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Abstract: Fourier Transform Infrared (FTIR) spectroscopy can provide relative proportion of secondary 

structure elements in a protein. However, extracting this information from the Amide I band area of an FTIR 

spectrum is difficult. In addition to experimental methods, several protein secondary structure prediction 

algorithms serving on the Web can be used as supplementary tools requiring only protein amino acid 

sequences as inputs. In addition, web-server based docking tools can provide structure information when 

proteins are mixed and potentially interacting. Accordingly, we aimed to utilize web-server based structure 

predictors in fibroblast growth factor (FGF) protein structure determination through the FTIR data. Seven 

such predictors were selected and tested on basic FGF (bFGF) protein, to predict FGF secondary structure. 

Results were compared to available structure-files deposited in the Protein Data Bank (PDB). Then, FTIR 

spectra of bFGF and the acidic form of the protein with 50 folds more bovine serum albumin as carrier 

protein (1FGFA/50BSA) were collected. Optimized Amide I curve-fit parameters of bFGF with low (<5) 

root mean square deviation (RMSD) in the PDB data and the predictions were obtained. Those parameters 

were applied in curve-fitting of 1FGFA/50BSA data. Secondary structure was inspected also through 

applying models derived from the previously established methods. Results of model-based secondary 

structure estimation from FTIR data were compared with secondary structure calculated as 1 part 

contribution from 1FGFA/1BSA complex and 49 parts contribution from BSA. Complex structure was 

obtained through docking. RMSD in the PDB data and the predictions were respectively 3.05 and 2.39 with 

the optimized parameters. Those parameters did not work well for the 1FGFA/50BSA data. Models are 

better in this case, wherein one model (Model-1') with the lowest average RMSD has 8.38 RMSD in the 

bFGF and 4.78 RMSD in the 1FGFA/50BSA structures. Model-based secondary structure predictions are 

better for determining bFGF and 1FGFA/50BSA secondary structures through the curve-fit approach that 

we followed, under non-optimal conditions like protein/BSA mixtures. Web servers can assist experimental 

studies investigating structures with unknown structures. Any web-based structure prediction supporting the 

experimental results would be enforcing the findings, but the unsupported results would not necessarily 

falsify the experimental data. 
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1. Introduction 

Secondary structure determination and detecting 

changes in them are of profound importance since 

the function of a protein is directly related to its 
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secondary and tertiary structure [1–5]. Thus, 

experimental techniques giving information on 

both are valuable. Fourier Transform Infrared 

Spectroscopy (FTIR) is among those and preferred 
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due to its ease in use and speed of data acquisition. 

On the other hand, secondary structure analysis 

requires mathematical processing of spectra. There 

are several mathematical methods reported in 

literature that are in-house developed and are not 

commercially available such as the utilization of 

neural network [6,7], multivariate regression 

methods and other algorithms [8,9], method of co-

fitting [10,11], etc. There is also curve-fitting 

option in certain brands of commercially available 

software that are primarily present for the 

spectrometer control. However, the success of this 

method depends heavily on the user experience and 

on the initial parameter set. Therefore, any 

improvement in structure prediction with FTIR is 

greatly appreciated. 

In this study, we evaluated seven Web Server-based 

predictors and compared their performances for the 

secondary structure analysis of the basic fibroblast 

growth factor (bFGF) protein [12], to combine with 

spectroscopy, during curve-fitting of protein FTIR 

data. The use of Web server-based predictors is 

highly attractive as supplements to experimental 

techniques like NMR, X-ray crystallography and 

FTIR because only the primary structure of the 

protein is required as input. Using computational 

approaches in combination with FTIR spectroscopy 

[7,13,14] has much to offer in protein secondary 

structure determination and structure-function 

relation, and it was known that studies involving 

FGF structure can benefit from FTIR spectroscopy 

[15,16]. FGF is a protein involved in distinct 

biological activities [12,17–22]. Following curve-

fit analysis approach, we present a better 

performing model-based approach in this occasion. 

However, secondary structure predictions through 

amino acid sequences do not predict secondary 

structure changes upon interactions. Another type 

of web-based resource can serve with this purpose, 

enabled by the improvements in docking algorithms 

and computer hardware [23], to generate protein-

interaction model, as a new knowledge [24]. 

Accordingly, predictions of the protein complex 

structures are possible e.g., with Hex [25] and 

server-based GRAMM [23]. Both examples 

perform protein docking to estimate interactions, 

thorough which any change in protein secondary 

structure percentages in the interacting protein 

complexes can be obtained. Other than enabling the 

used to download softwares, such services can also 

automate docking, which was first performed in 

1978 [26]. Present docking approaches employ 

different search and scoring strategies. The 

exemplified Hex utilizes grid-free spherical polar 

Fourier approach [27] with rotational rather than 

translational correlations to be calculated with one-

dimensional fast Fourier transforms, i.e., FFTs [28]. 

It first generates candidate solutions which are then 

rescored using shape only or if required, shape and 

electrostatic, correlations [25]. The other 

mentioned-tool, GRAMM-X (discontinued, the 

new GRAMM Docking Web Server can be found 

at http://gramm.compbio.ku.edu/), is also FFT-

based. 

