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ABSTRACT. Itisimportant to solve the autonomous mapping problem with high
accuracy using limited energy resources in an environment without prior
knowledge and/or signal. Visual Simultaneous Localization and Mapping (SLAM)
deals with the problem of determining the position and orientation of an
autonomous vehicle or robot with various on-board sensors, and simultaneously
creating a map of environment with low energy consumption. However visual
SLAM methods require high processing performance for real-time operations.
Also, processing capability of the hardware is limited by the power constraints.
Therefore, it is necessary to compare the processing load and power consumption
of visual SLAM methods for autonomous vehicles or robots. For visual SLAM
methods, although there are different comparison studies, there is no
comprehensive computational cost analysis covering different datasets and
important parameters including absolute trajectory error, RAM Usage, CPU load,
GPU load, with total power consumption. In this paper, ORB-SLAMZ2, Direct
Sparse Odometry (DSO), and DSO with Loop Closure (LDSO), which are state of
the art visual SLAM methods, are compared. Besides the performance of these
methods, energy consumption and resource usage are evaluated allowing the
selection of the appropriate SLAM method.

1. INTRODUCTION

Autonomous systems have become more visible in daily life, with many products
from driverless cars to cleaning robots, from armed unmanned aerial vehicles to
consumer electronics. They carry out specific missions autonomously with limited
sources providing convenience and assistance to humans.
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In environments where previously known or satellite signals can be received,
relatively uncomplicated autonomous movement capability such as waypoint
identification can be achieved with conventional applications. Position information
can be obtained through Global Positioning System (GPS) receiver if satellite signal
is available. In addition, various devices and sensors are also used to solve the same
problem. Among them, Light Detection and Ranging (LIDAR) is used to determine
position of the robot. Inertial Measurement Unit (IMU) is another device with
accelerometer and gyroscope that is used widely. Position information can be used
in a certain standard for functions such as waypoint identification, lane tracking,
estimation of the distance passed, obstacle avoidance and distance adjustment. In
these applications, the robot, whose spatial relationship is known through its sensors,
estimates its own position by using the relevant reference information. However, in
an environment where GPS satellite signals cannot be detected by the robot or in a
place for which no prior knowledge is available, these methods, due to the high
margin of error, are not sufficient in terms of functions such as obstacle avoidance
and determining momentary position in its surroundings. In environments that are
previously unknown or where GPS signals cannot be detected, different solutions
are needed to calculate the robot's position relative to the environment.

There are many studies that include various methods such as motion estimation,
target tracking, waypoint tracking based on GPS and different interpretations based
on these methods in order to increase autonomous movement capability. However,
in order to determine the location of a robot in environments without prior
knowledge, it is necessary to obtain information about the environment first and to
calculate the position of the robot while obtaining information about the
environment.

1.1. Definition of SLAM Problem. If there is no information about the surroundings
of wheeled robots, measurement of distances by odometer can be used. However,
wheel slipping or spinning errors accumulate and increase the total error in the wheel
odometry, as the error in the previous position information will also affect the next
position information. Additionally, this does not apply to wheelless vehicles and
robots. For this reason, different methods based on laser and visual sensors are used
to obtain location information. Among these methods, odometry is based on
calculating the current position with respect to previously visited locations to follow
the course of the robot. On the contrary, for SLAM methods, position and
environment are considered together in processing [1].

SLAM is the method that deals with the computational problem of tracking a
robot's position while simultaneously creating or updating a map of a previously
unknown environment. Since robot has to do two related tasks at the same time, the
SLAM problem is a complex issue that needs to be solved in real-time [2].
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Calculation of displacement performed by the robot (odometry) and
understanding of a place passed again (loop closure) are the basic components of
SLAM [3]. In addition to being formulated in many theoretical ways, SLAM has the
opportunity to be applied in many areas from indoor robots to underwater and air
systems. The solution to the SLAM problem, which enables robots to be truly
autonomous, is seen as one of the most significant achievements of robotics field [4].

As well as there are various methods to achieve autonomous mapping solution,
there also exists data utilized to evaluate and compare the performance of those
methods. Some of the data are obtained in the controlled environments using
different techniques. For evaluation in different conditions, there exist different data
with specific properties. Thus, it is possible to perform performance tests for visual
SLAM methods in various conditions such as surroundings with moving objects.

