 

enterprise from corporate management to 

production floor. 

3.2. Data Collection from Shop Floor, Real and 

Virtual Metering 

Several different types of machines and controllers 

typically can be found on an automated 

manufacturing shop floor. Most modern machine 

controllers have built-in communication capability 

based on industrial communication standards or 

protocols. A variety of protocols have been developed 

for shop floor communication, and manufacturing 

companies have adopted many general purpose 

communication protocols as well. Manufacturing 

automation protocol (MAP), FieldBus, ProfiBus, RS-

232, RS-485, local area networks (LANs) and 

wireless networks (WLANs) based on transmission 

Figure 4. System architecture of SSDM 
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control protocol/Internet protocol (TCP/IP) are among 

the most common and widely-used standards on shop  

floors [25]. SSDM directly receives data via an open 

TCP/IP protocol port for importing incoming raw data 

into tables. Whether it is an automation/process 

control system or energy/emission measurement 

system, SSDM sets itself apart from proprietary 

internal hardware systems or standards-based 

communication protocols by using a simple TCP/IP 

port to receive data. To be compatible with SSDM, a 

Figure 5 Virtual and Real Metering 

hardware vendor must provide an add-on module 

enabling data transmission through a specified TCP/IP 

port. 

 

Figure 6. User interface for meter definition 

Energy data for any equipment is collected via smart 

meters attached to power line. Ideally, every 

manufacturing machine at shop floor level should 

have a smart meter connected, if detailed analysis of 

its consumption is required.  This approach which is 

also called sub-metering, may not be possible for each 

machine because of cost reasons. With a new 

approach developed for SSDM, some of the 

machines, which are usually non-critical, can be 

estimated. This approach, called “Virtual Metering” 

presents two methods for estimation of energy 

consumption of an equipment without a physically 

attached meter. 

 

1) Based on aggregation of other meters data in 

same network. For instance in Figure 5 Virtual Meter 

1and 2 can be calculated by -VM1,2= (RM1 – 

RM2)/2 

2) Based on power rating of the equipment. For 

instance in the same figure, alternatively Virtual 

Meter 1 can be estimated by VM1= Power Rating-

Equipment_1 * Operation Time. A user interface for 

defining a Virtual Meter is also depicted in Figure 6.  

3.3. Energy and Emission Contextualization 

One of the difficult tasks of Life Cycle Assessment is 

allocating measured consumption or emissions to 

production activity both accurately and efficiently 

[26]. The problem is illustrated in Figure 7 with a 

steel manufacturing process where beams and bars are 

two different product outputs of the same process and 

3 kg CO2 are emitted from that process each hour. In 

addition, production orders for beams and bars are 

completely random, and at different dimensions and 

grades. Thus, accurately allocating CO2 emissions or 

energy consumption to each single bar or beam is not 

a trivial problem to solve. 

 

Figure 7. CO2 allocation in steel manufacturing 

In a manufacturing environment where thousands of 

part mixes are processed in hundreds of different 

machining centers, allocation problems become quite 

complicated. In order to simplify this problem 

utilizing technological tools, SSDM includes a 

contextualization engine that correlates production 

data from the automation and process control systems 

with energy consumption data from the energy and 

emission measurement systems (Figure 8). This 

correlation provides important contextual information 

to better inform energy management decisions.  The 

contextualized energy consumption data are presented 

as value-added/non value-added energy KPIs and 

direct/indirect energy consumption KPIs. 
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4. DATA MODEL 

4.1. Dimensional Modeling 

Dimensional modeling is a data modeling technique 

for delivering BI data as it addresses the twin non-

negotiable goals of business knowledge and fast query 

performance [27]. Dimensional modeling divides the 

domain into measurement and context. Measurements 

are captured by the organization’s business processes 

and their supporting operational source systems. 

Measurements are usually numeric values, referred to 

as facts.  Facts are largely contextual, and are true for 

the moments at which they were recorded. This 

context is divided into independent logical clumps 

called dimensions. Dimensions describe the who, 

what, when, where, why and how of the measurement. 

