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ABSTRACT

In this paper, we studied the Schrodinger equation with the generalized Hulthen potential plus a new ring shaped
potential. We obtained approximately the bound state energy spectra and the corresponding wave function using the
functional analysis method. We used the well-known Hellmann-Feynmann theorem to calculate the expectation

values  for <(e5r—1)1>,<(e5'—1)2> <r‘1>,<r‘2>,<cot29>, <tan26?> and

<COS ec29> <8602 (9> \We also discussed the special case of the potential which was consistent with the

results found in the literature.
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Theorem

1. INTRODUCTION

The analytical solutions of the Schrddinger equation have
been a subject of interest in recent years in different fields
of physics and quantum chemistry because of the
information arising from its solutions. It is well-known
that the exact solutions of the Schrodinger equation can
only be found for a few special simple potentials [1-3].
Recently, we proposed a new ring shaped like potential
which may have useful applications in quantum chemistry

*Corresponding author, e-mail: ndemikotphysics@gmail.com

and nuclear physics to study ro-vibrational energy level of
molecules, atoms and deformed nucleus [4-5]. The
investigation of the occurrence of accidental degeneracy
and hidden symmetry for the non-central potentials have
also been reported [6-7]. These accidental degeneracy
occurring in ring shaped potential was explain by
constructing an SU(2) dynamical algebra[8].The ring
shaped potential has many possible applications to ring
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shaped organic molecules like cyclic polyenes and
benzene [9-10]. Many authors have investigated the
quantum properties of the ring shaped potentials with
Schrodinger, Klein-Gordon and Dirac equation such as
ring shaped harmonic potentials [11],Hartmann potentials
[12],ring shaped non-oscillator potentials [13], noncentral
electric dipole ring shaped potential [14] , Poschl-Teller
double ring shaped Coulomb potential [15],Makarov
potential [16],double ring shaped oscillator potential [17],
harmonic oscillatory ring shaped potential [18],novel
angle dependent(NAD) potential[19], new harmonic
oscillatory ring shaped noncentral potential [20],ring
shaped non-spherical harmonic potential [21],new

ze’5e ™"

D62e725r hZ

Coulomb ring shaped potential [22], noncentral electric
dipole plus a novel angle dependent component [23].
Berdemir[24] had shown that the concept of the Coulomb
potential or the harmonic oscillator gives a good
approximation for understanding the spectroscopy and the
structure of diatomic molecules in the ground electronic
states. Just recently, Chen et al [25-27] studied the ring
shaped potentials using the universal associated Legendre
polynomials and they when further to discussed the super-
universal associated Legendre polynomials.

Motivated by the study of the ring- shaped-like potential
[4-5,25-27] we proposed the novel generalized Hulthen
plus a new ring shaped potential of the form,

VGHNR(r’ 0)=-
(

1-ge ") ’ (1-ge) our

sin@cosd

Asin? 0 + Bcoszé?+Cj2 "

where A,B and C are the three dimensionless ring shaped parameters, Z is the atomic number, € is the electronic

charge, O is the screening parameter and D is the potential depth. The purpose of the present paper is to attempt study the
non-relativistic Schrodinger equation with generalized Hulthen plus new ring shaped(GHNR) potential using factorization
method and show our result reduces to the well known potential when the potential parameters are varied.

2. SEPARATION OF VARIABLES FOR SCHRODINGER EQUATION

The Schrédinger equation of a particle with reduced mass £ and potential V (r, 0) is given by

_h_zvz_ ze%0e™" . Do%e " . 1* ( Asin?@+Bcos?0+C
sin@dcosé

2/1 (1—qe’5r) (1_qe’5r )2 2/,[[’2

] w(r,0,p)=Ey(r,0,p) @

Now using an ansatz for the wave function as (I, 8, @) = r "R(r)H (8)® () and substituting into Eq.(2), we get

2 2 on-OT
d R(r)+ 2u £, 2 oe

dr? h?

(1-qe™") (1-ge™ )2

L d (sine—dH(g)J+ A— m* [

sing do do

2
L)) dq;(f) +mPD(p) =0

Do&%e %" A
- —z R(r) =0, @3)
. 0 2 2
m__ AsIn Q+Bcos 0+C H(0) =0, @
sin“ @ sin@cosé

()

where M? and A =1"(1"+1) are separation constants, which are real and dimensionless. The solution of E.(29) is periodic

and for bound state () satisfy the periodic boundary condition ®(¢ + 277) and its solutions become,

™ m=0,+1 +2...