In the next subsections, information about the probabilistic definition of SLAM,
environmental factors, and related works are given.

1.2. Solution of SLAM Problem. The position of a robot can be calculated relatively
easily if the robot has a precise prior knowledge of the environment. On the contrary,
a robust model of the environment in which the robot is located can be created if the
position of the robot is known perfectly. However, within the scope of SLAM
problem, the robot with on-board sensors does not have any prior knowledge about
the environment it is located in. Probabilistic methods are used in solving the SLAM
problem, since the robot's location and environment’s map are created
simultaneously and a perfect information cannot be obtained [3]. In SLAM problem
(see Fig. 1), if x;, is the robot's position and orientation, and u, is the control input
applied to bring the robot to position x;, at time k — 1, m; is the location of each
obstacle that makes up the environment map; z;;, refers to observation of the robot
at time k.

Also, X¢.x = {x9, X1, ..., Xi } are the positions where the robot has visited in the
past. Uq., = {uq, Uy, ..., uy} are history of control inputs. Robot’s all observations
on landmarks are Zy., = {z¢, 24, ..., Zx}. Together with these definitions, solution
of the SLAM problem is based on the probabilistic approach given below as
conditional probability (P), which must be calculated across whole trajectory:

P(xk' m |ZO:k! Ul:k' xO) (1)
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F1GURE 1. Solution of SLAM problem [4].

With the probabilistic definition given in equation (1), many methods have
emerged for solution of the SLAM problem. In order to perform these solutions in
real-time, extended Kalman filter, particle filter and graph-based methods are mostly
used [5].

Besides theoretical solution, autonomous systems in daily life are expected to be
able to cope with the usual environmental factors. However, there are many
compelling factors within the scope of solving the SLAM problem. Effects such as
sensor noise, size of the area where the robot is located, and the dynamic elements
in the environment cause mathematical and hardware difficulties in solving SLAM
problem. The accuracy of the sensors, as an indicator of the reliability of the data
regarding environment and the state of the robot, emerges as an important factor for
solution of the SLAM problem. In addition, size of the environment reveals as
another problem, as size of the environment will increase the need for memory,
processing load, and accumulation of error originating from the sensor. Moving
objects, which change model of the environment, are another environmental factor
that should be taken into account for solution of the SLAM problem.

In addition to the variety of SLAM's mathematical solution methods, different
devices such as camera, accelerometer are used in robots. Robustness of the sensor
data will reduce the error accumulated. However, since it is not possible to obtain
perfect sensor data in real life, the solution to the SLAM problem should be able to
overcome sensor errors and noise. In solution of the SLAM problem, information
can be obtained from a single sensor, as well as environmental data can be obtained
via multiple sensors of the same type or combinations of different sensors.
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1.3. Visual SLAM. SLAM methods using camera as sensor are called visual SLAM and
are generally divided into two categories, as direct methods that using entire image and the
methods utilizing features [6]. To date, many studies have been carried out in single-camera
and multi-camera sensor configurations. Among these, as given in Tab. 1, feature-based
PTAM [7], ORB-SLAM [8] created by using ORB features developed over [9] PTAM; direct
methods, Large Scale Direct Monocular (LSD) SLAM [10], SVO [11], Direct Sparse
Odometry (DSO), Direct Sparse Odometry with Loop Closing (LDSO), Dense Visual (DVO)
SLAM [12], and ElasticFusion [13] can be counted. There are also many benchmarks used
for performance analysis of the visual SLAM problem. These benchmarks are mostly
obtained by capturing movement of objects in controlled environments [14] and are separated
from each other by several features like outdoor, indoor including moving objects and/or
relatively stationary environments. KITTI, EUROC, TUM RGB-D [14], TUM Monocular
[15], ICL-NUIM, Sintel [16], Tsukuba [17] and NYU [18] datasets are among them. RAM
and CPU usages with processing time on a particular dataset are also compared [19] and for
MSCKF [20], OKVIS [21], ROVIO [22], VINS-Mono [23], SVO [11] + MSF [24] and SVO
+ GTSAM [25]. These studies carried out on four different hardware with Intel and ARM
architectures. ATE parameter results are evaluated using some SLAM methods on a wheeled
robot with a camera [6]. NVIDIA Jetson TX1 hardware with Ubuntu 16.04 version was used
on the robot. LSD SLAM, ORB-SLAM and Direct Sparse Odometry (DSO) were compared.
Among the stereo-camera methods, Real-Time Appearance-Based Mapping (RTAB map)
[26], ORB SLAM, Stereo Parallel Tracking and Mapping (SPTAM) [27] were compared.
ORB2, DynaSLAM [28] and DSO algorithms are also benchmarked [29]. Intel processors
were used as part of the analysis. Several parameters including Absolute Trajectory Error
were evaluated on TUM Monocular and EUROC data sets.

