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Introduction 

SARS-CoV-2 detected in 2019 caused a disease called 

COVID-19 by spreading rapidly around the world. The 

spread of SARS-CoV-2 in many countries has led to 

multiple SARS-CoV-2 variants and accurate detection of 

SARS-CoV-2 variants is crucial to fight the COVID-19 

pandemic. Early detection of SARS-CoV-2 is crucial to 

prevent infection. Several methods have been released to 

detect SARS-CoV-2. While some methods detect COVID-

19 from images belonging to people, others detect the 

disease from genome sequences. Using genome sequencing 

including four nucleotides, A, G, C, and T in 30, 000 bps is 

preferred to monitor SARS-CoV-2 variants. Recent 

dominant variants of SARS-CoV-2 are B.1.1.7, B.1.351, 

P.1., B.1.617, and B.1.1.529. The Alpha variant, B.1.1.7 [1] 

was determined in the United Kingdom in the fall of 2020, 

and it spreads about 50% more quickly than the original 

SARS-CoV-2 [2]. Although current treatments against 

Alpha variant are effective, the Alpha variant may cause 

more severe COVID-19 disease.  Beta variant, B.1.351 [3] 

is diagnosed in South Africa and Gamma variant, P.1 [4] 

first detected in Brazil at the end of 2020 spread less quickly 

than Alpha variant; however, current treatments against 

Beta and Gamma variants are less effective. Delta variant, 

B.1.617 [5] first identified in India may cause more severe 

disease when compared to the other variants. Furthermore, 

Delta variant spreads about 100% more quickly than SARS-

CoV-2 [2]. It is not adequate information on whether it 

causes more severe COVID-19 disease, or not. Finally, 

Omicron variant, B.1.1.529 [6] was detected in South 

Africa in November 2021.  

Although several types of studies are released to diagnose 

SARS-CoV-2 [7, 8, 9, 10, 11, 12, 13], there are a limited 

number of algorithms for determining SARS-CoV-2 

variants.  Ahmed et al. [14] clustered Omicron variant by 

analyzing mutations. Mohiuddin and Kasahara [15] 

investigated Omicron variant and suggest possible 

treatment strategies. Wang et al. [16] applied principal 

component analysis to diagnose COVID-19 by analyzing 

more than 20,000 RNA sequences. Khan et al. [17] applied 

deep learning techniques to detect Omicron variant from 

chest X-ray and computed tomography. Basu and Campbell 

[18] classified COVID-19 variants by applying deep 

learning models from genome sequences.  They proposed 

k-mer based long short-term memory model that is an 

alignment-free method. Their method achieved an accuracy 

of 92.5%. Mann et al. [19] classified SARS-CoV-2 variants 

with mass spectrometry. They defined peptide signatures of 

unique mass to detect SARS-CoV-2 main variants of 
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ABSTRACT 

 
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) belongs to coronaviridae family and a 

change in the genetic sequence of SARS-CoV-2 is named as a mutation that causes to variants of SARS-
CoV-2. In this paper, we propose a novel and efficient method to predict SARS-CoV-2 variants of concern 

from whole human genome sequences. In this method, we describe 16 dinucleotide and 64 trinucleotide 

features to differentiate SARS-CoV-2 variants of concern.   The efficacy of the proposed features is proved 
by using four classifiers, k-nearest neighbor, support vector machines, multilayer perceptron, and random 

forest. The proposed method is evaluated on the dataset including 223,326 complete human genome 

sequences including recently designated variants of concern, Alpha, Beta, Gamma, Delta, and Omicron 
variants. Experimental results present that overall accuracy for detecting SARS-CoV-2 variants of concern 

remarkably increases when trinucleotide features rather than dinucleotide features are used.  Furthermore, 

we use the whale optimization algorithm, which is a state-of-the-art method for reducing the number of 
features and choosing the most relevant features. We select 44 trinucleotide features out of 64 to 

differentiate SARS-CoV-2 variants with acceptable accuracy as a result of the whale optimization method. 

Experimental results indicate that the SVM classifier with selected features achieves about 99% accuracy, 
sensitivity, specificity, precision on average. The proposed method presents an admirable performance for 

detecting SARS-CoV-2 variants. 
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concern. Recently, Togrul and Arslan [20] proposed a deep 

learning method to detect SARS-CoV-2 variants and Arslan 

[21] published a paper to detect SARS-CoV-2 variants in 

Turkey. 

