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Abstract. Let V be a finite dimensional vector space over the field F. Let

S(V) be the set of all subspaces of V and A ⊆ S∗(V) = S(V)\{0}. In this paper,

we define the Cayley subspace sum graph of V, denoted by Cay(S∗(V),A), as
the simple undirected graph with vertex set S∗(V) and two distinct vertices X

and Y are adjacent if X+Z = Y or Y +Z = X for some Z ∈ A. Having defined

the Cayley subspace sum graph, we study about the connectedness, diameter

and girth of several classes of Cayley subspace sum graphs Cay(S∗(V),A) for

a finite dimensional vector space V and A ⊆ S∗(V) = S(V)\{0}.
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1. Introduction

In recent years, lot of attention has been given for construction of graphs from

algebraic structures. In particular, intersection graphs associated with subspaces

of a vector space have been studied by many authors. The subspace inclusion

graph of a vector space is introduced and studied by Das [9] and, further properties

like Hamiltonian, Eulerian, planar, toroidal, independence number and domination

number of the subspace inclusion graph have been studied in [11,13]. Also Das

[11] posed four conjectures out of which two of them are solved by Wong [20] and

remaining two are proved by Peter J. Cameron et al. [7]. Various other graphs

associated with vector spaces like nonzero component union graph and nonzero

component graph of finite dimensional vector spaces have been introduced and

studied in [10,8,16,19]. The Cayley graph is a powerful tool to connect the algebra

and graph theory and there are worthwhile applications for Cayley graphs like

routing networks in parallel computing. The Cayley graph of finite groups and

rings are well studied in the literature and one can see [1,2,4,12,14,17,15]. The both

directed and undirected Cayley sum graph of ideals of commutative rings is defined

in [3] and some basic properties such as connectivity, girth, clique number, planar
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and outer planar are studied. Later Tamizh Chelvam et al. [18] studied about

connectedness, Eulerian, Hamiltonian and toroidal properties of Cayley sum graph

of ideals of commutative rings. Any interested reader can refer the monograph [5]

for complete literature on graphs from rings.

2. Preliminaries

Throughout this paper, V is a finite dimensional vector space of dimension n

over the finite field F containing q elements and B = {α1, α2, . . . , αn} is a basis

of V. In this regard, B(W) denotes a basis of a subspace W of V in general B(V)
denotes a basis of V. Let S(V) be the set of all subspaces of V and let A be a subset

of S∗(V) = S(V)\{0}. The Cayley subspace sum graph of V with respect to A is the

simple undirected graph with vertex set S∗(V) and two distinct vertices X and Y

are adjacent if and only if X +Z = Y or Y +Z = X for some Z ∈ A and the same

is denoted as Cay(S∗(V),A). Any k(≤ n) dimensional subspace W of V spanned by

{β1, . . . , βk} is written as ⟨β1, . . . , βk⟩. When dim(V ) = n, the number of distinct

subspaces of V with k ≥ 1 dimension is[
n

k

]
q

=
(qn − 1)(qn−1 − 1) . . . (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) . . . (q − 1)
.

Thus V has
n∑

k=1

[
n

k

]
q

distinct non-zero subspaces and so the Cayley subspace sum

graph Cay(S∗(V),A) contains
n∑

k=1

[
n

k

]
q

vertices.

Now, we recall some definitions and notations on graphs. By a graph G = (V,E),

we mean a simple undirected graph with non-empty vertex set V and edge set E.

The number of elements in V is called the order n of G and the number of elements

in E is called the size m of G. A graph G is said to be complete if any two distinct

vertices in G are adjacent and the complete graph of order n is denoted by Kn. A

graph G is said to be bipartite if the vertex V can be partitioned into two disjoint

subsets with no pair of vertices in one subset is adjacent. A star graph is a bipartite

graph with any one of the subsets in the bipartite graph containing a single vertex

and the same is called as the center of the star. A graph G is n-partite if the vertex

V can be partitioned into n disjoint subsets with no pair of vertices in one subset

is adjacent.

A walk in a graph G is a finite non-null sequence W = v0e1v1e2 . . . ekvk, whose

terms are alternatively vertices and edges, such that, for 1 ≤ i ≤ k and ends of
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ei are vi−1 and vi. The walk W is said to be a trial if the edges e1, . . . , ek of the

walk W are distinct. Further if vertices v0, v1, . . . , vk are distinct, then W is called

a path. A cycle is a path with starting and terminating vertex are same. A graph

is said to be Hamiltonian if it contains a cycle containing all the vertices of G. A

graph G is said to be connected if there exists a path between every pair of distinct

vertices in G. The diameter of a connected graph is the supremum of the shortest

distance between pairs of vertices in G and is denoted by diam(G). The girth of

G is defined as length of the shortest cycle in G and is denoted by gr(G). We take

gr(G) = ∞ if G contains no cycles. A complete subgraph of a graph G is called a

clique. The clique number of G, written as ω(G), is the maximum size of a clique

in G. A subset D of V is called dominating set if any vertex in V \D is adjacent

with at least one vertex in D. The minimum cardinality of D is called domination

number and it is denoted by γ(G). A planar graph is a graph that can be embedded

in the plane and the genus of planar graphs is zero. For undefined terms in graph

theory, we refer [6].