Although there are many comparison studies, no comprehensive computational
cost analysis for visual SLAM methods has been encountered in the literature, apart
from comparison of CPU and memory usages for visual-Inertial Navigation methods

[19].

TABLE 1. Visual SLAM algorithms.

Algorithm Method Map Sparsity | Loop Closing
Parallel Tracking and Mapping (PTAM) | Feature-based Yes No
Semi-direct Visual Odometry Semi-Direct Yes No
ORB-SLAM Feature-based Semi Yes
Direct Sparse Odometry (DSO) Direct No No
DSO with Loop Closing Direct No Yes
LSD-SLAM Direct No Yes
DVO-SLAM Direct No Yes
ElasticFusion Direct No Yes
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We evaluate performances of state-of-the-art methods such as ORB-SLAM?2 (or
ORB?2) [30], DSO [31], and LDSO [32] on datasets created in different laboratories
and separated from each other in terms of information such as indoor and outdoor
environments. The most important parameters, which are Central Processing Unit
(CPU), Graphics Processing Unit (GPU), and Random Access Memory (RAM)
usage as well as power consumption of the SLAM algorithms are compared. On the
other hand, related to the performance of visual SLAM methods, this study
represents a different and comprehensive perspective using various datasets such as
ICL-NUIM, KITTI, EUROC and TUM Monocular, regarding to hardware
constraints such as power consumption, memory usage, CPU and GPU load.
Material and Methods, Experimental Results, and Conclusion about the study are
given in the next three sections.

2. MATERIALS AND METHODS

In this paper, performance and behaviours of ORB2, DSO, and LDSO algorithms on
KITTI, EUROC, TUM Monocular and ICL-NUIM datasets were compared using
NVIDIA Jetson TX1 hardware in real-time (online). ATE parameter was obtained
via “evo” repository [33] to detect trajectory error and to get graphical results. In
order for the datasets to be used by the visual SLAM methods, calibration of the data,
definition of the timestep of each image, correct naming of the images, method for
reading timesteps are considered. According to SLAM methods, data set formats are
also tailored. Analyses were performed on NVIDIA Jetson TX1 hardware which has
NVIDIA Maxwell GPU (with 256 NVIDIA CUDA Cores). It has also ARM Cortex
Quad Core CPU, 4 GB LPDDR memory with Ubuntu 18.04 operating system. In
order to determine the hardware parameters, "tegrastats" software interface provided
by NVIDIA JETSON TXI1 was used. “tegrastats” interface provides a text file
containing detailed information about resources such as RAM usage, GPU and CPU
loads and total consumed power in desired period. Tegrastats data obtained at
frequency of 1 Hz were converted to .mat file via MATLAB.

2.1. SLAM Methods Used in Benchmarks. ORB2 and Direct Sparse Odometry
with and without loop closing algorithms are compared in the experimental studies.
ORB2, a feature-based SLAM method, can produce solutions with monocular, stereo
and RGB-D cameras. On the other hand, LDSO and DSO methods produce
monocular solutions. Therefore, monocular solutions were emphasized in the
comparisons. ORB2 has map reuse, loop closure and relocalization capabilities.
ORB2 can be executed in real-time for synthetic environments as well as indoor and
outdoor sequences obtained by cars or robots. It uses ORB features for mapping,
tracking, relocalization and loop closing [30].
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DSO is a monocular visual odometry method, which can be executed in real-time.
DSO combines a full photometric calibration by using lens vignetting, exposure
time, and non-linear responses. Without need for features, it is able to sample pixels
through the image areas which have density gradient [31].