Each organizational process can be represented by a 

dimensional model that consists of a fact table 

containing numeric measurements such as meter 

readings from a smart meter surrounded by several 

dimensional tables containing the textual context, as 

shown in Figure 9. Dimensional models stored in a 

relational database platform are typically referred to 

as star schemas; dimensional models stored in 

multidimensional OLAP structures are called cubes. 

 

Figure 9. Star schema actual electricity usage 

4.2. Normalized Modeling 

Third normal form (3NF) is quite different from 

dimensional modeling. It is a design technique that 

seeks to eliminate data redundancies, whereas 

dimensional modeling seeks high query performance 

rather than redundancy. Typical ERP systems contain 

thousands of entities that translate into physical tables 

in relational databases. The software industry 

commonly refers to 3NF models as entity relationship 

(ER) models. ER diagrams use boxes and lines to 

communicate the relationships between tables. Both 

3NF and dimensional models can be represented as 

ER diagrams because both consist of joined relational 

tables; the key difference is the degree of 

normalization.  

Figure 8. Energy contextualization process 

diagram 
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The SSDM data model is a hybrid model containing 

tables with star schemas and 3NF forms. While 

operational data pertaining to energy measurement in 

production or GHG emissions are stored in star 

schemas, master and reference data such as 

equipment, facility hierarchies, meters and associated 

tags are modeled and stored in 3NF tables (Figure 10). 

 5. DASHBOARDS AND SCORECARDS 

Dashboards and scorecards usually consist of a 

combination of reports and charts that visualizes 

exception handling and provide drilldown data 

analysis capabilities for multiple business 

applications. Designed to deliver historical, current, 

and predictive information typically represented by 

KPIs, dashboards use visual cues to focus user 

attention on important conditions, trends, and 

exceptions [17]. Unlike standard reporting tools, they 

are highly customizable, even by executive users. 

Common themes across these reporting applications 

are information consolidation, exception highlighting, 

ease of use, and role-based customization flexibility at 

multiple organization levels. 

 Out-of-the-box green SSDM provides multiple KPIs 

used to account for and report carbon emissions, 

monitor electricity consumption and estimate energy 

costs. Role-based dashboards can be customized to 

present appropriate information for manufacturing 

executives or managers of a green-oriented 

organization (Figure 11). 

Leveraging the green intelligence provided by SSDM, 

sustainability managers are able to identify 

opportunities for energy efficiency and reduction of 

carbon emissions, hence realizing their corporate 

goals towards eco-efficient manufacturing. The key to 

identifying opportunities is an ability to isolate 

bottlenecks by drilling down through the KPIs. 

Oracle’s OBIEE technology (the basis for SSDM 

dashboards and ad-hoc analysis tools) provides a 

dynamic capability to drill down from top-level 

entities (i.e., site, building, department) to bottom-

level entities (i.e., manufacturing equipment, lighting, 

compressors, etc.) in order to isolate eco-efficiency 

bottlenecks. The list of out-of-box SSDM KPIs 

designed specifically for tracking common green 

initiatives, which can be categorized into three 

groups. 

1) Absolute KPIs measure total quantities, such 

as actual electricity usage, annual changes in 

electricity usage, or planned CO2 emissions. 

Master and Reference Data

Currency

Sustainability 

Factor

Site – Reuse Plant

Hour

Day
UDA for Site

Energy Source
Energy Cost by 

Source

Item

Item Cost

Energy Use 

Category

Meters

Facility Hierarchy

Tags Tag Source

Equipment Entities

Site Calendar – 

Plant Workday 

Calendar

Entities Calendar UDA for Entities

Equipment 

Hierarchy

Equipment
UDA for 

Equipment

Equipment 

Calendar/ Shift

Work Order

WO Segment

WO Sub-Segment

Resource

System

Organization

Figure 10 Data model of SSDM 
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2) Relative KPIs normalize absolute KPIs 

against some entity attribute, such as an enterprise or 

a product (i.e., Actual Electricity Usage per 

Headcount or Electricity Cost per Unit of Output). 