 

2. Computational Method 

2.1.  PDB data, prediction tools, and prediction 

performance calculations 

The bFGF protein structure deposited in the Protein 

Data Bank (PDB) with the ID 1BFF was selected as 

an arbitrary reference to compare with the other 

structures (PDB ID: 2BFH, 1BLD, 1IIL:A, 1FGA, 

1II4:A, 1EV2:A, 1BFB, 1FQ9, 1BAS). Secondary 

structure prediction tools that were used in this 

study were SOPM, Yaspin, 1D-PSPS, 

PredictProtein, DPM, DSC, and SSpro8. We 

performed calculation of the root mean square 

deviation (RMSD) of alpha (α)-helices, beta (β)-

sheets, turns, and (random) coils’ secondary 

structure percentages of PDB data and prediction 

results from the experimental data, and the 

generation of confusion matrices for the predictor-

performances in estimating the structure of bFGF 

(PDB ID: 1BFF). Details of these calculations and 

the tools are provided in the supplementary file. 

 

2.2. Curve-fit vs model-based secondary 

structure, based on RMSD to 1:49 (docked 

complex:BSA) 

We obtained attenuated total reflectance (ATR) 

FTIR spectra of bFGF and acidic FGF (FGFA) with 

50 folds more bovine serum albumin as carrier 

(1FGFA/50BSA) and inspected their secondary 

structure percentages through curve-fitting and 

model-based approaches, as detailed in the 

supplementary file. Curve-fit was based on the 

approach developed earlier [4,29,30] while models 

were derived through the models published by 

Goormaghtigh et al. [9,31].  RMSD values were 

calculated with the 1:49 docked complex and BSA, 

as the reference. For docking, A chains of PDBs 

with IDs 2AFG (for FGFA) and 3V03 (for BSA) 

were used. 
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Hex [25] was used for docking. We downloaded 

Hex software, which also has a server 

(http://hexserver.loria.fr). Hex docking program 

has steric scan and final scan stages, wherein the 

former is the fast, low-resolution phase while the 

latter is the higher resolution, smaller step-lengths, 

of search in the top scoring orientations, within a 

user-defined "distance range", which was 40 

Angstrom, by default. Substeps of 2 was used for 

the latter. Angular ranges of the receptor and ligand 

are also user-defined, along with the angular sizes 

of the steps that cover those angular ranges. Those 

were 180 and 7.5 degrees correspondingly, for the 

ranges and the step sizes, by default. Before 

docking, chains B-D and its solvent molecules and 

related connections were removed from the PDB 

(2AFG) file of FGFA. Similarly, chain B and its 

solvent molecules and related connections were 

removed from the PDB (3V03) file of BSA. 

Docking was performed after loading those files as 

ligand and receptor, correspondingly, and following 

a macro docking, due to the large sizes of the 

molecules. After docking, Stride was utilized as the 

program-based secondary structure recognition 

from the atomic coordinates [32], to obtain the 

secondary structure of the complexed proteins in 

the best docking. It is mentioned above, but in 

detail, the best result was utilized through 

estimating its contribution as 1/50 of the measured 

sample, assuming one-to-one interaction. 

Accordingly, 1/50 of the sample structure was the 

docked structure, and 49/50 of the sample structure 

was the secondary structure of A chain in the PDB 

(3V03) file of BSA, to comply with the BSA 

structure used for docking. Secondary structure 

information obtained through using Stride, as the 

post-docking analyses. To understand the 

secondary structure of the interacting proteins in the 

model, Stride was utilized as the program-based 

secondary structure recognition from the atomic 

coordinates [32]. RMSD of the FTIR data-based 

secondary structures to those obtained as described, 

was used to evaluate the performance of the 

applied-models to calculate secondary structures 

from the FTIR data. Those applied models were 

additionally modified to diminish RMSD. 

GRAMM docking server was also used for protein–

protein docking, which generated a docked 

complex [23]. Ten docked complex models were 

generated by GRAMM for the same processed PDB 

files of the two proteins and secondary structure 

information obtained through using Stride, as 

before, for the best complex (model_1). BSA and 

FGFA complex images were generated by Swiss-

PdbViewer v4.1.0 at http://www.expasy.org/spdbv. 

We compared Hex with GRAMM for the secondary 

structure percentages of the top results. 

 

3. Results and discussion 

Protein structure prediction algorithms are already 

tested with a set of proteins so that their 

performances are proven before being released for 

public use. However, usually one structure per 

protein is assumed and used to construct such sets, 

although generally several structures are deposited 

for one protein in the PDB. This is partly because 

the data resolution is different, yielding slightly 

different structures and/or partly because of the 

varying experimental conditions. Yet, it is also true 

that the protein structures are sensitive to changes 

in the environment and different PDB files may 

well be representing this flexibility. Using structure 

predictors is quite tempting since only the primary 

sequence of the protein is required as input data. 

After that, the predicted structure could be used for 

the starting point of a curve-fitting processes.  

The secondary structure prediction tools that were 

used in this work are SOPM [33], Yaspin [34], 1D-

PSPS [35], PredictProtein [36], DPM [37], DSC 

[38], and SSpro8 [39]. An important issue to note 

here is that the predictors Yaspin, 1D-PSPS, 

PredictProtein, and DSC do not predict the turns. 