LDSO method was created using the point selection infrastructure of the DSO
method. But it has loop closure feature that enables detection of repeated point. In
this respect, LDSO is a monocular Visual SLAM method [32].

2.2. Benchmark Datasets. In order to compare SLAM methods, datasets developed
in laboratory environments or developed with special equipment are used. There are
many datasets available from open sources differentiated from each other according
to the environments they describe, and the equipment they use to obtain images. As
such, using datasets with different characteristics will be an important approach to
reach an accurate result. For this reason, within the scope of this study, KITTI, ICL-
NUIM, TUM Monocular and EUROC benchmark datasets, which are available in
open sources, were used to compare SLAM methods.

KITTI outdoor data set was captured using various sensors. Therefore, the data
set includes images captured by camera beside the measurements obtained via GPS
and position information. Also, accelerometer data is supplied [34]. KITTI
benchmark provide 11 training and 11 test data, which can also be used with stereo
methods (Visual Odometry / SLAM Evaluation, 2012). KITTI data sets named 00,
03 and 07 each with 10 frame per second were used in the comparison of the
algorithms ORB2, DSO and LDSO. A micro unmanned aerial vehicle equipped with
stereo camera was used to create EUROC data set, which is available publicly.
Beside the image data there are also measurement results by accelerator added to the
same data set. This data set includes three categories according to degree of
difficulty. In the experiments data with various difficulty degrees from this set,
which are MHO01, V102 and V203 from interior space were used, so that the
performance and consumption values of the algorithms are evaluated extensively.
For data that is rated from easy to difficult, motion and thus blur increases
progressively. ICL-NUIM dataset contains RGB-D data using handheld camera
movements [35]. Unlike other datasets, images in the ICL-NUIM dataset were not
collected from a real environment. The ICL-NUIM dataset consists of synthetic
images and depth information with frequency of 30 Hz, and ground-truth data. ICL-
NUIM dataset is divided into two categories as Office Room and Living Room, each
with four subsets. It was considered that LivingRoomO (IRO) and OfficeRoom0
(oR0) which have the maximum number of video frames among the all subsets are
appropriate to be used in the analysis. TUM Monocular dataset contains fisheye
camera video frames from small indoor to large outdoor environments. It has also
ground truth data, and calibration parameters in 50 subsets. Subsets numbered 19,
29, and 30 are used for comparison of LDSO and DSO algorithms. Because ORB2
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is not suitable with fisheye camera frame, ORB2 was not compared on TUM
Monocular dataset.

3. EXPERIMENTAL RESULTS

In experimental studies, video sequences from TUM Monocular, EUROC, KITTI
and ICL-NUIM data sets are used for benchmarking ORB2, LDS and DSO
algorithms. Total of five pparameters, which are ATE, RAM usage, CPU and GPU
loads and total power consumption are compared in the experiments. In order to
avoid non-deterministic results, each SLAM method was executed six times on the
video sequences. At the end, average of six results obtained for the parameters was
used for the comparisons. Details of the results obtained for the parameters are given
in the following subsections.

In order to obtain data that is in-use by RAM, GPU Load, CPU Load, and
Consumed Total Power, “Tegrastats” software is used. ATE results are obtained by
using Evo software. Evo software supplies ATE parameter as meter (rms). By means
of Tegrastats, RAM usage is obtained as Megabyte (MB). GPU Load and Consumed
Total Power are determined in term of milliwatt. CPU load is measured as
percentage.

3.1. Absolute Trajectory Error. ATE is one of the most frequently used parameters
in the comparison of SLAM methods. It is an indicator of how well the SLAM
method can track ground-truth data. For the calculation of ATE parameter, open-
source Evo tool was used, and the trajectory file was compared with the ground-truth
data. Results obtained for ICL-NUIM, KITTI, EUROC and TUM Monocular
datasets are given in Tab. 2. DSO method gives the best result on OfficeRoomo0,
while ORB2 gives the best result on all other datasets. Besides, LDSO is more
accurate than DSO for TUM Monocular dataset. Trajectory graph of OfficeRoomO
is given in Fig. 2, in which all methods track the ground-truth similar to each other
with tolerable differences.