Although there are many studies to detect SARS-CoV-2, a 

limited number of studies have been published to detect 

SARS-CoV-2 variants of concern. In this study, we 

introduce a method for determining SARS-CoV-2 variants 

from genome sequences. We list our contributions below:  

• We proposed an accurate method to detect SARS-

CoV-2 variants from SARS-CoV-2 nucleotide 

sequences 

• We describe 16 dinucleotide and 64 trinucleotide 

features 

• Whale optimization algorithm that is a state-of-

the-art feature selection method is employed to 

select most representative features 

• We evaluate the effectiveness of dinucleotide and 

trinucleotide features, separately by using four 

classifiers, k-nearest neighbor, multilayer 

perceptron, support vector machines, and random 

forest 

• We construct a large dataset including 223,326 

SARS-CoV-2 genome sequences. The dataset 

includes various types of SARS-CoV-2, Alpha, 

Beta, Delta, Gamma, and Omicron 

• The proposed method accurately detects SARS-

CoV-2 variants of concern 

The remaining part of this study is organized as follows. 

The proposed method is introduced in Section 2. 

Experimental results are evaluated and compared in Section 

3. Finally, Section 4 includes the conclusion. 

The Proposed Approach for Detecting SARS-

CoV-2 Variants 

In this section, we introduce the proposed approach for 

detecting SARS-CoV-2 variants. The fundamental steps of 

the proposed approach are presented in Figure 1, and 

detailed steps of the algorithm are also given in Algorithm 

1. The algorithm receives complete genome sequences of 

SARS-CoV-2 as the input. First, features separating SARS-

CoV-2 variants are extracted from complete human genome 

sequences. In this step, we use dinucleotide occurrences or   

trinucleotide occurrences as features separating SARS-

CoV-2 variants. The information in the sequence is stored 

using four bases, which are adenine (A), thymine (T), 

cytosine (C), and guanine (G). Dinucleotide is a sequence 

of two nucleotides, and trinucleotide is a triplet of 

nucleotides. There are 16 dinucleotide and 64 trinucleotide 

patterns in total. Thus, we extract 16 dinucleotide features 

and 64 trinucleotide features for each sequence in the 

dataset. In this step, we propose to use trinucleotide features 

since they represent the genome sequence at a higher level. 

To determine the optimal trinucleotide subset, whale 

optimization algorithm, which is a state-of-the-art method  

 

Figure 1. Main steps of proposed algorithm 

for feature selection tasks   is used. As a result of the whale 

optimization algorithm, the occurrences of the 

trinucleotides that are AAA, ACA, ATG, ACC, AGT, 

AGC, AGG, CTA, CCC, TAT, TTC, TTT, TTG, TCT, 

GTT, GTG, GCC, GCT, GGC, and GGT are excluded from 

the feature set, and the remaining 44 trinucleotide 

occurrences are used to differentiate SARS-CoV-2 variants. 

We apply four types of machine learning classifiers to 

evaluate the performance of the proposed features. Next we 

briefly explain feature selection and classifiers performed in 

this study. 

Whale Optimization Algorithm (WOA) for Feature 

Selection 

We perform WOA to reduce the dimensionality of the data 

with acceptable accuracy. WOA is a bioinspired algorithm 

focused on hunting behavior of humpback whales [22]. This 

method consists of three main steps. The first step is 

encircling prey, and in this step, the method produces k 

humpback whales which are randomly scattered in the 

search space. The best whales are determined by evaluating 

the position of each humpback whale. The second step is 

exploitation phase, and humpback whales initiate to attack 

using a bubble-net strategy in this step. Two strategies used 
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in this step are shrinking encircling and spiral updating 

position for bubble-net attacking. Each whale proposes a 

subset of the features that are evaluated based on the 

accuracy of the classifier. The last step is exploration phase, 

and in this step, humpback whales look for prey for the 

position of each other randomly. The main steps and the 

pseudocode of the WOA can be found in [22].

 

Algorithm 1 Proposed approach for detecting SARS-

CoV-2 variants of concern 

Inputs: 

• Genome sequences of human SARS-CoV-2: 

genomicData 

• Label of each SARS-CoV-2 sequence: Alpha, Beta, 

Gamma, Delta, and Omicron 

• SARS-CoV-2 sequence for testing: unknownSeq 

Output: Determine the variant of unknownSeq  

 

Trinucleotide Features: 

1: for each sequence seq in genomicData do 

2:           Compute trinucleotide features 

3: end for Feature Reduction 

4: Apply whale optimization algorithm to reduce the 

number of features 

Parameter Tuning 

5: Apply grid search to obtain best performing 

hyperparameters of the classifier 

Classification Step: 

6: Compute trinucleotide features for unknownSeq 

7: Perform the machine learning classifier (SVM is 

suggested) 

8: Determine the variant of unknownSeq

 

Applied Machine Learning Techniques 

K-nearest neighbor (KNN) [23, 24] is a non-parametric 

machine learning method. The method includes k 

hyperparameter that represents the number of neighbors. 