Yet, they were preferred to be included in the study 

since such type of analysis still gives a good 

approach for the protein secondary structure 

analysis and prediction studies, as well as the FTIR 

based secondary structure analysis. So, the 

prediction of helices, sheets, and coils without the 

turns content in a reliable manner is still beneficial. 

Here, the predictors were used to predict the 

secondary structure of bFGF, of which the X-ray 

crystallography structure data is available at 2.0 Å 

resolution (PDB ID: 1BFF). This structure (Figure 

1) was compared with the prediction results to test 

the performance of these predictors. There are also 

different experimentally obtained structure data of 

the same protein at different resolutions. 

Accordingly, by using ten different structure data 

deposited in PDB, RMSD among experimental 

results were determined by comparing the 

secondary structure percentages of the 1BFF 

structure to that of the other structures. 

Furthermore, determination of the deviation among 

several PDB data of the bFGF protein was used to 

judge the performance of Web-based predictors. 

Then, a similar RMSD calculation was done with 

the prediction results. 
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Figure 1. The basic fibroblast growth factor (bFGF) structure with the PDB ID 1BFF 

from three different angles. It is mainly a β-sheet protein (53%) shown in red with only 

9% α-helix, shown in green. 

 
Residue-based comparison of the secondary 

structure of bFGF among ten different PDB data is 

presented in Alignment S1, supplementary file. The 

primary structure of the protein is obtained from the 

Uniprot file, coded P09038. Alignment S2 shows 

residue-based comparison of the predicted 

secondary structures of the same sequence by the 

predictors, together with the reference PDB data on 

top. 

 

3.1. Deviations in the predicted secondary 

structure percentages: Comparison of 

different PDB data of bFGF 

The secondary structure of bFGF is categorized 

under four main secondary structure types as 

helices, sheets, turns and coils. Secondary structure 

percentages by PDB data are given in Table 1, 

where the first row shows the structure given by the 

1BFF data. Deviations of the secondary structure 

percentages of the other PDB files’ data from that 

of 1BFF are represented with the RMSD1 values. 

We have then calculated the RMSD of each 

structure from each of the other structures 

separately and took their averages (RMSD2, Table 

1). There, we see deviations of secondary structure 

percentages of all the other PDB-based bFGF 

structures are highest on average from the protein 

with PDB ID: 1FGA (RMSD2: 5.13), and lowest on 

average from the protein with PDB ID: 1BFB 

(RMSD2: 2.33) and 1BFF (RMSD2: 2.42). 

According to the RMSD1 values in Table 1, the 

deviation is, in general, proportional to the 

resolution of the X-ray crystallography data. It may 

be expected that the RMSD1 value increases as the 

data resolution deviates more and more from that of 

1BFF, which is 2.0 Å. However, this is not the case. 

For instance, RMSD1 of 1EV2 is 3.47 although the 

resolution of the 1EV2 data is 2.2 Å, which is close 

to that of 1BFF. The structure data of 1FGA 

(resolution 2.2 Å) deviates the most from 1BFF 

with an RMSD1 value of 4.14. The difference is 

mainly in the fraction of sheets and coils. The 

closest data with 0.55 RMSD1 belongs to the 1BFB 

(resolution 1.9 Å), which yields ~1% difference in 

turns and coils, while the fractions of sheets and 

helices match precisely with those of 1BFF. In 

general, structural data that is obtained by the same 

experimental method and at similar resolutions is 

not the same. Results deviate from the 1BFF 

secondary structure percentages by an RMSD1 of 

minimum 0.55 and maximum 4.14.  

 
Table 1. Secondary structure percentages of 10 experimental data of bFGF. RMSD1 values represent 

deviation of the other experimental secondary structure percentages from that of the 1BFF. RMSD2 

values are the averages of the remaining experimental structures' RMSDs to the respective 

experimental structure. The average of the RMSD1 values is 2.45 while that of the RMSD2 values is 

3.21. 

PDB ID 
Sheets% Helices% Turns% Coils% RMSD1 RMSD2 

  1BFF 41.09 6.98 19.38 32.56   2.42 



Turkish Comp Theo Chem (TC&TC), 7(2), (2023), 70-83 

Filiz Korkmaz, Ayca Mollaoglu, Yekbun Adiguzel 

 

74 

 

 2BFH 41.09 9.30 18.60 31.01 1.45 2.93 

 1BLD 40.31 2.33 19.38 37.98 3.59 4.28 

 1IIL:A 42.64 6.98 20.93 29.46 1.90 2.79 

 1BAS 41.09 9.30 18.60 31.01 1.45 2.93 

 1BFB 41.09 6.98 20.16 31.78 0.55 2.33 

 1FGA 35.66 6.98 18.60 38.76 4.14 5.13 

 1FQ9 42.64 2.33 23.26 31.78 3.15 3.20 

 1II4:A 42.64 4.65 22.48 30.23 2.39 2.78 

 1EV2:A 42.64 2.33 24.03 31.01 3.47 3.42 
 

Table 2. Secondary structure percentages and RMSD values representing the deviations of prediction 

results from the experimental (exp.) data of 1BFF in the PDB. 1BFF structure content and best 

prediction results are written in bold. 

