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Abstract

In this paper, we introduce a numerical method to construct the inverse of a square matrix
whose elements are trapezoidal or triangular fuzzy numbers (FNs). A set of fuzzy linear
equations is required to be solved in order to determine the fuzzy inverse matrix. The
proposed technique first iteratively searches the possible solution intervals and then narrows
those too-wide estimated intervals via bisection. Using interval arithmetic in left and right
matrix multiplication, we aim to approximate the identity matrix as a result of product
operations. The dissimilarity of the endpoints of intervals belonging to multiplication
matrices with the identity matrix is considered to be an error function to be minimized. In
this way, even if the entries of a matrix are uncertain, the fuzzy inverse matrix containing
all inverse matrices can be found quickly with the use of computer technology. The method
is explained, and comparisons are drawn with inverse stable examples from the literature.

1. Introduction

Real-world models are too complicated to be presented with accurate values of parameters since precise knowledge is often
unavailable. To overcome imprecision, we may substitute crisp numbers with FNs provided by experts. For the purpose of
solving fully fuzzy linear systems of equations and fully fuzzy matrix equations, an analysis of the fuzzy inverse matrix is
beneficial. The narrowest family of matrices that contain all the inverses is known as the inverse of a given fuzzy matrix, whose
entries are FNs. Notice that interval and fuzzy matrices are connected since each α−cut of a FN is represented by an interval.

Chanas and Nowakowski [1] developed the fuzzy numerical simulation (FNS) technique that allows one to assign an exact
numerical value to a fuzzy variable by generating two values from a uniform distribution. Rohn [2] examined the invertibility
of interval matrices by providing necessary and sufficient conditions. For the solution of simultaneous linear equations with
fuzzy parameters, Rao and Chen [3] provided a computational methodology based on a search algorithm and bisection method.
The idea of finding the inverse matrix using scenario-based inverse matrices was first proposed by Dehghan et al. [4]. Basaran
[5] presented a method to calculate the inverse of a fuzzy matrix that consists of LR−type FNs. Refer to [7] and [8] for
suggested alterations and revisions for [5]. Mosleh [6] used fuzzy neural networks with fuzzy weights for fuzzy inputs and
fuzzy targets to find approximate solutions to fully fuzzy matrix equations, which can be utilized to determine fuzzy inverse
matrices. Guo et al. [9] designed a numerical procedure to derive the fuzzy inverse of the matrix with LR−type FNs and
supplied a sufficient condition for its existence. Chen and Huang [10] proposed a mathematical programming model to acquire
the fuzzy weights of the fuzzy analytical network process by utilizing the fuzzy inverse matrix on the basis of the criterion of
the minimum spread of FNs. Babakordi and Taghi-Nezhad [11] also employed linear programming for the calculation of fuzzy
inverse matrix. Farahani and Ebadi [12] discussed the sufficient and necessary conditions for the invertibility of a fuzzy matrix
by analyzing a system of fuzzy polynomial equations. Akdemir and Kocken [13] proposed an FNS-based bisection procedure
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for a fuzzy linear regression model with crisp inputs and fuzzy outputs.

Fuzzy matrices whose entries are symmetrical triangular FNs have been considered mostly in the literature. As far as we
know, studies on inverse calculations of fuzzy square matrices with asymmetrical and/or trapezoidal fuzzy entries are scarce.
Some attempts using approximate operations had high errors. In some cases, inverse stable matrices were not considered.
The motivation for this study is to contribute to the literature by proposing a computational technique making use of crisp
scenario-based inverses and the bisection method. In this paper, we suggest a new method that first solves a large number
of possible equation scenarios and then attains a very large range of solutions. After that, it attempts to reduce the error by
narrowing these initial ranges via bisection. For a given square matrix with fuzzy entries, parameters are repeatedly generated
via the single-value FNS method, thus the inverses of crisp scenario-based matrices are calculated too many times, different
from the approach of Dehghan et al. [4]. This way, we can estimate the intervals in which the inverses are located. But the
fuzzinesses of the solutions, namely the lengths of the corresponding ranges of solutions, are too large at the beginning since an
excessive number of scenarios is affecting the estimation. After the left and right matrix multiplication, we aim to approximate
fuzzy units or fuzzy zeros by increasing the similarity of both sides’ endpoints. The fuzzy identity matrix is considered to be a
nearly crisp identity matrix.