3. Cayley subspace sum graph

Let V be a finite dimensional vector space over a finite field F, S(V) be the

set of all subspaces of V and A ⊆ S∗(V) = S(V)\{0}. The Cayley subspace sum

graph Cay(S∗(V),A) = (V,E) is the simple undirected graph with vertex set S∗(V)
and two distinct vertices X and Y are adjacent Cay(S∗(V),A) if X + Z = Y or

Y + Z = X for some Z ∈ A. In this section, we observe some properties of

Cay(S∗(V),A).

Theorem 3.1. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {W1, . . . ,Wk} ⊆ S∗(V). Then Cay(S∗(V),A) is

connected if and only if
k∪

i=1

B(Wi) = B(V) where B(Wi) is a basis of the subspace

Wi of V.

Proof. Let Cay(S∗(V),A) be connected. Without loss of generality one can as-

sume that B(Wi) ⊆ B(V). Suppose
k∪

i=1

B(Wi) ⊂ B(V). Then there exists at least

one vector β ∈ V such that
k∪

i=1

B(Wi)
∪
{β} ⊆ B(V). Let V1 = {X ∈ S∗(V) : βi

and β are linearly independent for all βi ∈ B(X)} and V2 = S∗(V)\V1. For X ∈ V1,

we have X + Wi = X ′ ∈ V1 for all Wi ∈ A,X ∈ V1 and Y + Wi = Y ′ ∈ V2 for

all Wi ∈ A, Y ∈ V2. This implies that two vertices in different partitions V1 and V2
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of S∗(V) are not connected by a path, which is a contradiction to the assumption

that Cay(S∗(V),A) is connected. Hence
k∪

i=1

B(Wi) = B(V).

Conversely, assume that
k∪

i=1

B(Wi) = B(V) where A = {W1, . . . ,Wk} ⊆ S∗(V).

For X ∈ S∗(V), there exists a path P = X−(X+W1)−(X+W1+W2)−· · ·−(X+
ℓ∑

i=1

Wi)−· · ·− (X+
k−1∑
i=1

Wi)−V between X and V. Hence, every vertex X ∈ S∗(V)

is connected with V so Cay(S∗(V),A) is connected. □

Theorem 3.2. Let V be an n(≥ 2) dimensional vector space over a finite field

of order q with basis B = {α1, . . . , αn} and A = {W1, . . . ,Wk} ⊆ S∗(V). If

Cay(S∗(V),A) is connected then, it is not a path or cycle.

Proof. Let Cay(S∗(V),A) be connected and Vn−1 ⊂ S∗(V) be the set of all n− 1

dimensional subspaces of V. Then

|Vn−1| =

[
n

n− 1

]
q

=
qn − 1

q − 1
≥ 3.

We claim that every vertex in Vn−1 is adjacent to V. If not, there exists X ∈ Vn−1

which is not adjacent to V. This in turn implies that there exists β ∈ V such that

B(X) ∪ {β} = B(V) and β is linearly independent with all the elements in B(Wi)

for all Wi ∈ A, 1 ≤ i ≤ k. In this case
k∪

i=1

B(Wi) ⊂ B(V), which is a contradiction

to Theorem 3.1. Hence deg(V) ≥ |Vn−1| = 3 and so Cay(S∗(V),A) can never be a

path or cycle. □

Lemma 3.3. Let V be a finite dimensional vector space over a finite field F. Then
Cay(S∗(V),V) is a star graph.

Proof. Let W ∈ S∗(V) be a non-zero subspace of V. Then W + V = V, i.e, V
is adjacent to all W ∈ S∗(V). Hence Cay(S∗(V),V) is a star graph with V as the

central vertex. □

Now, we observe certain instances where the Cayley subspace sum graph is

connected and they are consequences of Theorem 3.1.

Corollary 3.4. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗(V),V) is connected and diam(Cay(S∗(V),V) = 2.

Corollary 3.5. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗(V), S∗(V)) is connected and diam(Cay(S∗(V), S∗(V)) = 2.
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Corollary 3.6. Let p be a prime number and k ≥ 1 be an integer. Let V be

a two dimensional vector space over a finite field F of order q = pk with basis

B = {α1, α2}. Then Cay(S∗(V), S∗(V)) = K1,q+1.