W)=

(6)
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T
Similarly, the boundary conditions for Eq.(4) which are finite values are given as H (0), H (Ej and H(7) .

3. SOLUTION OF H () ANGULAR EQUATION FOR SCHRODINGER EQUATION

Setting

m' = ,/m? +(B+C)2

o > 1 1
ﬁ:\/l (I'+D)+(B-A) +Z_§

A= (A+C)2+%+%

and letting X = C0S @ € [—1, l] then equation (4) becomes

12

A dZH(X) . dH(X) A(A-1) m _
(1-x*) X {ﬁ(ﬂﬂ)— 7 [H00=0

As a result, the asymptotic solutions of the wave function of equation (9) becomes,

H (%) = x* (1-%* )% @(X)

and the wave function satisfies the boundary conditions H(X) —0as X — 0 and H(X) >0 as x > £1.
Substituting equation (10) into Eq.(9), we obtain

(1— x2)¢”+2{%—(1+ m’+A)x}(p'(x)+(ﬂ(ﬂ +1)—(A+m'+1)(A+ m’))(p(x) =0

Introducing the new variables, Z = NG , We can rearrange equation (11) as,

z(1- z)go”(z){%+A—(m'+A+gjz}p’(zh(ﬂ(iﬂ) _ (A+m'+£11)(A+m')J(p(z) _0

The hypergeometric function is defined as [28],

2(1-2)p"+[ c—(a+b+1)z ¢’ —abep(z) =0

and one of the solutions which satisfies the physical boundary condition is ,
¢,(2)=,F,(a,b,c;2)

Now comparing Egs.(12) and (13), we obtain the &,0 and C parameters as follows,

939
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Qo m+A+p+1

2
m+A-
b:————ﬁ, (15)
2
1
C=—+A
2
_ L o m+A-p _ _ _
Using the quantization conditions [29], T = —N, and incorporating Eqs.( (7) and (8), we obtain

2
A=|2n, +1+m? +(B+C)" + /(A+c)2+% —(B—A)Z—% (16)

Equation (16) is the contribution of the angle-dependent part of generalized Hulthen plus ring shaped like potential. .
However, when the ring-shaped term potential vanishes, that is A= B =C =0, then the constant of separation becomes

A=1"(I'+1), where I"=2n, +1+|m|,m =0,1,2... 1t can be observed that the angular part of the generalized

Hulthen plus ring shaped potential has singularities at & = t72'(t =0,1 2) and also at very small and very large values of
I' . The complete angular wave function can be written as,

H(x)=N,,x" (1— X )n; ,F (a, b,c; x2) (17

where N, is the normalization constant of the angular wave function Hl,m,(X) .In order to determine the normalization

constant, we first set Z = X2 and used the following normalization conditions [28,30],

nt T(y)’T(n+s—y+1)

'[:2771 (1-z) [2 F(-nn+s;7; z)]2 dz =

(s+2n) T(n+s)T(s+7) 4o
1 2

LJHWK@|dX=1 (19)

and we obtain the normalization constant as,

pf BHM+A+2 2
N - (1+5) 2 C(m'+2A+1) "
" T2 (A+D) (ﬁ—M—A) (ﬂ+M+A+2] 20)
2 F 2

4. SOLUTIONS OF THE RADIAL EQUATION

By considering the appropriate approximation for the centrifugal term of Eq.( 3) for the generalized Hulthen potential given in
Eq.(1), the radial equation (3) becomes,

dzR(r)+ 2_/1 - 7625670 D&% 2 1 e qefzar

arz | A (1-qe™) @_qy”f I§+L4W%'+@—qe“f

R(r)=0, @2
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where the approximation for — is taken as [31],
r

1 1 a)e—dr qe—25r
e e r T 2 (23)
r 12 1—qe (1_qe’5r)

since Eq.(3) cannot be solve exactly because of the centrifugal term. In order to solve Eq.(22) by algebraic method, we first let

2 2
e :i(zﬂEm K q’az:qi(zyze 5_@52/1j

sl 12 s\
(24)
1 (2uD
;/(;/+1):W( P~ +52/1qj
and defining a new variable X = qe‘5r , which transform it to the form,
2 2 2
e d“R(x) +XdR(x) L2, O X y(y+Dx R(X)=0 )

dx? dx " 1-x (1-x)’
We proposed an ansatz for the wave function of the form,
1
R(X) = x" (1-x)"" ¢(x) (26)