The rest of this paper is constructed as follows: In the following section, we give fundamental definitions of fuzzy set theory
along with the notation we use. In Section 3, we develop a numerical method for the determination of the approximate fuzzy
inverse matrix. In Section 4, we provide numerical examples to illustrate our methodology. We conclude in Section 5.

2. Preliminaries

In this section, we review some basic concepts of fuzzy set theory that will be used in the subsequent sections.

Definition 2.1. A standard fuzzy set ã on the universe of discourse X is defined as

ã = {〈x,µã (x)〉|x ∈ X}

where the membership function µã : X → [0,1] denotes the grade of belonging of the element x to the set ã.

A normal fuzzy subset of the real line, i.e., there exists ∃x ∈ R such that µ (x) = 1, with a convex membership function is
called a FN.

Definition 2.2 (LR−type FN). Let L, R : R+→ [0,1] be decreasing functions with L(0) = 1, R(0) = 1, L(1) = 0, R(1) =
0, L(x), R(x) < 1 for x > 0. The FN ã is called LR−type if there exist mL,mR (mL < mR) ,α > 0 and β > 0, with the
membership function:

µã (x) =


L
(mL−x

α

)
, if x < mL

1, if mL ≤ x < mR

R
(

x−mR
β

)
, if mR ≤ x

where α, β are called left spread and right spread, respectively. The lengths of the lower and upper ranges α and β are
also known as left fuzziness and right fuzziness. Then, we denote ã = (mL,mR,α,β )LR . Also, the endpoints ãL = mL−α and
ãR = mR +β are termed as lower and upper bounds, respectively. The interval [mL,mR] is additionally referred to as mode
interval.

If L(x) = R(x) = max{0,1− x}, then ã is called a Trapezoidal FN. Similarly, if L(x) = R(x) = max{0,1− x} and mL = mR,
then we get a Triangular FN. Also, sets consisting of these two types of numbers are closed under the operations given in the
definition below.

Definition 2.3. Let ã1 = (mL,mR,α1,β1)LR and ã2 = (nL,nR,α2,β2)LR be two trapezoidal (or triangular) FNs, and λ ∈ R,
then we have:

• Addition

ã1 + ã2 = (mL +nL,mR +nR,α1 +α2,β1 +β2)LR ,

• Scalar Multiplication

λ ã1 =

{
(λmL,λmR,λα1,λβ1)LR , if λ ≥ 0
(λmR,λmL,−λβ1,−λα1)LR , if λ < 0
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• Multiplication

ã1× ã2 = (l,r,α,β )LR , (2.1)

where the endpoints of the mode interval and bounds are

l = min{mLnL,mLnR,mRnL,mRnR} ,
r = max{mLnL,mLnR,mRnL,mRnR} ,

l−α = min{(mL−α1)(nL−α2) ,(mL−α1)(nR +β2) ,(mR +β1)(nL−α2) ,(mR +β1)(nR +β2)} ,
r+β = max{(mL−α1)(nL−α2) ,(mL−α1)(nR +β2) ,(mR +β1)(nL−α2) ,(mR +β1)(nR +β2)} ,

respectively.

Definition 2.4. [5] A FN 1̃ = (1,1,ε,δ )LR is called fuzzy unit if the spreads ε,δ > 0 are sufficiently small.

Definition 2.5. [5] A FN 0̃ = (0,0,ρ,σ)LR is called fuzzy zero if the spreads ρ,σ > 0 are sufficiently small.

Definition 2.6. [5] A fuzzy matrix is a fuzzy identity matrix if its main diagonal and remaining elements are respectively fuzzy
units and zeros. It is denoted by Ĩ as follows:

Ĩ =


1̃ 0̃ . . . 0̃
0̃ 1̃ . . . 0̃
...

. . .
. . .

...
0̃ 0̃ . . . 1̃

 .

3. Proposed method

We attempt to determine the approximate fuzzy (multiplicative) inverse of a square matrix whose parameters are all arbitrary
trapezoidal (or triangular) FNs, i.e., not necessarily non-negative. Consider a square fuzzy matrix Ã, represented by mutually
independent LR−type fuzzy entries. If there exists an LR−type fuzzy matrix X̃ whose entries are unknown trapezoidal (or
triangular) FNs, such that:

Ã× X̃ = X̃× Ã = Ĩ,

we refer the fuzzy matrix X̃ is the inverse of the fuzzy matrix Ã and denote it by Ã−1 = X̃ . We apply the interval arithmetic-based
equation, Equation (2.1) for multiplication.