Proof. Let B = {α1, α2} be a basis for V. The set of all non-zero one dimensional

subspaces of V are V1 = {⟨α1⟩, ⟨α2⟩, ⟨α1 + aα2⟩} for 0 ̸= a ∈ F where as V is the

only two dimensional trivial subspace of V. Note that |V1| = pk + 1 and |V2| = 1

and Cay(S∗(V),V) = K1,q+1. □

Now, we find the girth of Cay(S∗(V), S∗(V)).

Theorem 3.7. Let V be an n(≥ 3) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then the girth gr(Cay(S∗(V), S∗(V)))=3.

Proof. For an integerm, 1 ≤ m ≤ n−2, let X = ⟨α1, . . . , αm⟩, Y = ⟨α1, . . . , αm+1⟩
and Z = ⟨α1, . . . , αm+2⟩ be m,m + 1 and m + 2 dimensional subspaces of V re-

spectively. Let X ′ = ⟨αm+1⟩, Y ′ = ⟨αm+2⟩ and Z ′ = ⟨{αm+1, αm+2}⟩ ∈ A. Then
X + X ′ = Y, Y + Y ′ = Z and X + Z ′ = Z. Hence X − Y − Z − X is a cycle of

length 3 in Cay(S∗(V), S∗(V)). □

Theorem 3.8. Let V be a finite dimensional vector space of dimension n(≥ 2)

over a finite field F and A ⊆ S∗(V). Then Cay(S∗(V),A) is an n-partite graph.

Proof. Let S∗
m be the collection of all non-zero m-dimensional subspaces of V.

Then {S∗
m : 1 ≤ m ≤ n} is a partition of S∗(V). To conclude the proof, it is enough

to prove that no two vertices in one partition S∗
m are adjacent in Cay(S∗(V),A).

For, let X,Y ∈ S∗
m for some m. Then X = ⟨β1, . . . , βm⟩ and Y = ⟨β′

1, . . . , β
′
m⟩. Let

Z ∈ A and dim(Z) = ℓ.

Case 1. If Z ⊆ X, then X + Z = X.

Case 2. If Z ⊈ X, then let Y ′ = X + Z. Note that dim(X ∩ Z) < ℓ and so

dim(Y ′) = dim(X) + dim(Z) − dim(X ∩ Z) = m + ℓ − dim(X ∩ Z) > m. Hence

X + Z ̸= Y for any Z ∈ A and so there exists no Z ∈ A such that X + Z = Y. □

Using Theorem 3.8, we obtain the clique number of Cay(S∗(V), S∗(V)) where V
is a finite dimensional vector space.

Theorem 3.9. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then ω(Cay(S∗(V), S∗(V))) = n.

Proof. Consider the set of subspaces {W1, . . . ,Wn} where Wi = ⟨α1, . . . , αi⟩ is an
i dimensional subspace of V.
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Given Wi,Wj 1 ≤ i < j ≤ n, let Uij = ⟨αi+1, αi+2, . . . , αi+j⟩ ∈ S∗(V). Then
Wi + Uij = Wj and so the subgraph induced by {Wi : 1 ≤ i ≤ n} is complete and

so ω(Cay(S∗(V), S∗(V))) ≥ n. By Theorem 3.8, ω(Cay(S∗(V), S∗(V))) ≤ n. Hence

ω(Cay(S∗(V), S∗(V))) = n. □

For a finite dimensional vector space V over a finite field F, the subspace inclusion
graph In(V) of V was introduced and studied by Das [9]. The subspace inclusion

graph In(V) of V is the simple undirected graph with the set of all nontrivial

subspaces of V as the vertex set and two vertices are adjacent if one is contained

in other. If V ∈ A, then V is adjacent to all the vertices in Cay(S∗(V),A)). Hence

it is necessary to study about the Cayley subspace sum graph by excluding by

considering V ̸∈ A. Let S∗∗(V) = S(V)\{0,V} and A ⊆ S∗∗(V). Now we prove that

the subspace inclusion graph In(V) can be realized as a Cayley subspace sum graph

with vertex set S∗∗(V) = S(V)\{0,V}.

Theorem 3.10. Let V be an n(≥ 2) dimensional vector space over a finite field.

Then Cay(S∗∗(V), S∗∗(V)) is isomorphic to In(V).