Substituting Eq.(26) into Eq.(25) gives,

X(L-X)¢" () +[L+25, —(25, +27+3) x](p’(x)—(y+gm S )(7/+5n, -+ )(p(x) -0,(27)
The solutions of Eq.(27) is nothing but hypergeometric function @(X) = ,F; (&,b,C; X)), where,

a=(7/+1+gn, +m),

b :(7/+1+gn, —\/m),C:1+28m

For bound states, the solution of Eq.(27) can be expressed in Gauss hypergeometric form as,

R(r)=C, (ge™ )g”' (1-ge™ )y+1 ,F, (7/ 14 gy +yJe + &Ly +ey +1-\Jad + &1+ 2¢,; qe“’*) 29)

when ¥+ &, +1+,[0{2+8§| =-—Nor y+¢&, +1—1/a2+8§| =-n,,for N, =0,1,2,3... and the

hypergeometric function above reduces to a polynomial of degree N, . Based on the quantization or quantum

(28)

conditions, ¥ + &, +1- ,[0{2 + gfl = —N, , we obtain the energy eigenvalues as,

w3 o eren)] 5%

2u 2(1+;/+nr) 2 2u 12

nl

(30)

Incorporating Eq.(24) into Eq.(30), we obtain the complete energy eigenvalues for the GHNR potential as,
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- -2

L (2uz€’s oy Sy (ZﬂDﬂSZl’ I'+1 j+1+n
o= B
2 2
P En 212(2ﬂ2D+52|'(|,+1)QJ+1+nr w
2 \qgo°\ n 4
2 Q211!
+h_5 I'(l"+1) 31)
2u 12

here |"is given in Eq.(16). In the limiting case when the screening parameter & — 0, g =1, i.e low screening regime then
the GHNR potential turns to pseudo-Coulomb plus new ring shaped (PCNR) potential

r2 r?

(32)

: V, D 1(Asin?0+Bcos?6+CY
V r,0)=IlimVv re)=——+—+
PCNR( ) 550 e (F0) r 7 ( SN0 cosd j

where V, = Ze? I the special case when the ring-shaped term potential vanishes, thatis A= B =C =0, then the energy
equation for the pseudo-Coulomb potential from Eq.(31) becomes,

21N,
n? 2 2uD
Enl =T h - ( /uz J (33)
4u (nr +0') h

1
where 0 = 5(14- J1+4l(l’ +1)) and I"=2n_+1+ |m| . This result is consistent with the one reported in Ref.[32]

when & —> 1 in their result. When D = O, we obtain the energy spectrum for Coulomb-like potential as,

2
:_LZ (34)
" (nr +a)

nl

This result is consistent with those found in the literature [33].

5. EXPECTATIONS VALUES AND HFT
-1 -2
In this section, we obtain the expectation values <(e‘” —1) > ,<(e"” —l) > <I’_1> , <I’_2> , <CO'[2 49> , <tan2 t9>

and <COS ec2«9> <8602 9> using the Hellmann-Feynman theorem (HFT) [34-35].According to the HFT, if the Hamiltonian

H' of a quantum mechanical system is a function of some parameters ¢ and letting E, (C[) and 1, ((]) be the energy

eigenvalues and the eigenfunctions of the Hamiltonian H (q) respectively satisfy the relation,

aE_<q><W oH(q) ,,,> @

aq aq
The effective Hamiltonian is given as,
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LR R+ Vooe"  DSe™  1(Asin’0+Beos0+C) o
2udr? 24 1 (1—qe‘5r) (1- qe—ér) r? sin 9 cos 0 '
or -1
n order to calculate <(e —l) >,we set 0 =V, such that,
oE . -1
O (Vo) =(¥, (Vo)| |‘I’n, (Vo)) =— <( ) > 0
oV,
and By HFT, we obtained,
z(zuvo _5a)|'(|’+1)j
. -1 1 2\ o
<(e‘3 ~q) >:§ a a - @37)
L 212(2/JZD +52I’(I’+1)qj+l +n,
2 \qo°\ h 4
For the calculation of <I’_1> , We obtain from equation (37) in the limiting case & —> 0, g=1as,
B 2
(r)= tim (e 1) )= @)
50341 7 (n, +o)