First, let us consider the right inverse matrix via Ã× X̃ = Ĩ. For the LR−type fuzzy entries ãi j =
(

mL
i j,m

R
i j,αi j,βi j

)
LR

and

LR−type fuzzy unknowns x̃ jk =
(

nL
jk,n

R
jk,τ jk,φ jk

)
LR

, the following fully fuzzy system of linear equations occurred:

n

∑
j=1

ãi j× x̃ jk =
n

∑
j=1

(
mL

i j,m
R
i j,αi j,βi j

)
LR×

(
nL

jk,n
R
jk,τ jk,φ jk

)
LR

=

{
(1,1,εik,δik)LR , if i = k
(0,0,ρik,σik)LR , otherwise

where i,k = 1,2, ...,n. Similarly, for the left inverse matrix, the following conditions:

n

∑
j=1

x̃i j× ã jk =

{
1̃, if i = k
0̃, otherwise

must hold for i,k = 1,2, ...,n. Each system is n×n by n×n since there are n×n unknowns and n×n equations in total.

The error function we have considered in order to produce close matrices to the fuzzy identity matrix as a result of both left
and right multiplication is given as follows:

error =
n

∑
i=1

n

∑
k=1

∑
r∈{R,L}

(
eR

ikr + eL
ikr
)

(3.1)
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where

eR
ikr =



∣∣∣∣∣
(

n
∑
j=1

ãi j× x̃ jk

)
r

−1

∣∣∣∣∣ , if i = k

∣∣∣∣∣
(

n
∑
j=1

ãi j× x̃ jk

)
r

−0

∣∣∣∣∣ , otherwise

(3.2)

and

eL
ikr =



∣∣∣∣∣
(

n
∑
j=1

x̃i j× ã jk

)
r

−1

∣∣∣∣∣ , if i = k

∣∣∣∣∣
(

n
∑
j=1

x̃i j× ã jk

)
r

−0

∣∣∣∣∣ , otherwise.

(3.3)

Four separate sorts of errors eR
ikR, eR

ikL, eL
ikR, and eL

ikL arise for each entry (i,k) of multiplication matrices. The first two of
them are a result of the difference between the upper and lower endpoints of the multiplication entry from the right and the
corresponding element of the identity matrix. Similarly, the last two of them correspond to left-hand multiplication. In addition,
if the spreads ε,δ ,ρ, and σ of fuzzy units and zeros are specified as in [5], the error functions (3.2) and (3.3) can be revised
accordingly. See also the definition of ε−inverse in [4].
Our approach consists of two phases. At the first one, the lower and upper bounds of potential inverse matrices are searched,
and then the absolute error values are calculated. The bisection algorithm is then applied, starting with the spread with the
largest total error

(
eR

ikr + eL
ikr

)
which belongs to the entry (i,k) having the highest r fuzziness, such that r = R and r = L

correspond to right and left, respectively. With a specified number of bisection iterations, the original spread is narrowed to a
specific extent depending on whether or not the overall error value decreases. The opted narrowing gives a minimum overall
error value, amongst others. The bisection process is then performed for the spread with the second-largest inaccuracy. When
all spreads’ errors are decreased, the process is finished. Let us now explain those two phases of our method separately in
Subsections 3.1 and 3.2.

3.1. Search algorithm based on FNS

The foundation of our search algorithm is based on the generation of single values of FNs. We can estimate the intervals
in which the inverse entries are located by computing the inverses of crisp matrices, which are obtained by substituting
the generated values of the fuzzy parameters. It is obvious that this process needs to be repeated too many times in order
to yield meaningful results. The literature contains a wide variety of efficient crisp techniques for calculating inverses or
pseudo-inverses. We therefore try to employ these non-fuzzy methods to offer more accurate estimates. To generate given
LR−type fuzzy entry ãi j =