Proof. Note that the vertex sets of both Cay(S∗∗(V), S∗∗(V)) and In(V) are

nontrivial proper subspaces of V. If X and Y are two adjacent vertices in the

graph Cay(S∗∗(V), S∗∗(V)), by definition there exists some Z ∈ S∗∗(V) such that

X + Z = Y or Y + Z = X. This gives that X ⊂ Y or Y ⊂ X. Hence X and Y are

adjacent in In(V).
On the other hand, let X and Y be adjacent in In(V). By definition either

X ⊂ Y or Y ⊂ X. Without loss of generality let us take X ⊂ Y. Then X +W = Y

where W is a subspace isomorphic to quotient space Y/X. From this X and Y are

adjacent in Cay(S∗∗(V), S∗∗(V)). □

Now we characterize all finite dimensional vector spaces V for which

Cay(S∗(V), S∗(V)) is planar. We recall the following well known characterization

for planar graphs.

Theorem 3.11. ([6, Kuratowski’s theorem pp. 151]) A graph is planar if and only

if it contains no subdivision of K5 or K3,3.

Theorem 3.12. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn}. Then Cay(S∗(V), S∗(V)) is planar if and only if n = 2.

Proof. Assume that Cay(S∗(V), S∗(V)) is planar where V is an n-dimensional

vector space. Suppose n ≥ 3. Let α1, α2, α3 ∈ B(V). Consider the subspaces
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W1 = ⟨α1⟩, W2 = ⟨α2⟩, W3 = ⟨α3⟩, W4 = ⟨α1+α2⟩, W5 = ⟨α1+α3⟩, W6 = ⟨α2+

α3⟩, W7 = ⟨α1, α2⟩, W8 = ⟨α1, α3⟩, W9 = ⟨α2, α3⟩, W10 = ⟨α1, α2 + α3⟩, W11 =

⟨α2, α1+α3⟩, W12 = ⟨α3, α1+α2⟩. The subgraph H of Cay(S∗(V), S∗(V)) induced
by {Wi : 1 ≤ i ≤ 12} is given in Fig. 1.

W2

W1

W3

W7 W8

W9

b

b

b

b

b

b

b

b

b

b

b

b

W10

W5

W12
W6

W11

W4

Fig. 1: The graph H

Note that the graph H is a subdivision graph of K3,3 as given in Fig. 2.

W2

W1

W3

W7

W8

W9

b

b

b

b

b b

Fig. 2: K3,3

From this Cay(S∗(V), S∗(V)) contains a subdivision of K3,3 which is a contra-

diction to Theorem 3.11. Hence n = 2.

Conversely, assume that n = 2. By Corollary 3.6 Cay(S∗(V), S∗(V)) is a star

graph and so planar. □

4. Properties of Cay(S∗(V),A)

In this section, we study Cay(S∗(V),A) where V is an n-dimensional vector

space over a finite field of order q with basis B = {α1, α2, . . . , αn} and A =

{⟨α1⟩, . . . , ⟨αn⟩}. In view of Theorem 3.1, we have the following.

Lemma 4.1. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A) is con-

nected.
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Theorem 4.2. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. If X and Y are adjacent in

Cay(S∗(V),A), then | dim(X)− dim(Y )| = 1.

Proof. Let the vertices X,Y ∈ S∗(V) be adjacent in Cay(S∗(V),A). By definition,

there exists a subspace ⟨αi⟩ ∈ A such that X + ⟨αi⟩ = Y or Y + ⟨αi⟩ = X for some

αi ∈ B. Suppose X + ⟨αi⟩ = Y and dim(X) = k. Then dim(Y ) = dim(X + ⟨αi⟩) =
k + 1. Hence |dim(X)− dim(Y )| = |k − (k + 1)| = 1. □

Note that the converse of Theorem 4.2 is not true. For, let V be an n(≥ 2)

dimensional vector space with basis B = {α1, α2, α3} and A = {⟨α1⟩, ⟨α2⟩, ⟨α3⟩}.
Let X = ⟨α1⟩ and Y = ⟨α1, α1+α2⟩. Then |dim(X)−dim(Y )| = 1 but there exists

no Z ∈ A such that X + Z = Y or Y + Z = X.

From Theorem 4.2, we have the following corollary.

Corollary 4.3. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then no two non-zero subspaces

of same dimension are adjacent in Cay(S∗(V),A).

Theorem 4.4. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A) is a

bipartite graph.

Proof. Consider the partition V1 = {X ∈ S∗(V) : dim(X) is odd} and V2 = {X ∈
S∗(V) : dim(X) is even} of S∗(V). LetX and Y be two vertices in the same partition

Vi for i = 1, 2. IfX and Y are of same dimension, then by Corollary 4.3, X and Y are

not adjacent. If X and Y are of different dimension, then | dim(X)− dim(Y )| ≥ 2.

By Theorem 4.2, X and Y cannot be adjacent. Hence no two vertices in the same

partition Vi for i = 1, 2 are adjacent in Cay(S∗(V),A). □

Since a bipartite graph is bi-chromatic, we have the following corollary from

Theorem 4.4.