3.2. RAM Usage. RAM usage is also an important parameter, which is used to
guantify performance of the algorithms. It is aimed to examine RAM load in order
to evaluate how SLAM methods use hardware. Therefore, RAM loads created by
ORB2, LDSO DSO methods over the video sequences of EUROC, ICL-NUIM,
KITTI, and TUM data sets were recorded with the frequency of 1 Hz. RAM usage
results are given in Tab. 3. DSO gives the best results in RAM usage due to the lack
of loop closure increasing complexity.
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FI1GURE 2. Trajectory of methods on officeroom0O: DSO (left) gives the best result in terms of ATE.

TABLE 2. ATE results (rms).

ICL-NUIM EUROC KITTI TUM Monocular
oRO IR0 MHO01 | V102 V203 | 00 03 07 19 29 30
DSO 0.162 | 0.024 | 0.0464 | 1.026 1373 | 119.77 | 2.314 | 15.272 | 0.165 0.147 0.365
LDSO | 0.413 | 0.114 | 0.0425 | 1.511 1.142 | 10.612 | 2.904 | 6.385 | 0.137 | 0.057 | 0.085
ORB2 | 0.171 | 0.008 | 0.0441 | 0.064 0.263 | 8.3245 | 1.807 | 2.132 - - -
TABLE 3. RAM usage - MB (rms).
ICL-NUIM EUROC KITTI TUM Monocular
oRO IR0 MHO01 V102 V203 | 00 03 07 19 29 30
DSO 1362 1354 1430 1423 1443 1701 1626 1509 1804 1768 1554
LDSO | 1974 1980 2177 2121 2143 2943 2112 2071 2429 2402 2019
ORB2 | 1515 1547 1558 1525 1524 2160 1457 1475 - - -
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TABLE 4. CPU usage (rms).

ICL-NUIM EUROC KITTI TUM Monocular
oRO IR0 MHO01 | V102 V203 00 03 07 19 29 30
DSO 47.292 | 45.876 | 45.815 | 50.562 54.692 | 61.974 | 52.661 | 56.371 57.365 | 55.167 | 53.272
LDSO | 51.374 | 49.200 | 53.796 | 54.595 55.334 | 68.162 | 56.502 | 59.068 59.114 | 57.745 | 57.646
ORB2 | 55.753 | 53.813 | 53.858 | 52.519 49.349 | 39.928 | 46.925 | 48.067 - - -
TABLE 5. Total power consumption — milliwatts (rms).
ICL-NUIM EUROC KITTI TUM Monocular
oRO IRO MHO01 | V102 V203 | 00 03 07 19 29 30
DSO 5558.8 | 5368.4 | 6515.6 | 6250.9 6727.4 | 8878.6 | 6070.0 | 6547.6 8033.2 | 7377.7 | 6382.8
LDSO | 5747.6 | 5541.9 | 6362.5 | 5940.1 5935.0 | 6875.9 | 5926.4 | 6323.5 6727.0 | 6297.7 | 6185.9
ORB2 | 5351.8 | 5236.2 | 5465.1 | 5248.5 5201.9 | 4511.5 | 4959.4 | 5022.4 - - -

3.3. CPU Usage. One of the parameters frequently used in the computational load
calculations of SLAM methods is CPU load. Since NVIDIA Jetson TX1 has quad-
core processor, comparisons were made by averaging the usage rates of four
processors. CPU load results are given in Table . LDSO method causes higher CPU
usage than DSO for all datasets. This result is about loop closure effect. On the other
hand, while ORB2, as a feature-based method, causes more CPU load in case of non-
textured environment such as officeRoom0, livingRoom0, and MHQ1, it causes less
CPU usage in more textured environment such as V203, 00, and 07.