Predictor or 1BFF Sheets% Helices% Turns% Coils% RMSD 

 1BFF (exp.) 41.09 6.98 19.38 32.56  

 SOPM 41.09 6.20 17.83 34.88 1.45 

 Yaspin 47.29 0.00 N/A 52.71 5.41* 

 1D-PSPS 51.16 3.10 N/A 45.74 7.19* 

 Predict-Protein 51.16 0.00 N/A 48.84 7.30* 

 DPM 9.30 37.21 11.63 41.86 22.75 

 DSC 49.61 0.00 N/A 50.39 6.42* 

 SSpro8 41.09 4.65 23.26 31.01 2.39 
* RMSD of the predictors that do not provide the turns structure in their outputs are calculated based on 3 secondary 

structure types, as explained in the Extended Materials and Methods at the supplementary file. 

 

Table 3. RMSD values representing the deviations of the predictor results from all the inspected experimental data for 

bFGF, separately. Average of the RMSD values (RMSDav.) for each predictor is at the last column. Predictor results with 

the lowest RMSD to the structure with the given PDB ID as the respective column title are written in bold.  

PDB ID of bFGF: 1BFF 2BFH 1BLD 1IIL:A 1BAS 1BFB 1FGA 1FQ9 1II4:A 1EV2:A RMSDav. 

P
re

d
ic

te
d

 b
y

 

SOPM 1.45 2.51 2.63 3.24 2.51 1.98 3.38 3.76 3.47 4.21 2.91 

Yaspin* 5.41 6.70 5.02 5.02 6.70 5.41 8.28 3.29 3.80 3.29 5.29 

1D-PSPS* 7.19 7.19 9.19 6.04 7.19 7.19 11.41 7.30 6.42 7.30 7.64 

PredictProtein* 7.30 7.93 8.08 6.42 7.93 7.30 10.98 6.23 6.04 6.23 7.45 

DPM 22.75 22.11 23.74 23.80 22.11 22.90 20.41 25.32 24.62 25.49 23.33 

DSC* 6.42 7.30 6.85 5.70 7.30 6.42 9.87 5.02 5.02 5.02 6.49 

SSpro8 2.39 3.29 4.17 1.98 3.29 1.98 5.40 1.45 0.95 1.45 2.63 

* RMSD values of the predictors that do not provide the turns structure in their outputs are calculated based on 3 

secondary structure types, as explained in the Extended Materials and Methods at the supplementary file.  

 

Table 4. Confusion matrices of secondary structure predictions for bFGF and 1BFF as the actual structure. True predictions 

are written in bold. Total structure percentages in columns of each matrix are written in the last row. RMSD of each predictor-

predictions from the actual values is written in the last column. 

 

Actual (1BFF) 
Predicted 

Total% 

RMSD of 

predicted to 

total% Sheets% Helices% Turns% Coils% 

P
re

d
ic

to
r 

ro
w

s 
o

f 
7

 

se
p

a
ra

te
 c

o
n

fu
si

o
n

 

m
a

tr
ic

e
s 

S
O

P
M

 Sheets% 30.23 2.33 1.55 6.98 41.09 

1.45 
Helices% 3.88 0.00 1.55 0.78 6.20 

Turns% 3.88 0.78 12.40 0.78 17.83 

Coils% 3.10 3.88 3.88 24.03 34.88 

Y
a

sp
in

*
 

Sheets% 35.66 2.33 N/A 9.30 47.29 

5.41* Helices% 0.00 0.00 N/A 0.00 0.00 

Turns% N/A N/A N/A N/A N/A 
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Coils% 5.43 4.65 N/A 42.64 52.71 

1
D

-P
S

P
S

*
 

Sheets% 35.66 3.10 N/A 12.40 51.16 

7.19* 
Helices% 3.10 0.00 N/A 0.00 3.10 

Turns% N/A N/A N/A N/A N/A 

Coils% 2.33 3.88 N/A 39.53 45.74 

P
re

d
ic

t-

P
ro

te
in

*
 Sheets% 34.11 1.55 N/A 15.50 51.16 

7.30* 
Helices% 0.00 0.00 N/A 0.00 0.00 

Turns% N/A N/A N/A N/A N/A 

Coils% 6.98 5.43 N/A 36.43 48.84 

D
P

M
 Sheets% 6.20 0.00 0.78 2.33 9.30 

22.75 
Helices% 21.71 1.55 3.88 10.08 37.21 

Turns% 0.78 2.33 5.43 3.10 11.63 

Coils% 12.40 3.10 9.30 17.05 41.86 

D
S

C
*

 Sheets% 35.66 2.33 N/A 11.63 49.61 

6.42* 
Helices% 0.00 0.00 N/A 0.00 0.00 

Turns% N/A N/A N/A N/A N/A 

Coils% 5.43 4.65 N/A 40.31 50.39 

S
S

p
ro

8
 Sheets% 38.76 0.00 0.00 2.33 41.09 

2.39 
Helices% 0.00 2.33 1.55 0.78 4.65 

Turns% 0.00 3.10 17.05 3.10 23.26 

Coils% 2.33 1.55 0.78 26.36 31.01 

Actual Total% 41,09 6,98 19.38 32.56   
* RMSD of the predictors that do not provide the turns structure in their outputs are calculated based on 3 secondary 

structure types, as explained in the Extended Materials and Methods at the supplementary file. Also, N/A is written 

in the Turns% row of those predictors’ prediction results and the turns of the reference that are predicted as the 

other structure types are included in the respective false predictions of coils. 