(
mL

i j,m
R
i j,αi j,βi j

)
LR

, we first simulate two independent uniformly distributed random numbers, ui j

and vi j. The weighted arithmetic mean of the endpoints of ui j−cut interval is a sample of ãi j as follows:

ai j = vi j
[
mL

i j−αi jL−1 (ui j)
]
+(1− vi j)

[
βi jR−1 (ui j)+mR

i j
]

(3.4)

where vi j and (1− vi j) are considered as weights for i, j = 1,2, ...,n.
The algorithm initially calculates 1-cut inverse matrices by Rohn’s method [2], if any. If these inverses are inconsistent, the
process is terminated. To find the lower and upper bounds of the inverse matrix’s entries, the process first generates single
values of the fuzzy parameters and repeatedly computes the inverses of the resulting crisp matrices. For any entry, it is regarded
as a potential value for the lower (upper) bound if the value is less (greater) than the left (right) endpoint of the mode interval
of the 1-cut inverse. After a large number of endpoints are determined and then averaged, the infimum and supremum of these
mean values are used to derive the right and left endpoints, respectively. These bounds, as well as errors, which are too big
initially, are required for the execution of the second phase, namely the bisection algorithm. Refer to Algorithm 1 for this phase
of our method. Algorithm 1 is a similar process to the search algorithm in [3]. The sequence of the simulation repetitions is
represented by the iteration counters s and t, which are integers from 1 to S and 1 to T , respectively.

3.2. Bisection algorithm

The bisection algorithm is applied to the spreads in accordance with the order in which the total errors
(
eR

ikr + eL
ikr

)
, which

are obtained at the end of Algorithm 1, are listed in descending order. A one-to-one mapping between the total errors and
unknowns is considered. For example, an error

(
eR

ikr + eL
ikr

)
leads to an update in variable

(
x̃ jk
)

r where j = i. The fuzzy matrix
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Algorithm 1 FNS-based Search Algorithm

INPUT: LR−type fuzzy entries ãi j =
(

mL
i j,m

R
i j,αi j,βi j

)
LR

where i, j = 1,2, ...,n, and large positive integers T,S

OUTPUT: LR−type fuzzy unknowns x̃ jk =
(

nL
jk,n

R
jk,τ jk,φ jk

)
LR

and errors eR
ikR, eR

ikL, eL
ikR, and eL

ikL where i, j,k = 1,2, ...,n

1: procedure FNSBASEDSEARCH

2: Compute the inverse matrix of the interval matrix that accepts mode intervals
[
mL

i j,m
R
i j

]
as entries by using Rohn’s

method. Continue if the solutions are consistent, namely nL
jk ≤ nR

jk for all j,k = 1,2, ...,n. Otherwise, report that the
inverse matrix does not exist and break.

3: for t← 1,T do
4: for s← 1,S do
5: Simulate A using the Formula (3.4)
6: Determine

(
A
)−1 using matrix inversion and store the entries as x̃ jk

s for all j,k = 1,2, ...,n
7: end for
8: For each j and k, store the mean value of the x̃ jk

s values less (or similarly greater) than nL
jk (or respectively nR

jk) in(
x̃ jk
)t

L (or
(
x̃ jk
)t

R).
9: end for

10: Set
(
x̃ jk
)

L := max
t

(
x̃ jk
)t

L and
(
x̃ jk
)

R := min
t

(
x̃ jk
)t

R for all j,k = 1,2, ...,n

11: Set the fuzzinesses as τ jk := nL
jk−

(
x̃ jk
)

L and φ jk :=
(
x̃ jk
)

R−nR
jk for all j,k = 1,2, ...,n

12: Using Eqs. (3.2) and (3.3), calculate the errors eR
ikR, eR

ikL, eL
ikR, and eL

ikL for the attained inverse
13: end procedure

under consideration must therefore be square. Our method consists of applying the bisection algorithm 2n2 times after the
search algorithm, Algorithm 1. For the obtained inverse after running Algorithm 1, denote the left endpoint matrix as (x̃)L and
the right endpoint matrix as (x̃)R. Similarly, denote the matrix consisting of left endpoints of the mode intervals as nL and the
matrix consisting of right endpoints of the mode intervals as nR, if existed. Refer to Algorithm 2 for this phase of our method.
The sequence of the bisection repetitions is expressed by the loop counter m, which ranges from 1 to M. ω , on the other hand,
is the order of the bisection iteration with the lowest error value.