Corollary 4.5. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then ω(Cay(S∗(V),A)) = 2.

Also we have following corollary from Theorem 4.4.

Corollary 4.6. Let V be a two dimensional vector space over a finite field of order

q with basis B = {α1, α2} and A = {⟨α1⟩, ⟨α2⟩}. Then Cay(S∗(V),A) is the star

graph K1,q+1.
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Theorem 4.7. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then the girth of Cay(S∗(V),A))
is given by

gr(Cay(S∗(V),A)) =

4 if n ≥ 3;

∞ if n = 2.

Proof. Case 1. Let V be an n ≥ 3 dimensional vector space with basis B =

{α1, . . . , αn}. By Theorem 4.4, Cay(S∗(V),A) is a bipartite graph and so it contains

no cycle of length 3. Consider the subspaces W1 = ⟨α1⟩, W2 = ⟨α1, α2⟩, W3 =

⟨α1, α2, α3⟩ and W4 = ⟨α1, α3⟩. Note that W1 −W2 −W3 −W4 −W1 is a cycle of

length 4 in Cay(S∗(V),A)) and so gr(Cay(S∗(V),A)) = 4.

Case 2. Let V be a 2 dimensional vector space. By Theorem 4.6 Cay(S∗(V),A)
is a star graph and so in this case gr(Cay(S∗(V),A)) is ∞. □

Theorem 4.8. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then diam(Cay(S∗(V),A)) =

2(n− 1).

Proof. Let X ∈ S∗(V). Assume that dim(X) = m ≥ 1 and X = ⟨β1, . . . , βm⟩.
Without loss of generality one can assume thatB(X) ⊆ B(V) andB(V) is obtained
from B(X) by adjoining γ1, γ2, . . . , γn−m.

Consider the trial P : X − ⟨γ1, β1, . . . , βm⟩ − ⟨γ1, γ2, β1, . . . , βm⟩ − · · · − ⟨γ1, γ2,
. . . , γn−m, β1, . . . , βm⟩ = V from X to V is of length n−m which contains a (X,V)
path. Similarly, there exists a path of length at most n −m for any other vertex

Y to V. From this, one can visualize a path of length at most 2(n−m) between X

and Y in Cay(S∗(V),A)). Hence diam(Cay(S∗(V),A)) ≤ 2(n−m) ≤ 2(n− 1).

Consider the two one dimensional subspaces U = ⟨α1⟩ and W = ⟨α1 + α2 +

. . . + αn⟩ of V. Then P : U − ⟨α1, α2⟩ − ⟨α1, α2, α3⟩ − · · · − ⟨α1, . . . , αn⟩ is a path

of length n − 1 between U and V and so d(U,V) = n − 1. On the other hand

Q : W − ⟨α1,W ⟩ − ⟨α1, α2,W ⟩ − · · · − ⟨α1, . . . , αn−1,W ⟩ is path of length n − 1

between Y and V and so d(W,V) = n − 1. Therefore d(X,Y ) = 2(n − 1) and so

diam(Cay(S∗(V),A)) = 2(n− 1). □

Now we characterize all finite dimensional vector spaces for which Cay(S∗(V),A)
is planar.

Theorem 4.9. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A = {⟨α1⟩, . . . , ⟨αn⟩}. Then Cay(S∗(V),A)) is planar

if and only if n = 2.
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Proof. Suppose n = 2. By Theorem 3.12, Cay(S∗(V), S∗(V)) is planar. Thus

Cay(S∗(V),A)) ⊆ Cay(S∗(V), S∗(V)) is planar.
Conversely assume that Cay(S∗(V),A) is planar. Suppose n ≥ 3. Consider the

subspaces W1 = ⟨α1⟩, W2 = ⟨α2⟩, W3 = ⟨α3⟩, W4 = ⟨α1 + α2⟩, W5 = ⟨α1 +

α3⟩, W6 = ⟨α2+α3⟩, W7 = ⟨α1+α2+α3⟩, W8 = ⟨α1, α2⟩, W9 = ⟨α1, α3⟩, W10 =

⟨α2, α3⟩, W11 = ⟨α1, α2 + α3⟩, W12 = ⟨α2, α1 + α3⟩, W13 = ⟨α3, α1 + α2⟩, W14 =

⟨α1 + α2, α1 + α3⟩ and W15 = ⟨α1, α2, α3⟩. The induced subgraph H induced by

{Wi : 1 ≤ i ≤ 15} is a subgraph of Cay(S∗(V),A)). The graph H is given in Fig. 3.

b

b

b

b

b

b

b

b

b

b

W8

W2

W10

W3

W9

W5

W12

W7

W13

W4

bb
b
W11

b

W15

W6

b
W14

bW1

Fig. 3: Graph H

Now let us prove that the graph H cannot have a planar embedding. Note that

the subgraph induced by {W2,W3,W4,W5,W7,W8,W9,W10,W12,W13} is the cycle

C1 = W8 −W2 −W10 −W3 −W9 −W5 −W12 −W7 −W13 −W4 −W8.