 
Table 5. Comparison of true prediction rates, precisions, and accuracies of confusion matrices of secondary structure predictions for 

bFGF (1BFF) as the actual structure. The highest true prediction and precision in each structure type, and the highest overall accuracy 

are observed in case of SSpro8 prediction results, except for the coils. 

Structure type: Sheets% Helices% Turns% Coils% Accuracy 

  

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

 

P
re

d
ic

te
d

 b
y

 

SOPM 0.74 0.74 0.00 0.00 0.64 0.70 0.74 0.69 0.67 

Yaspin* 0.87 0.75 0.00 No data N/A N/A 0.82 0.81 0.78 

1D-PSPS* 0.87 0.70 0.00 0.00 N/A N/A 0.76 0.86 0.75 

PredictProtein* 0.83 0.67 0.00 No data N/A N/A 0.70 0.75 0.71 

DPM 0.15 0.67 0.22 0.04 0.28 0.47 0.52 0.41 0.30 

DSC* 0.87 0.72 0.00 No data N/A N/A 0.78 0.80 0.76 

SSpro8 0.94 0.94 0.33 0.50 0.88 0.73 0.81 0.85 0.84 

*In case of predictors that do not provide the turns as output, Turn% row of the predictors’ results was eliminated 

and the turns of the reference that were predicted as the other structure types were included in the respective, false 

coils predictions. Accordingly, respective eliminated values with N/A in the matrices were eliminated also from 

the calculations of the true secondary structure rates, precision, and accuracy values. 

 
Table 6. Comparison of true prediction rates, precisions, and accuracies of confusion matrices of predictions without the turns, for 

bFGF. The 1BFF is still accounted as the actual structure, though. The highest true prediction and precision in each structure type, and 

the highest overall accuracy are observed in case of SSpro8 prediction results. 

Structure type: Sheets% Helices% Turns% Coils% Accuracy 

  

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

True 

Prediction 

Rate Precision 

 



Turkish Comp Theo Chem (TC&TC), 7(2), (2023), 70-83 

Filiz Korkmaz, Ayca Mollaoglu, Yekbun Adiguzel 

 

76 

 

P
re

d
ic

te
d

 b
y

 

SOPM 0.74 0.74 0.00 0.00 N/A N/A 0.79 0.78 0.71 

Yaspin 0.87 0.75 0.00 No data N/A N/A 0.82 0.81 0.78 

1D-PSPS 0.87 0.70 0.00 0.00 N/A N/A 0.76 0.86 0.75 

PredictProtein 0.83 0.67 0.00 No data N/A N/A 0.70 0.75 0.71 

DPM 0.15 0.67 0.22 0.04 N/A N/A 0.67 0.65 0.43 

DSC 0.87 0.72 0.00 No data N/A N/A 0.78 0.80 0.76 

SSpro8 0.94 0.94 0.33 0.50 N/A N/A 0.91 0.87 0.88 

* Turn% row of the predictor-results was eliminated in all the predictors confusion matrices and the turns of the 

reference that were predicted as the other structure types were included in the respective false predictions of coils, 

for comparability with the results of predictors without turns as an output. Accordingly, respective eliminated 

values with N/A in the matrices were excluded also from the calculations of the true secondary structure rates, 

precisions, and accuracies. 

 

Average of RMSD1 values in Table 1 is 2.45 while 

that of the RMSD2 values is 3.21. This difference 

indicates that the structure of 1BFF is deviating 

from the other bFGF structures to a lesser extent in 

general, in comparison to the deviation of the other 

bFGF structures from the remaining. According to 

the RMSD2 values, 1BFB is the least and 1FGA is 

the most deviating one from the other bFGF 

structures. Of note, all the other PDB structures 

except 1FGA and 2BFH have serine residues 

instead of cysteine residues at the 211th and the 

229th positions. However, substituting serine 

instead of cysteine does not seem to induce a 

consistent secondary structure change. 

Another factor that contributed to the variation 

among the experimental data might be the slight 

changes in the total lengths of the analysed proteins, 

measurement conditions of the proteins and the 

utilisation of techniques other than the X-ray 

crystallography, in obtaining those structures. All 

such sources of structural alterations can be 

considered as experimental variations. As an 

example, it is observed in Table 1 that the structure 

that deviates the most from the 1BFF, thus having 

the highest RMSD1 and RMSD2 values, belongs to 

the 1FGA, wherein the heparin binding sites of the 

protein was determined by replacing the 

ammonium sulphate in the crystallisation medium 

with the ammonium selenite, for the electron-

denser selenite ion [40]. Also, 1BLD structure was 

obtained with NMR; 1EV2:A had ligand binding 

domains in the analysed sample; and 1FQ9 is the 

crystal structure of a ternary FGF-FGFR-heparin 

complex. 