4. Illustrative examples

On a computer running MS Windows 10 Pro and equipped with an Intel Core i5-7400 CPU (3.00 GHz) and 4 GB of RAM,
all computational tests are carried out using MATLAB R2019a. We use the assumptions that T = S = 1000 and M = 20 in
our computations. MATLAB’s “rand” function is used as a pseudo-random generator. We display the values rounded to four
significant digits. We take into consideration the following instances to illustrate the method suggested in this paper:

Example 4.1. Our first example is from [4]. Consider the following fuzzy matrix with triangular entries:

Ã =

[
(80,80,4,8)LR (25,25,5,5)LR
(50,50,10,6)LR (120,120,6,10)LR

]
.

We do not need to use Rohn’s method since the entries are triangular FNs and mode intervals consist of only one number.
Therefore, inconsistency is never an issue at the line-2 of Algorithm 1, so we simply calculate the inverse of a crisp matrix if it
exists. The inverse matrix of the mode matrix is as follows:

nL = nR =

[
80 25
50 120

]−1

=

[
0.0144 −0.0030
−0.0060 0.0096

]
.

Dehghan et al. [4] reported the left and right spread matrices for the inverse matrix as follows:(
τ jk
)

1 =

[
0.0030 0.0013
0.0021 0.0019

]
and

(
φ jk
)

1 =

[
0.0020 0.0016
0.0032 0.0013

]
,

respectively. Additionally, the following corresponding spreads are obtained with Rohn’s method [2]:(
τ jk
)

2 =

[
0.0022 0.0013
0.0020 0.0013

]
and

(
φ jk
)

2 =

[
0.0019 0.0011
0.0022 0.0013

]
.

Without applying the bisection algorithm, we find those spreads as follows:(
τ jk
)

3 =

[
0.0004 0.0002
0.0002 0.0002

]
and

(
φ jk
)

3 =

[
0.0002 0.0002
0.0004 0.0001

]
.
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Algorithm 2 Bisection Algorithm
INPUT: Left and right endpoint matrices (x̃)L, (x̃)R, boundaries of modes nL,nR, errors computed in Algorithm 1, and number
of bisection repetitions M
OUTPUT: Updated error (3.1), and endpoint

(
x̃ jk
)

r where j = i

1: procedure BISECTION(i,k,r)
2: Initialize hL = 0 and hR = 1 (If the total error (eR

ikr + eL
ikr) is relatively much higher than the other ones, then initialize

hL = 0.5 and hR = 1 to speed up the process)
3: Set m := 1,

(
x̃ jk
)new

r,m :=
(
x̃ jk
)

r and errorm := error computed via Eq. (3.1)
4: for m← 2,M do
5: h := (hL +hR)/2
6:

(
x̃ jk
)new

r,m := hnr
jk +(1−h)

(
x̃ jk
)

r

7: Update the error using the new value
(
x̃ jk
)new

r,m instead of
(
x̃ jk
)

r, and store it in errorm

8: if errorm < error(m−1) then
9: hL := h

10: else
11: hR := h
12: end if
13: end for
14: Return

(
x̃ jk
)

r =
(
x̃ jk
)new

r,ω such that errorω = min
m∈{1,2,...,M}

errorm

15: Update error
16: end procedure

The authors [4] used α−cuts to view the fuzzy matrix as an interval matrix and investigated five scenario-based matrices for
α ∈ {0,0.25,0.50,0.75,1}. In the first phase, on the other hand, we perform T ×S = 106 inverse calculations.
After the bisection algorithm, we obtain the following spreads:(

τ jk
)

4 =

[
7.8317e−10 3.0507e−10
3.8743e−10 4.6294e−10

]
and

(
φ jk
)

4 =

[
3.8099e−10 3.8117e−10
7.8932e−10 2.6150e−10

]
.