Case 1. Let us place the vertex W15 in the interior face of C1 as in Fig. 3. Now

we get five cycles C2 = W13 − W15 − W12 − W7 − W13, C3 = W8 − W15 − W13 −
W4 −W8, C4 = W10 −W15 −W8 −W2 −W10, C5 = W9 −W15 −W10 −W3 −W9

and C6 = W12−W15−W9−W5−W12. Now one has to place the vertex W11 in an

interior face of one of the cycles C2, C3, C4, C5 and C6. Without loss of generality

let us place W11 in the interior face of C2 as in the Fig. 3. Similarly place the

vertex W6 in one of the interior faces and without loss of generality let us place

W6 in the interior face of C6 as in Fig. 3. Note that the vertex W6 is adjacent to

W10 and W11. It is clear from Fig. 3 that one cannot draw the edges W6W10 and

W6W11 without crossing another edge. Hence H is not planar.
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Case 2. Now let us consider the possibility that the vertex W15 is placed in the

outer face of C1. Note that the subgraph H ′ induced by {W1,W2,W3,W4,W5,W7,

W8,W9,W10,W11,W12,W13,W15} is given in Fig. 4.

b

b

b

b

b

b

b

b

b

b

W8

W2

W10

W3

W9

W5

W12

W7

W13

W4

bb
W1

b
W11

W15

Fig. 4: H ′

Consider the circle C = W1 − W8 − W15 − W9 − W1 in H ′. The vertex W10

is inside C and W11 is outside the circle C. One cannot draw edges W6W10 and

W6W11 in H ′ without crossings. Therefore the graph H is non-planar.

From the above Cay(S∗(V), S∗(V)) is non-planar, which is a contradiction. Hence

n = 2. □

5. Another class of Cay(S∗(V),A)

In this section, we study Cay(S∗(V),A) where A is set of all m(1 ≤ m < n)

dimensional nonzero subspaces of V for some fixed m.

Theorem 5.1. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A be the set of all 1 ≤ m < n dimensional

nonzero subspaces of V. If X and Y are adjacent in Cay(S∗(V),A), then | dim(X)−
dim(Y )| ≤ m.

Proof. Let X,Y ∈ S∗(V) be adjacent in Cay(S∗(V),A). Then there exists some

Z ∈ A such that X + Z = Y or Y + Z = X. Without loss of generality, let us take

X + Z = Y. Then dim(X + Z) = dim(Y ) and so

| dim(X)− dim(Y )| = | dim(X)− dim(X + Z)|

= | dim(X)− (dim(X) + dim(Z)− dim(X ∩ Z))|

= | dim(Z)− dim(X ∩ Z)| ≤ m. □
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Now, we have the following corollary for n− 1 dimensional subspaces of V.

Corollary 5.2. Let V be an n(≥ 2) dimensional vector space over a finite field with

basis B = {α1, . . . , αn} and A be the set of all n−1 dimensional nonzero subspaces

of V. Then V is adjacent to all the vertices in Cay(S∗(V),A).

Theorem 5.3. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A be the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then Cay(S∗(V),A) is connected.

Proof. Let X ∈ S∗(V). Assume that dim(X) = k and {β1, . . . , βk} be a basis of X.

By division algorithm, n = mt+ r where t and r < m are integers. Then P : X −
⟨β1, . . . , βk, α1, . . . , αm⟩−⟨β1, . . . , βk, α1, . . . , α2m⟩−· · · ⟨β1, . . . , βk, α1, . . . , αtm⟩−V
contains a path between the arbitrary vertex X and V and so Cay(S∗(V),A) is

connected. □

Theorem 5.4. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A is the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then the girth of Cay(S∗(V),A)) is 3.

Proof. Let X = ⟨β1, . . . , βm−1⟩, Y = ⟨β1, . . . , βm⟩ and Z = ⟨β1, . . . , βm+1⟩ be

subspaces of V of dimension m,m+ 1 and m+ 2 respectively. Then the subspaces

X ′ = ⟨β1, . . . , βm⟩ and Y ′ = ⟨β2, . . . , βm+1⟩ satisfy X +X ′ = Y, Y + Y ′ = Z and

X + Y ′ = Z. Hence X − Y −Z −X is a cycle in Cay(S∗(V),A)) of length 3 and so

the girth of Cay(S∗(V),A)) is 3. □

Theorem 5.5. Let V be an n(≥ 2) dimensional vector space over a finite field

with basis B = {α1, . . . , αn} and A is the set of all m(≥ 1) dimensional nonzero

subspaces of V. Then diam(Cay(S∗(V),A)) = 2⌈ n
m⌉.