Comparison of the prediction results with the 

1BFF structure  

According to the secondary structure information 

provided in 1BFF, there are 6.98% helices, 41.09% 

sheets, 19.38% turns, and 32.56% coils (Table 2, 1st 

row). Secondary structure prediction of the same 

sequence by SOPM (Table 2) yields the best results 

(RMSD 1.45) compared to 1BFF. Maximum 

deviation is ~2% in turns and coils. RMSD values 

of both SSpro8 and SOPM prediction results are 

less than 2.5 and comparable to the range of 

deviations in the PDB data (Table 1). On the other 

hand, algorithms like Yaspin, Predict-protein and 

DSC predict bFGF as an all-beta sheet protein with 

RMSD values within 5.41–7.30. Among the results, 

DPM predicts bFGF as an overwhelmingly helical 

protein with few residues in sheets and turns that 

deviate to the most from the PDB data with an 

RMSD of 22.75. 

Comparison of the prediction results with all the 

inspected PDB data of the bFGF  

The best outcomes are obtained by the predictors 

SOPM and SSpro8 when all the predictors are 

tested for all the inspected PDB data of bFGF 

(Table 3). Yaspin, 1D-PSPS, PredictProtein, and 

DSC do not predict turns. Therefore, their average 

RMSD were calculated by omitting the turns. 

SOPM and SSpro8 still seems to be the best 

performing predictors for all the inspected PDB 

data of bFGF even if turns and coils are counted 

together in case of all predictors (data not shown). 

 

Confusion matrices 

When confusion matrices for the predictor-

performance compared to 1BFF are generated, it 

reveals that the faulty assignments are quite high 

(Table 4, Table 5). Evidently, source of previously 

presented good predictions with low RMSD values 

are the compensating changes in the secondary 

structure elements since some incorrect predictions 

in one direction are compensated by those in the 

other direction (e.g., sheet predicted as helices 

compensated by helices, coils, or turns, predicted as 

sheets). The highest true prediction and precision in 
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each structure type, and the highest overall 

accuracy are given by SSpro8, except for the coils 

(Table 5). The reason that coils was not among 

those best predictions is the elimination of the turns 

from the calculations of the predictors without the 

turns in their outputs. Turns were included in the 

coils content in those. Therefore, wrong predictions 

of turns were automatically eliminated from their 

predictions. The same calculation for all predictors 

leads to the highest true prediction and precision in 

each structure type and the highest overall accuracy 

in SSpro8 (Table 6). 

 

3.2. Curve-fit: 

Protein spectra were obtained by measuring the 

powder form of the protein to eliminate the need of 

water or buffer subtraction from the spectrum or the 

need to dry the sample on the surface. Inspection of 

the FGF secondary structure experimental data 

through curve-fit was performed by obtaining a 

parameter set (Table S4) that resulted in the 

optimized parameters (Table S5). Curve-fit result 

of the spectral data of bFGF is presented in Figure 

2 and Table 7. 

 

 

Figure 2. Curve-fit of bFGF ATR FTIR absorbance spectrum at 1600-1700 cm–1, by using KineticsR12 

software, through optimizing the parameter set according to the 1BFF (PDB ID) structure.  Inset displays 

comparison of curve-fit results with the PDB structure 1BFF and with the prediction results of Scratch. 

Alpha (α) and beta (β) signs stand for (α-)helices and (β-)sheets. 

 

Table 7. Comparison of curve-fit results with the bFGF (PDB structure 1BFF) and with the prediction 

results of Scratch. 

bFGF structure-

source 
β-sheets% α-helices% Turns% Coils% *RMSD1 *RMSD2 

  1BFF (PDB ID) 41.09 6.98 19.38 32.56   

  Scratch 41.09 4.65 23.26 31.01 2.39  

  Curve-fit 38.32 3.75 23.15 34.79 3.05 2.39 

*RMSD1 is to the 1BFF and RMSD2 is to the structure predicted by Scratch. 

Computational protein-protein interaction results of 

FGFA and BSA to calculate 1FGFA/50BSA by 

taking 2% of the structure from the 1FGFA/1BSA 

complex and 98% of the structure from the BSA led 

only to a slight shift from the BSA structure. 

Besides, 1-to-1 interaction is an assumption, which 

may not be the case, and the dynamic stated most 

likely involves a distribution of interactions, 

ranging from no interaction to multiple interactions. 

Yet, 1FGFA/1BSA complex had significant change 

in the FGFA structure with an RMSD of 18.84 from 

the PDB (2AFG:A) structure, while it was not the 

case for BSA, with an RMSD of 2.82 from the PDB 

(3V03:A) structure. Secondary structure of FGFA 

in the complex was 43.41 (sheets), 2.33 (helices), 

44.19 (turns), and 10.08 (coils) while that of the 

PDB (2AFG:A) structure was 37.86 (sheets), 8.57 

(helices), 17.86 (turns), and 35.71 (coils). The 

highest difference in the turns and coils is indicating 

stabilization of the structure in the BSA-complexed 
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form. This result proves that modelling rather than 

a simple calculation of the structure in the protein 

mixtures is feasible, although requires evidently 

more time, but would be necessary when the 

proteins have relatively equal shares in the mixture, 

which was not the case in this study. In support, 

model by GRAMM also had the same secondary 

structure. Energy of the Hex model was lower, but 

this difference apparently did not alter the 

secondary structures in the two of the lowest energy 

models by Hex and GRAMM. 