The right and left multiplications of the inverse matrices obtained by the four methods mentioned above with the matrix Ã are
calculated as follows: (

Ã× X̃
)

1
=

[
[0.6234,1.3872] [−0.2244,0.2206]
[−0.5970,0.5992] [0.6370,1.3610]

]
,(

X̃× Ã
)

1
=

[
[0.6256,1.3872] [−0.3310,0.3324]
[−0.4048,0.3976] [0.6348,1.3610]

]
,(

Ã× X̃
)

2
=

[
[0.6872,1.3584] [−0.2124,0.1826]
[−0.5520,0.4796] [0.7054,1.3410]

]
,(

X̃× Ã
)

2
=

[
[0.6864,1.3584] [−0.3150,0.2724]
[−0.3720,0.3216] [0.7062,1.3410]

]
,(

Ã× X̃
)

3
=

[
[0.8753,1.1708] [−0.0908,0.0792]
[−0.2464,0.1805] [0.8879,1.1516]

]
,(

X̃× Ã
)

3
=

[
[0.8844,1.1705] [−0.1308,0.1186]
[−0.1713,0.1206] [0.8788,1.1518]

]
,(

Ã× X̃
)

4
=

[
[0.9126,1.1449] [−0.0719,0.0599]
[−0.2036,0.1222] [0.9246,1.1257]

]
,(

X̃× Ã
)

4
=

[
[0.9246,1.1449] [−0.1018,0.0898]
[−0.1437,0.0814] [0.9126,1.1257]

]
.

The sum of errors are 6.0826, 5.3212, 2.2564, and 1.7413, respectively. If we make an interpretation based on these findings,
our method allows us to get better results that are more similar to the crisp identity matrix than the other two methods.
Now let us discuss some details of the implementation of the method. In the first phase, we reach the initial errors

eR
11L + eL

11L = 0.2403, eR
11R + eL

11R = 0.3412,
eR

12L + eL
12L = 0.2216, eR

12R + eL
12R = 0.1978,

eR
21L + eL

21L = 0.4177, eR
21R + eL

21R = 0.3011,
eR

22L + eL
22L = 0.2333, eR

22R + eL
22R = 0.3034,
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which measure lower and upper bound dissimilarities with the identity matrix. Thus, the bisection order to apply to spreads is
as follows: nL

21− (x̃21)L , (x̃11)R−nR
11, (x̃22)R−nR

22, (x̃21)R−nR
21, nL

11− (x̃11)L , nL
22− (x̃22)L , nL

12− (x̃12)L , (x̃12)R−nR
12.

Example 4.2. Our second example is from [5]. Consider the following fuzzy matrix with triangular entries:

Ã =

[
(10,10,4,4)LR (8,8,3,3)LR
(6,6,2,2)LR (4,4,3,3)LR

]
.

Basaran [5] specified the fuzzy identity matrix as follows:

Ĩ =
[

(1,1,0.5,0.5)LR (0,0,0.5,0.5)LR
(0,0,0.5,0.5)LR (1,1,0.5,0.5)LR

]
.

The inverse matrices found in [5], [7], [8], and with the proposed method are respectively given as follows:(
Ã−1

)
1

=

[
(−0.5,−0.5,0.88,0.88)LR (1,1,2.13,2.13)LR
(0.75,0.75,1.63,1.63)LR (−1.25,−1.25,2.57,2.57)LR

]
,(

Ã−1
)

2
=

[
(−0.5,−0.5,0.875,0.875)LR (1,1,1.625,1.625)LR
(0.75,0.75,0.625,0.625)LR (−1.25,−1.25,1.125,1.125)LR

]
,(

Ã−1
)

3
=

[
(−0.5,−0.5,0.5,0.11)LR (1,1,1,0.65)LR
(0.75,0.75,0.75,0.35)LR (−1.25,−1.25,1.25,0.52)LR

]
,(

Ã−1
)

4
=

[
(−0.5,−0.5,2.0191e−06,1.4934e−06)LR (1,1,2.5932e−06,3.6078e−06)LR
(0.75,0.75,1.9759e−06,2.8142e−06)LR (−1.25,−1.25,4.9302e−06,3.4408e−06)LR

]
.