3) Contextualized KPIs are calculated by the 

contextualization engine (i.e., Value-Added Energy 

Percentage for a product, or Total Energy 

Consumption by Direct Usage for an organization. 

5.1.Role based decision making with flexible entity 

modeling and hierarchies 

Figure 11. SSDM production manager dashboard 

 

Figure 12. Flexible entity modeling and hierarchies 
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SSDM’s design objective is to aid managerial 

decision making at various levels of an enterprise. 

Therefore it has to have a flexible entity modeling 

architecture where enterprise layers can be configured 

for different organizational or physical scenarios.  

Figure 12 demonstrates two scenarios where data can 

be aggregated from bottom-up or allocated from top 

to bottom. Left side is model of a physical scenario 

where an enterprise is modeled based on its physical 

hierarchy. High level measurements can be allocated 

to bottom layers by Virtual Metering. This 

configuration is optimum for helping decision making 

of facilities managers or corporate sustainability 

officers. On the right side, an organizational model 

can be seen with a production focus. Low level data 

collected from instruments can be aggregated to upper 

layers and Virtual Meters are used for estimation of 

entities where direct measurement is not available. 

Several production departments are comprised of 

production lines and equipment. At department level, 

production and operation managers can analyze their 

respective department’s sustainability. As department 

add up to plants and enterprise itself at these levels, 

VP of Operation or Production is capable of viewing 

aggregated data for comparison and analysis of 

several plants and departments. 

 Figure 13 shows OBIEE dashboards of a hierarchy 

where system is configured based on facilities. In 

order to analyze and isolate high energy consumption 

at a site, a facilities manager can start drilling from 

top level, viewing the aggregated energy consumption 

of all sites and go down though all layers until he can 

analyze individual equipment consumption against 

activity. All this analysis can be performed 

dynamically by OBIEE dashboards. 

 6. ANALYSIS OF VALUE/NON-VALUE ADDED 

ENERGY 

The most common energy sources used on shop floors 

are electricity and natural gas. Electricity is mostly 

used in machining centers, for equipment such as 

robots and conveyors. Natural gas is most commonly 

used in processes such as heat treatment or paint 

drying where extensive heat is necessary. For 

machining processes we can consider electricity as 

main major source of power. In this case, energy 

charges were based on direct electricity consumption 

in kWh (kilowatt-hours) during the electricity 

consumption period. Demand was measured in kWs 

(kilowatts) or kVAs (kilovolt-amperes), which is 

instantaneous power consumed by equipment. In 

order to make the analysis rigorous enough, the data 

model can store down to 10-second demand intervals. 

However, since this level of detail increased the 

amount of data, demand was usually aggregated to a 

1-minute scale. 

 

Figure 14. Value-added and non value-added energy 

The energy model was used to calculate total energy 

used in a manufacturing line. Total energy consumed 

has two components. The first is value-added energy 

Figure 13. Drill-down from site to equipment  
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(VAE), or the energy consumed during an actual 

machining operation such as cutting, drilling or 

boring. The energy aggregated as VAE must be 

consumed during the “RUN” state for machining 

equipment. The second type of energy is non value-

added energy (NVAE), or energy consumed during 

“IDLE,” “DOWN,” or “ALARM” machining 

equipment states. Omron Corp., a development 

partner of SSDM, found that 56% of electricity 

consumed in their production facilities was VAE 

(Figure 14). 

ETotal = VAE + NVAE 

VAE = Value-Added Energy 

NVAE = Non Value-Added Energy 

 

Use Case I – Energy by Machine Tool 

Figure 15 depicts hypothetical energy readings for a 

CNC and its states of IDLE, DOWN, and RUN. For 

this simple scenario, the contextualization algorithm 

yields VAE = 3250 KWh, NVAE= 390 and VAE% = 

89.3. 