Proof. By division algorithm n = tm + r where t, r be integers with r < m.

Consider the subspaces Yk = ⟨α(k−1)m+1, α(k−1)m+2, . . . , α(k−1)m+m⟩ for 1 ≤ k ≤ t

of dimension m and Yt+1 = ⟨αtm+1, αtm+2, . . . , αn⟩ of V of dimension r. For a

nonzero subspace X ∈ S∗(V), let Z0 = X and Zi = X+
i∑

j=1

Yj for i = 1, 2, . . . , t+1.

Then the trail W : Z0 −Z1 −Z2 − · · ·Zt+1 = V from X to V of length t+1 = ⌈ n
m⌉

contains a (X,V) path. Similarly a trial W ′ between another subspace X ′ ∈ S∗(V)
to V of length t + 1 = ⌈ n

m⌉ contains a (X ′,V) path. Hence there exists a path

of length at most 2⌈ n
m⌉ between two arbitrary subspaces X,X ′ ∈ S∗(V) and so

Cay(S∗(V),A) is connected and diam(Cay(S∗(V),A)) ≤ 2⌈ n
m⌉.
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Consider the one dimensional subspaces U = ⟨α1⟩ and U ′ = ⟨α1+α2+ . . .+αn⟩
of V. Then P : Z0 −Z1 −Z2 − . . . Zt+1 = V is a path of length ⌈ n

m⌉ between U and

V. Similarly P ′ : U ′ − Z1 − Z2 − . . . Zt+1 = V is a path of length ⌈ n
m⌉ between U ′

and V. Therefore d(U,U ′) = 2⌈ n
m⌉ and so diam(Cay(S∗(V),A)) = 2⌈ n

m⌉. □

6. Properties of Cay(S∗(V),A) where V is 3 dimensional

In this section, we discuss some special properties of Cayley subspace sum graphs

of three dimensional vector spaces over finite field. First we obtain some adjacency

relations of Cay(S∗(V),A) for the different possibilities of A. Let V be the finite

dimensional vector space with {α1, α2, α3} as basis over the finite field F of order

q. One can see that the following are the complete list of non-zero subspaces of V.

One dimensional subspaces

(1) ⟨αi⟩ : i = 1, 2, 3;

(2) ⟨αi + aαj⟩ : i, j = 1, 2, 3; i ̸= j, a ∈ F \ {0};
(3) ⟨α1 + aα2 + bα3⟩ : a, b ∈ F \ {0}.

Two dimensional subspaces

(1) ⟨αi, αj⟩ : i, j = 1, 2, 3; i ̸= j;

(2) ⟨αi, αj + aαk⟩ : i, j, k = 1, 2, 3; i ̸= j ̸= k, a ∈ F \ {0};
(3) ⟨α1 + aα2, α1 + bα3⟩ : a, b ∈ F \ {0}.

Note that total number of nonzero subspaces of V is 2(q2+q)+3. Suppose |Vi| is
the number of i dimensional nonzero subspaces of V, then |V1| = |V2| = q2 + q + 1.

Note that Cay(S∗∗(V),A) is a subgraph of Cay(S∗(V),A) with vertex set S∗∗(V) =
S(V)\{0,V}.

Theorem 6.1. Let V be a three dimensional vector space over a finite field and A
be the set of all one dimensional non-zero proper subspaces of V. Any two vertices

in Cay(S∗∗(V),A) are adjacent if and only if one of them is properly contained in

the other.

Proof. Let X and Y be any two nonzero proper subspaces of V and assume that

they are adjacent in Cay(S∗∗(V),A). This implies there exists Z ∈ A such that

X + Z = Y or Y + Z = X. In the first case X ⊂ Y where as in the second case

Y ⊂ X.

Conversely, let X and Y be two nonzero proper subspaces of V and X ⊂ Y.

Without loss of generality dim(X)=1, dim(Y )=2 and so X = ⟨β⟩ and Y = ⟨β, β′⟩
for β, β′ ∈ V∗. ThenX+Z = Y where Z = ⟨β′⟩ ∈ A, i.e., X and Y are adjacent. □
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Theorem 6.2. Let V be a three dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗(V),A) if and only if one is properly contained in the other.

Proof. The proof of “only if” part is similar to that of Theorem 6.1.

Conversely, let X and Y in S∗(V) and X ⊂ Y. Then there are three possibilities.