The right and left multiplications of the inverse matrices obtained by the four methods given above with the matrix Ã are
calculated as follows: (

Ã× X̃
)

1
=

[
[−29.0000,31.5000] [−57.8400,58.3400]
[−17.2000,19.7000] [−35.7800,34.2800]

]
,(

X̃× Ã
)

1
=

[
[−28.3600,30.3600] [−23.0900,26.0900]
[−42.8800,43.8800] [−36.4200,35.4200]

]
,(

Ã× X̃
)

2
=

[
[−18.6250,20.3750] [−34.8750,36.1250]
[−10.8750,12.6250] [−21.6250,20.8750]

]
,(

X̃× Ã
)

2
=

[
[−24.2500,26.2500] [−19.5000,22.5000]
[−18.2500,18.7500] [−16.0000,15.0000]

]
,(

Ã× X̃
)

3
=

[
[−14.0000,9.7600] [−27.5000,19.4500]
[−8.0000,6.1400] [−17.5000,12.4700]

]
,(

X̃× Ã
)

3
=

[
[−14.0000,10.8600] [−11.0000,9.6000]
[−20.0000,12.4800] [−17.5000,11.3700]

]
,(

Ã× X̃
)

4
=

[
[−3.2500,5.2500] [−7.7501,7.7501]
[−3.2500,3.2500] [−4.7500,6.7500]

]
,(

X̃× Ã
)

4
=

[
[−3.0000,5.0000] [−4.5000,4.5000]
[−5.5001,5.5001] [−5.0000,7.0000]

]
.

The sum of errors are 542.1400, 328.5000, 213.6300, and 74.0007, respectively.

Example 4.3. Our third example is from [5]. Consider the following fuzzy matrix with triangular entries:

Ã =

[
(−6,−6,3,3)LR (−4,−4,2,2)LR
(−4,−4,1,1)LR (−3,−3,1,1)LR

]
.

with negative modes. With the same specified fuzzy identity matrix, the inverse matrices found in [5], [7], and with the proposed
method are respectively given as follows:(

Ã−1
)

1
=

[
(−1.5,−1.5,1.5,1.5)LR (2,2,2,2)LR

(2,2,2.25,2.25)LR (−3,−3,3.5,3.5)LR

]
,(

Ã−1
)

2
=

[
(−1.5,−1.5,6,6)LR (2,2,8.25,8.25)LR

(2,2,7,7)LR (−3,−3,9.5,9.5)LR

]
,(

Ã−1
)

3
=

[
(−1.5,−1.5,4.6516e−06,3.9282e−06)LR (2,2,5.5567e−06,6.5507e−06)LR

(2,2,5.3942e−06,6.9193e−06)LR (−3,−3,9.7823e−06,7.6952e−06)LR

]
.

The sum of errors are 416.5000, 1.4305e+03, and 105.0009, respectively.
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Example 4.4. Our fourth example is from [11]. Consider the following fuzzy matrix with triangular entries:

Ã =

[
(5,5,1,1)LR (6,6,2,2)LR
(4,4,2,2)LR (7,7,1,1)LR

]
.

Babakordi and Taghi-Nezhad [11] reported the following inverse as a non-fuzzy matrix:

Ã−1 =

[
(0.6364,0.6364,0,0)LR (−0.5455,−0.5455,0,0)LR

(−0.3636,−0.3636,0,0)LR (0.4545,0.4545,0,0)LR

]
.

Their total error is 24.0000. Our inverse with a total error of 24.0001 is as follows:

Ã−1 =

[
(0.6364,0.6364,0.6306e−06,1.0550e−06)LR (−0.5455,−0.5455,1.0876e−06,0.6242e−06)LR

(−0.3636,−0.3636,0.7781e−06,0.4623e−06)LR (0.4545,0.4545,0.4354e−06,0.7651e−06)LR

]
.

The fuzzy matrix considered here has a non-fuzzy inverse, which is the case where we observe the minimum possible error
value. Our method approximates this error.

Example 4.5. Our next example is from [6]. Consider the following fuzzy matrix with triangular entries:

Ã =

[
(10,10,0.1,0.1)LR (8,8,0.1,0.01)LR
(6,6,0.15,0.1)LR (4,4,0.09,0.19)LR

]
with relatively small spreads. The author [6] specified the fuzzy identity matrix as follows:

Ĩ =
[

(1,1,0.78,0.4157)LR (0,0,0.5,0.642)LR
(0,0,0.5,0.4183)LR (1,1,0.6038,0.43)LR

]
.

The following fuzzy inverse matrix with an overall error of 0.7035 was given as a result:

Ã−1 =

[
(−0.5,−0.5,0.05,0.02)LR (1,1,0.02,0.01)LR
(0.75,0.75,0.02,0.02)LR (−1.25,−1.25,0.023,0.04)LR

]
.