 

Figure 15. VAE and NVAE use case by machine tool 

Use Case II - Energy by Work Order 

The aforementioned case illustrates VAE and NVAE 

aggregated by machining centers on a shop floor. A 

part’s total energy consumption or emissions 

aggregation must be calculated based on the work 

order of the part. For the case illustrated in Figure 16, 

two work orders, WO-101 and WO-102, are 

manufactured on CNC-102 between the hours of 9:00 

and 13:00. WO-101 is for part “Shaft-502” and five 

items are processed for operation step 30 on CNC-102 

between 9:00 and 10:30. For WO-102, “Shaft-1050,” 

three items are processed for operation step 30 

between 10:50 and 13:00. 

VAE and NVAE for each work order on CNC-102, 

and energy consumed for each part are tabulated in 

Table 1. 

 

Figure 16. VAE and NVAE use case by work order 

 

Table 1. VAE and NVAE Calculations for Use Case II 
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7. ENERGY CONTEXTUALIZATION AND 

VISIBILITY 

Data collection capabilities of SSDM was validated 

by a laboratory set-up. We developed this set-up with 

Mitsubishi’s North America Automation Division, 

which supplies automation hardware. The lab set-up 

has the following four major components: 

1) Mitsubishi PLC and HMI hardware 

2) Windows Server 

3) Windows Client 

4) An AC electric motor and controller 

The configuration of the shop floor validation system 

is provided in Figure 17. For shop floor hardware 

simulation, a Mitsubishi PLC Controller with an 

attached e-Factory module is used. The e-Factory 

module, developed by ILS Corp., is capable of 

sending all PLC tag readings to the SSDM data 

warehouse via a TCP/IP Ethernet port. An HMI 

screen simulating three machine tools, a drilling 

machine, a CNC machining center and a grinding 

machine, as well as a barcode reader for user inputs is 

connected to the PLC. For each machine tool, it is 

possible to download work orders from the ERP 

system, perform a simulated run of each work order, 

and monitor machine tool statuses such as UP, IDLE 

or DOWN. Errors can be generated randomly, which 

puts the machines in downtime, scraps some 

quantities in the work order and completes the rest. 

The CNC machining center is connected to a DC 

motor that measures its real energy consumption, and 

the other two machine tools generate simulated 

energy consumptions. The results of the experimental 

shop floor are displayed on a custom dashboard where 

Energy, Cost of Energy, VAE, NVAE, VAE% and 

Consumption per Output are displayed numerically. 

Distribution of CO2 emissions can be also be viewed 

as pie chart. Correlations between production activity 

and energy consumption, and CO2 emissions and 

operation parameters (e.g., temperature) are displayed 

as trend graphs in order to demonstrate the detailed 

analysis capabilities of SSDM (Figure 18).

 

Figure 17. Set-up for validation of SSDM 
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Figure 18. Dashboard and sample KPIs for lab set-up 

8. CONCLUSION 

This work extends enterprise manufacturing 

intelligence to the sustainability domain in order to 

support eco-efficiency initiatives of production 

companies. We have attempted to develop an 

integrated system model with hardware and software 

infrastructure that can measure energy consumption, 

GHG emissions and production activity. Using 

advanced BI technologies, the main contribution of 

this study lies in the contextualization of energy usage 

data with production activity in order dynamically 

generate KPIs such as VAE and NVAE. This 

capability promises to support and accelerate energy 

and emissions studies with fast and accurate real data 

that aims to improve eco-efficiency for manufacturing 

companies. 

Business Intelligence enables availability of the right 

information to the right people at the right time. This 

is the key to successful decision making for 

continuous improvement towards sustainability. 

SSDM’s closed loop execution between 

manufacturing management and shop floor systems 

can be achieved by: 

• Setting goals and objectives for improving eco-

efficiency 

• Establishing plans to achieve the goals 

• Monitoring actual eco-efficiency performance 

against the goals and objectives 

• Taking corrective actions 

Future work includes addition of eco-efficiency 

metrics on material flows, and also addition of more 

contextualized KPIs which can enable accurate 

calculation of embodied energy and carbon emissions 

along product dimension. 
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