3.4. Total Power Consumption. One of the most important constraints for
autonomous systems is limited power supplies. For this reason, it will be a correct
approach to examine how the total power consumption of the hardware changes
depending on the SLAM methods, as well as processing load on the CPU. Total
power consumption results are given in Table . 5. According to results shown in
Table 5, the least power consuming method is ORB2. Furthermore, when compared
to DSO, it is obviously seen that LDSO method consumes less power, with an
exception of ICL-NUIM dataset on which total power consumption of the methods
are similar. This situation is also a question of this study to answer because power
consumption behavior is different from the CPU load behavior.
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3.5. GPU Power Consumption. The difference between CPU usage and overall
power consumed behaviors by the hardware, which is created by SLAM methods
has revealed the need to check GPU load. The results of given data provided by
hardware have been able to explain the differences between CPU loads and total
power dissipated.

GPU load in milliwatts of all methods are given in Tab6. For all datasets, GPU
power consumption of DSO is higher than the others while ORB2 is the most
effective one among all methods for all datasets. GPU power consumption versus
time graphs of all methods are also given in Fig. 3. As seen in this figure, GPU load
of DSO method for all dataset is getting higher over time. As explained before, on

TUM Monocular Dataset, ORB2 methods was not executed.

TABLE 6. Power consumption by GPU — milliwatts (rms).

ICL-NUIM EUROC KITTI
oR0 IRO MHO01 V102 V203 00 03 07
DSO 346,7439 350,9953 | 1303,57 | 1052,36 | 1472,55 | 3050,55 | 621,99 | 1162,24
LDSO 304,4431 341,4259 902,00 | 576,95 | 550,76 | 995,11 | 520,67 | 631,24
ORB2 165,4507 148,8809 99,02 120,71 | 144,56 81,85 | 110,61 | 85,52
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4. CONCLUSION

In this paper, performances of ORB2, DSO and LDSO methods, which are suitable
to be executed on ARM processor that NVIDIA Jetson TX1 has, are compared using
ICL-NUIM, KITTI, TUM Monocular and EUROC benchmark datasets. By making
an exhaustive comparison, in particular, it is aimed to make a choice among the
methods in order to meet the power constraints of mobile robots, localization
requirements within indoor environment, and to guide to future studies. ATE, RAM
usage, CPU and GPU loads and total consumed power parameters were used for the
comparison studies.

ORB2 is the most effective method for ATE parameter, except for the
Officeroom0 dataset, for which DSO method gives the best result. The reason for
ORB2 gives the worst result for OfficeRoomo0 is that it cannot detect features in the
OfficeroomO dataset sufficiently.

Due to the lack of loop closure in DSO, it gives the best results in RAM usage as
expected. On the other hand, as a direct method, owing to loop-closure ability, LDSO
is the method that pushes RAM constraints the most. It has been determined that the
LDSO method not only forces the RAM constraint of NVIDIA Jetson TX1 hardware
during the process, but also tends to use the SWAP memory more.

As for the CPU load, DSO method gives better results on the ICL-NUIM dataset,
while the ORB2 method has better results on the KITTI dataset. However, while
DSO method is better for MHO1 and V102 dataset, ORB2 method achieves better
results on V203 dataset. In this way, it can be said that ORB2 causes more CPU load
when solving SLAM problem in surroundings such as supplied by ICL-NUIM where
features are less obvious, whereas ORB2 algorithm also causes CPU to have less
load in environments where features are dense and can be followed.

When the CPU load and total power consumption are compared, different
behaviours are noticed. For instance, CPU is used at least by DSO algorithm on
MHO1 data set. However, power consumed by this method is the most demanding
among all. As an explanation for that, DSO is the method that requires the most GPU
power.

For GPU power consumption, the best results were obtained with ORB2 on all
datasets while the worst results were obtained by DSO. Differences between GPU
power consumption behaviours are related with keyframe frequencies of the
methods. DSO and LDSO use 5-10 frames per second [31], and 5-7 frames per
second [32], respectively. However, ORB2 uses one frame as a keyframe per 20
frames maximum [30]. This situation is the root cause for the difference between the
total power consumption and CPU load.

LDSO method is not suitable to be used in large environments, since it pushed
RAM constraints. In textured environments, regardless of the size of the



O.F. YANIK, H.A. ILGIN 13

environment, ORB2 is more suitable than DSO and LDSO to solve the SLAM
problem within the constraints of the hardware in terms of ATE, GPU and CPU
loads, and total power consumption. On the other hand, within the untextured
environment with short and straight trajectory, DSO is suitable for the solution of
the SLAM problem.
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