- . . Sr -2
Similarly, by setting (| = B we obtain <(e —q) > as,

1 2,[12625 21711 H
—_— —wol'(I"'+1 =
q52( hZ 2 ( )j h2q2§2 .
2
1 1 (2uD o
oG Ty o] fra ()
5 <(e(5r —q)_ >=
4 %
thZé‘Z
1 1 (2uD
2J4+q252( ;’2 +52(1 +1)j
2
LS sy
qo h 2uD

2 \ g2\ #

Also taking the limit, <I’_2>= lim o2

5-0,0=1

|
X - =+
[1+\/ L (ZﬂD+52I’(I’+1)qJ+i+nr] [2 |

(e ~2) ) weger

hz

+52I'(I'+1)qj+%+nrj (39)
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h 2uD

40
16\ (1+4I'(1"+1)) “0
Also by letting = A, we obtain <tan2 0> as
(tan® 0) = ;2 En (41)
2A(r?) oA
Where,
2o 1+\/212[2”2D +5° (I'+1)qj+ L +n, (M(an +m'+A+1)+B—AJ
OE. (A) __hz(g? g2 \go°\ & 4 O0A 2
oA Au 1. [ 1 (2uD 1Y
{2+\/qz52( ;12 +5(I +1)q)+4 +n,
L (202850 _ sy
qé 2uD

X

1
~+
;

ls

1
262

2uD
hZ

[

+52I’(I’+1)qj+i+nrJ

1 1 200 1
_[§+\/q—5( e +o°1'(I' +1)q)+4+n J

ho” 26°
12,u

(Zn +m +A+1J+A—B
OA 2

2
N R ) ( A(Zn +m +A+1)+B—Aj
+h o go h OA 2
4u 2
1 212(2’L2D+52I'(I'+1)qj+1+nr 42(2#2D+52/1q+1)
2 g o h 4 ) h 4
2
;2[2“;265_@52|/(|/+1)J 1 [ 1 (2uD 1
x a - =+ S LS+ |+ +n,
2 252\ n2 4
Lo L (22D soraranyg |+ 2 a
—| =5 ql+>+n,
2 go°\ h 4
H2s? 2[22(% +m +A+;)+B—AJ
4
H 42(2#2D +6°2q +1j
o°\ h 4
2
;Z[Z#hzzeg_mzll(lrﬂ)] 1 [ 1 (2uD 1
x d —| =+ ZEZ LS +1)q |+ =+,
2 252\ 2 4
1+ ! 2’UD+52I’(I’+1) +1+n a
2 q’5°\ n* q 4 "

(42)
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With
oA (A+C)
AT «)
(A+C)2 +=
Similarly, we obtain <COt2 9>,<sec2 9><COS ec26> by setting 0 = B and  =C as,
1 oE
cot? @) = nl (44)
< ) 2B(r*) oB
1 oE
sec’ @) (cosec?’d) = ni (45)
(sec”0) ) 2c(r?) oC
respectively, where
gL v
e vo s Jom N )18 “©
B 4u V2 o4 B ||V 244 OB
yu oL ovan
e rollooe Yo N (Y) 005 o
oC 4u V? ol oC \V 241 oC
With
L (20 sy | v =] Ly 212(2ﬂ2D+52I’(I’+1)qj+1+n,
A 2 \ g2\ 4
N = N _ 20 on_,om [Zn +m +A+1j 2(B-A),
oA 4 (2uD 1) o4 g oB oB 2
52\ +0°A0+—
oA _,(am oA on +m +A+ (B+C) oA (A+C) 48)
oC 8C 8C

6. CONCLUSIONS

In this paper, we investigate analytically the Schrodinger
equation with the GHNR potential. By virtue of the
suitable approximation for the centrifugal term we obtain
approximately the energy eigenvalues and the
corresponding eigenfunction for the radial part of the
Schrodinger equation for the generalized Hulthen
potential. We also obtain the eigenvalues for the angular
part of the Schrodinger equation. These results are
obtained by the use of the functional analysis method.
The approximate analytical energy spectra and the

1/m + B+C aC / A C

corresponding wave function are obtained in a closed
form, In addition, we use the HFT to obtain the

expectation values for <(e(Sr _1)_1>'<(eér _1)_2>
(). feoce). (anto)

<COS EC29> <SeC2 l9> . As a special case, when
o0—-0 A=C =0, we

and

and have
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V, D #* Bcos’é
V(r,@) :——0+—2+—ﬁ

r r° 2urssin“é
Kratzer plus a new ring shaped potential [36]. Also when
D=A=B =0, we obtain the double ring shaped

which is the
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