With our approximation having a total error of 1.0160, the following inverse matrix is shown below:

Ã−1 =

[
(−0.5,−0.5,0.0526,0.0163)LR (1,1,0.0000,0.0115)LR
(0.75,0.75,0.0152,0.0169)LR (−1.25,−1.25,0.0298,0.0369)LR

]
.

The 0-cuts of the inverses are respectively given as:[
[−0.5500,−0.4800] [0.9800,1.0100]
[0.7300,0.7700] [−1.2730,−1.2100]

]
and

[
[−0.5526,−0.4837] [1.0000,1.0115]
[0.7348,0.7669] [−1.2798,−1.2131]

]
,

which end up being quite similar despite not being able to achieve a better error value.

Example 4.6. Our last example is adapted from [14]. Consider the following fuzzy matrix with trapezoidal entries:

Ã =

[
(2,4,3,1)LR (−2,1,0,5)LR
(−1,2,4,4)LR (2,4,2,0)LR

]
.

According to [2] and [15], we only need to consider the inverses of the following permutations:

A11 =

[
2 −2
−1 2

]
, A12 =

[
4 1
2 4

]
, A13 =

[
4 −2
2 2

]
, A14 =

[
2 1
−1 4

]
,

A31 =

[
4 1
−1 2

]
, A32 =

[
2 −2
2 4

]
, A33 =

[
2 1
2 2

]
, A34 =

[
4 −2
−1 4

]
where

AI =

[
[2,4] [−2,1]
[−1,2] [2,4]

]
, A =

[
2 −2
−1 2

]
, A =

[
4 1
2 4

]
Ac =

A+A
2

=

[
3 −0.5

0.5 3

]
, ∆ =

A−A
2

=

[
1 1.5

1.5 1

]
,

Ayz = Ac−Ty∆Tz , T1 =

[
1 0
0 1

]
, T2 =

[
−1 0
0 −1

]
, T3 =

[
−1 0
0 1

]
, T4 =

[
1 0
0 −1

]
.
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Thus, the inverse matrix of the interval matrix is as follows:

A−1
I =

[
min
(y,z)

A−1
yz ,max

(y,z)
A−1

yz

]
=

[
[1/6,1] [−1/2,1]
[−1,1/2] [1/6,1]

]
.

By implementing our algorithm, the following inverse matrix with a total error of 125.0003 is computed as follows:

Ã−1 =

[
(1/6,1,0.2846,0.2425e−05)LR (−1/2,1,0.0000,0.1855e−05)LR
(−1,1/2,0.0000,0.1881e−05)LR (1/6,1,0.0936,0.2233e−05)LR

]
.

The right and left multiplications of the inverse matrix obtained by our method with the matrix Ã are calculated as follows:

Ã× X̃ =

[
[−7.0000,8.0000] [−4.5000,11.0000]
[−9.0000,8.0000] [−5.0000,10.0000]

]
,

X̃× Ã =

[
[−6.0000,11.0000] [−4.0000,10.0000]
[−10.0000,8.5000] [−6.0000,7.0000]

]
.

Notice that the error of the Rohn method, 125, is a lower bound for our overall error. The fact that the error term is very close
to the lower bound shows the efficiency of the method.

5. Conclusion

We provide a computational approach to find the multiplicative inverse of a square fuzzy matrix where the components are
triangular or trapezoidal FNs. This method first obtains a large number of potential inverses to get intervals for the entries.
After that, it tries to reduce the error by making these ranges smaller. The algorithm is implemented and successfully tested
by solving several examples. At first glance, it seems that our algorithm reduces the total error of the approximate inverses
obtained with the existing techniques. It is an effort to improve efficacy by making use of well-known, reliable, efficient, and
non-fuzzy techniques. In the literature, fuzzy matrices whose entries are symmetrical triangular FNs have been considered
mostly. But, inverse calculations of square fuzzy matrices with asymmetrical and/or trapezoidal fuzzy entries can be achieved
with our methodology. Moreover, we are able to reduce the error because we employ interval arithmetic rather than approximate
multiplication operations. Future developments of this study include the investigation of solving linear and non-linear equation
systems with standard, intuitionistic, or picture fuzzy coefficients and extensional work into the applications of the proposed
approach to other areas, such as mathematical programming.
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