Suppose dim(X)=1, dim(Y )=2, X = ⟨β1⟩ and Y = ⟨β1, β2⟩. Then X+Y = Y , i.e.,

X and Y are adjacent. Similar proof follows in the cases of dim(X)=1, dim(Y )=3;

and dim(X)=2, dim(Y )=3. Thus in all the cases X and Y are adjacent. □

Corollary 6.3. Let V be a three dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗∗(V),A) if and only if one is properly contained in the other.

In similar to the proof of Theorem 6.2, one can prove the following.

Theorem 6.4. Let V be a four dimensional vector space over a finite field and

A be the set of all two dimensional proper subspaces of V. Any two subspaces are

adjacent in Cay(S∗∗(V),A) if and only if one is properly contained in the other.

Remark 6.5. Let V be a three dimensional vector space and A be either the set

of all one dimensional proper subspaces or the set of all two dimensional proper

subspaces of V. By Theorem 6.1 and Corollary 6.3, Cay(S∗∗(V),A) as same as In(V).
Let V be a four dimensional vector space and A be the set of all two dimensional

proper subspaces of V. By Theorem 6.4, Cay(S∗∗(V),A) as same as In(V). This
property is not true for four dimensional vector spaces with other choices for A.
For let A1 be set of all one dimensional proper subspaces and A2 be the set of all

three dimensional proper subspaces of V. Then the subspaces ⟨α1⟩ and ⟨α1, α2, α3⟩
are not adjacent Cay(S∗∗(V),A1) even though ⟨α1⟩ ⊂ ⟨α1, α2, α3⟩. Similarly ⟨α1⟩
and ⟨α1, α2⟩ are not adjacent in Cay(S∗∗(V),A2) even though ⟨α1⟩ ⊂ ⟨α1, α2⟩.

Remark 6.6. By Theorem 6.4, Cay(S∗∗(V),A) is same as In(V). Also, by [11,

Corollary 6.3] Cay(S∗∗(V),A) is a q + 1-regular graph.

Theorem 6.7. Let V be a three dimensional vector space over a field of order

q ∈ {2, 3, 5, 8, 17} and A be the set of all two dimensional nonzero subspaces of V.
Then Cay(S∗(V),A) is Hamiltonian.

Proof. By [11, Theorem 6.10], Cay(S∗∗(V),A) is Hamiltonian. Since V is adjacent

to all the elements in Cay(S∗(V),A), we see that Cay(S∗(V),A) is Hamiltonian. □
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Theorem 6.8. Let V be a three dimensional vector space over a field of order q and

A be the set of all one dimensional subspaces of V. Then the domination number

γ(Cay(S∗(V),A)) = q + 2.

Proof. Note that Cay(S∗(V),A) is a bipartite graph with vertex partition

V1 = A ∪ {V}

and

V2 = {all two dimensional subspaces of V}.

Consider the set D = {⟨α2, α1 + aα3⟩, ⟨α2, α3⟩,V | a ∈ F}. Then the following

are true.

• ⟨αi⟩ is dominated by ⟨αi, αj⟩ for i, j = 1, 2, 3 and i ̸= j;

• ⟨α1 + aα2⟩ and ⟨α2 + aα3⟩ are dominated by ⟨α1, α2⟩ and ⟨α2, α3⟩ respec-
tively;

• ⟨α1 + aα3⟩ is dominated by ⟨α2, α1 + aα3⟩;
• ⟨α1 + aα2 + bα3⟩ is dominated by ⟨α2, α1 + bα3⟩;
• Set of all two dimensional subspace are dominated by V.

This shows that D is a dominating set of Cay(S∗(V),A) with |D| = q + 2. To

conclude the proof, one has to show that q + 1 elements are not sufficient for a

dominating set in Cay(S∗(V),A). Since V dominates all two dimensional subspaces,

for a minimal dominating set, one has to choose elements in V2 which dominate all

the elements in V1 \ V. By Remark 6.1, Cay(S∗∗(V),A) is a q + 1-regular graph.

Further |V1 \ V| = q2 + q + 1 and q2+q+1
q+1 = q + 1

q+1 . This indicates that at least

q + 1 elements from V2 are needed to dominate all the elements in V1 \ V. Hence

γ(Cay(S∗(V),A)) = q + 2. □

Now, we have the following corollary.

Corollary 6.9. Let V be a three dimensional vector space over a finite field of order

q with basis B = {α1, α2, α3} and A = {⟨α1⟩, ⟨α2⟩, ⟨α3⟩}. Then γ(Cay(S∗(V),A)) =
q + 2.

From Corollary 5.2, V is adjacent to all the vertices and hence we have the

following corollary regarding domination for two dimensional case.

Corollary 6.10. Let V be a three dimensional vector space over a field of order

q with basis B = {α1, α2, α3} and A be the set of all two dimensional of V. Then
γ(Cay(S∗(V),A)) = 1.
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