Optimised parameters were applied to the 

measurement result of the 1FGFA/50BSA. RMSD 

of the results of that curve-fit was high (data row-2, 

Table 8). This high RMSD was expected because 

the curve-fit parameters were not optimized for 

BSA. Model-based secondary structure inspection 

approaches developed by Goormaghtigh et al. 

[9,31] were utilized and RMSD from the 

1FGFA/50BSA structure improved (data row-3 to 

7, Table 8). Modifications improved the models, as 

observed through the RMSD values of model-1' and 

model-3' compared to model-1 and model-3, 

respectively (Table 8). This study cannot establish 

generalizability of the improvement due to the 

modified model, which awaits to be studied. 

However, the model works also for the bFGF 

(Table 9) and the modification of the model was 

obtained by improving the results of both bFGF and 

FGFA data. Results of model-1' had the lowest 

average RMSD (7.39) in the selected PDB structure 

(1BFF) and the calculated PDB-based structure 

(1FGFA/50BSA). Average RMSD of the structure 

percentages obtained through models (Table 8) 

from the structures of the PDB data in Table 1 are 

10.78±1.70 for model-1, 9.23±1.56 for model-1', 

10.58±1.53 for model-2, 7.81±1.80 for model-3, 

and 9.74±1.55 for model-3'. For comparison, in 

relation to model-1, average of the standard 

deviations of four secondary structures in Table 2 

(direct valid) of Goormaghtigh et al. [9] is 5.78 and 

the RMSD calculated from the standard deviations 

is 6.03. While regarding model 2 and model-3, 

average of the standard deviations of four 

secondary structures in Table 1 of Goormaghtigh et 

al. [31] is 6.55 and the RMSD calculated from the 

standard deviations is 6.82. Higher RMSD values 

of our results was expected considering that the data 

was collected with a different device, with different 

spectral parameters, sampling method, and in 

different conditions. Previous approach utilizing 

curve-fit had no flexibility in the measured protein 

content while the models established by 

Goormaghtigh et al. [9,31] proved to be better in 

that case. Additionally, expected secondary 

structure was calculated through the PDB IDs, as 

described in the Extended Materials and Methods at 

the supplementary file. However, interaction of 

BSA with FGFA could have influenced the 

structures. It is also worth to mention that curve-fit 

is sensitive to overall spectral quality, but using a 

parameter set optimized with a different protein 

would not lead to a reliable outcome regardless of 

the spectral quality when an optimized and 

restricted set of parameters will be used during fit. 
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Figure 3. Two distinct views of the FGFA/BSA complexes modeled by Hex and GRAMM. Hex model 

views are on top and GRAMM model views at the bottom, where the large BSA protein is on the left while 

the small FGFA protein is on the right in all. Images are generated by Swiss-PdbViewer v4.1.0 at 

http://www.expasy.org/spdbv  

 

 
Figure 4. Curve-fit of 1600-1700 cm–1 region ATR FTIR absorbance spectrum of acidic fibroblast 

growth factor (FGFA) with 50 folds more BSA, by using Kinetics software, with the optimized parameter 

set.  Alpha (α) and beta (β) signs stand for (α-)helices and (β-)sheets. 

 

Table 8. Comparison of the experimental results (ATR FTIR data) with the calculated results from the 

docked complex and the PDB structures. Calculated results from the docked complex and the PDB 

structures included A chains in PDB files 2AFG (for FGFA) and 3V03 (for BSA) in the docked complex.  

The docked complex contributed as 1 part while the remaining 49 parts were contributed by BSA in the 

calculation. Comparison of the curve-fitted experimental results is displayed on top 2 data-rows.  Below, 

http://www.expasy.org/spdbv
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at data-rows 3–7, is the comparison of the structures obtained through applying models to the same ATR 

FTIR data, along with their RMSD to the data on the top row. 

1FGFA/50BSA 

structure-source 
β-sheets% α-helices% Turns% Coils%      RMSD  

    *PDB 0.75 72.26 9.28 17.71   

     Curve-fit 27.51 26.29 20.22 25.99   27.47 

     Model-1 3.16 53.32 13.81 29.71   11.50 

  **Model-1' 3.80 64.12 13.03 19.06     4.78 

     Model-2 0.00 59.88 15.85 24.28     7.75 

     Model-3 1.29 50.10 14.56 34.04   14.02 

  **Model-3' 0.00 58.47 15.68 25.85     8.63 

       *A chains of PDBs with IDs 2AFG (for FGFA) and 3V03 (for BSA) used for docking, then 

1FGFA/50BSA calculated with 1:49 docked complex and BSA  

   **Modified model 

 

Table 9. Comparison of bFGF structures obtained through applying models to the same ATR FTIR data 

as the one curve-fitted for obtaining the optimised curve-fit parameters. RMSD is calculated with respect 

to the PDB structure 1BFF.   

bFGF structure-source β-sheets% α-helices% Turns% Coils% RMSD 

   1BFF (PDB ID) 41.09 6.98 19.38 32.56   

    Model-1 26.21 16.60 15.33 41.86 10.21 

  *Model-1' 32.63 20.67 14.76 31.95   8.38 

    Model-2 30.40 22.76 14.97 31.86   9.79 

    Model-3 33.05 11.43 13.61 41.92   7.17 

  *Model-3' 30.86 20.81 14.74 33.60   8.92 

    *Modified model 

 

In sum, when the results of the predictors are 

compared, secondary structure prediction of the 

bFGF by SOPM reveals the best results with only 

1.45 RMSD from the 1BFF structure (Table 2). 

RMSD of both the SSpro8 and the SOPM 

prediction results are less than 2.5 in the prediction 

of bFGF secondary structure with the PDB ID: 

1BFF (Table 2). RMSD of SOPM and SSpro8 

predictions are within the range of those of the 

PDB-data in Table 1. In a study by Magnan and 

Baldi [41], it was found that the SSpro8 suite is 

“almost perfect” in estimating the secondary 

structure of proteins. Average RMSD (RMSDav) of 

SSpro8 predictions supports this conclusion (Table 

3, RMSDav. 2.60). RMSDav is 2.89 in case of 

SOPM (Table 3), which is equally good. However, 

this result is probably due to the presence of a 

closely related protein variant among the proteins 

that were used to train the algorithm. Beyond these 

concerns, secondary structure predictions through 

primary sequences do not predict secondary 

structure changes upon interactions. Therefore, 

another type of web-based resource that can be 

utilized is docking, to generate protein-interaction 

model. Here we tested two such algorithms (Hex 

and GRAMM) as well. In relation, it can be noted 

here that chain-A of the PDB files were used with 

this purpose, as a proof-of-the-concept, but utilizing 

the other chains, or the other PDB structures, of the 

proteins under study could have an effect. Further, 

protein-protein interaction may not necessarily be 

one-to-one, like the one tested in this study, and the 

interactions may involve multiple proteins at 

different ratios, under a dynamic control of the 

protein crowding and the hydration level. 

Deviations of the predicted values from the PDB 

data for secondary structure percentages are 

considerably lower than the residue-based 

accuracies. Therefore, predictors can be utilised to 

support the secondary structure analysis with the 

experimental techniques like FTIR. Web-based 

servers can assist in secondary structure analysis 

with the FTIR data to improve the quality of 

predictions [42] and/or to derive preliminary 

structural information, to serve as the basis of a 

reliable starting point during secondary structure 

analysis with FTIR. Although the secondary 

structure information can be derived through the 

FTIR spectra of the proteins, prior knowledge on 

the closely related structure is highly desired at 
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many instances for better outcomes. The need for 

prior knowledge is due to the complexity of the 

Amide I band, which is a large superposition of 

many smaller bands originating from secondary 

structures and side chain absorptions. After 

determining the number and position of composing 

bands, curve-fitting is applied to find the area of 

these bands. This analysis starts with an initial set 

of parameters defined by the user and the software 

fits the Amide I band by optimizing the individual 

band shapes and areas. However, results depend 

heavily on the initial parameter set (position, width, 

shape, and height). With similar fitting-errors, one 

can obtain different combination of component 

bands of the same Amide I region. Number of such 

different possible combinations under the same 

fitting conditions will be less as the error gets 

smaller (i.e., lower RMSD). Predictor results can be 

a good starting point at this point, once the primary 

structure of the protein is known. It will serve as a 

basis while setting the initial parameters and will 

also be a guide to judge whether curve-fitting 

yielded acceptable results. However, as implied 

above, judgement results will be depending on the 

selected tool and the inputs of the tool, i.e., the 

specific PDB files, if the tool would be performing 

docking. 

Secondary structure predictors are reliable; 

however, their estimation is based solely on the a.a. 

sequence. Therefore, structure changes induced by 

buffer conditions or by effector molecules are not 

considered, as far as we know. Docking tools aid in 

these issues to some extent. However, experiments 

implement such changes during measurements, at 

different extents. Therefore, as an experimental 

method, FTIR can reveal such changes more 

realistically and hence becomes the instrument that 

uses the predictions of the predictor algorithms and 

carries that information to the level of structural 

determination at conditions imposing structure 

variations. FTIR can also be benefited by the 

predictors as a validation tool for the estimations of 

the predictors. Namely, there is a mutual benefit.  

As a result, web-server based protein secondary 

structure algorithms are suitable as preliminary 

knowledge source when curve-fit parameters are 

aimed to be optimized. Success of web-servers can 

be deemed generalizable considering their 

undergoing tests with large protein sets before 

being released. Utilized primary sequence-based 

prediction tools could have advanced since they 

have been used in this work, and the evolution of 

their global performances was not within the scope 

of this work. As a result, secondary structure 

prediction tools and the docking tools can be used 

as supplementary tools for secondary structure 

determination through FTIR data of proteins and 

protein mixtures, respectively. Though not tested 

here, manual curve-fit can be utilized for secondary 

structure determination through FTIR data, as well 

as the methods established by Goormaghtigh et al. 

[9,31]. 

 

4. Conclusions 

Web servers can assist experimental studies 

investigating unknown structures such that a 

prediction supporting the experimental results 

would be enforcing the findings, but the 

unsupported results would not necessarily falsify 

the experimental data. Apart from that, model-

based prediction of 1FGFA/50BSA secondary 

structure from FTIR data proved feasible in this 

study. In the future, in addition to checking the 

broader performance of the modified models 

presented here, a curve-fit parameter set that yields 

<5 RMSD in different FGF structures deposited at 

the PDB and the 1FGFA/50BSA, as a protein 

mixture case, is aimed to be optimized. 
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