Data samples are classified with respect to k neighbors. The 

accuracy of the method depends on two hyperparameters, 

the selection of k and distance measures. We perform grid 

search approach through 5-fold cross validation to define 

optimum hyperparameters. In grid search approach, k value 

is chosen between 1 and 10, and the possible distance 

measures are manhattan, euclidean, and chebyshev. 

Multilayer Perceptron (MLP) [25] is a type of artificial 

neural network. In this study, a MLP model with one hidden 

layer is used. For optimal determination of the number of 

neurons in the hidden layer and activation function, we 

perform 5-fold cross validation with grid search.  In grid 

search, the number of neurons in the hidden layer is set to 

50, 100, and 150, and the logistic sigmoid, hyperbolic 

tangent as well as the rectified linear unit are used as the 

activation functions.  

Support Vector Machines (SVM) [26, 27, 28] is a machine 

learning method used for solving classification and 

regression problems. The goal is to construct a hyperplane 

that separates data samples for the classification problems. 

We use Radial Basis Function (RBF) for achieving non 

linearity [29, 30]. The selection of RBF kernel parameter () 

and penalty parameter (c) related to SVM model are crucial. 

We determine these parameters by performing 5-fold cross 

validation with grid search. The possible values of c are {2-

5, 2-1, 29} and the possible values of  are {2-9, 2-5, 2-1, 23}.  

Random Forest (RF) [31, 32] is an ensemble classifier that 

constructs multiple decision trees and subset of training 

samples are selected randomly. We perform grid search 

with 5-fold cross validation for achieving the best results.  

Results and Discussion 

In this section, we conduct several experimental studies to 

prove the efficacy of the proposed features discriminating 

SARS-CoV-2 variants. All experiments are implemented 

on a 64-bit Windows 10 Enterprise operating system 

running on Intel i7-6700HQ CPU CPU @2.50 GHz 

processor and 16GB RAM. All methods are implemented 

using Python language. 

Dataset 

Our dataset includes SARS-CoV-2 genome sequences of 

SARS-CoV-2 from the Global Initiative on Sharing All 

Influenza Data (GISAID) database [33]. All genome 

sequences in the dataset are complete and high coverage to 

minimize sequencing errors. WHO Label, scientific name, 

date of designation, and the number of sequences used in 

this study are presented in Table 1. 

Table 1. Variants of SARS-CoV-2 

WHO 

Label 

Scientific 

Name 

Date of 

Designation 

Number of 

sequences 

Alpha B.1.1.7 October, 2020 54,467 

Beta B.1.351 December, 2020 25,455 

Delta B.1.617.2 October, 2020 46,221 

Gamma P.1 January, 2021 53,501 

Omicron B.1.1.529 November, 2021 43,682 
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Performance Metrics 

We perform multi-class classification since our dataset 

includes seven variants of SARS-CoV-2. We perform 5-

fold cross validation technique to evaluate the performance 

of the methods. In this approach, the dataset is divided in 5 

parts. While four parts are used for training, the other one 

part is used for resting. The method is continued until all 

parts are tested. The performances of the classifiers are 

measured using different metrics, which are precision, 

sensitivity, specificity, and accuracy. We use macro-

averaging [34] to evaluate overall performance of a class as 

shown in Table 2. 

Furthermore, we show the confusion matrices for each 

classifier separately. We illustrate the confusion matrix 

focusing on Beta class labelling the tiles accordingly in 

Figure 2.  

Table 2. Performance measurements for evaluating classifiers 

 

Figure 2. Confusion matrix for the class Beta 

Experimental Results 

In this section, we evaluate and present results of the 

machine learning classifiers using dinucleotide and 

trinucleotide features, separately on the dataset including 

variants of the SARS-CoV-2. 

Results of the machine learning classifiers on dinucleotide 

features 

In this part, we evaluate results of machine learning 

classifiers to prove the effectiveness of the dinucleotide 

features to predict SARS-CoV-2 variants. The 

hyperparameters of the classifiers are determined by grid 

search with 5-fold cross validation. 

In the KNN classifier, k is set to 3, and manhattan distance 

is used. In the MLP method, the hyperbolic tangent function 

is used as an activation function, and the number of neurons 

in the hidden layer is 100. In the SVM method, c is 512 and 

 is 2-9. Finally, in RF, criterion is gini, maximum depth of 

tree is 25, the minimum number of the sample leaf is 1, and 

the minimum number of sample split is 3. The results of the 

classifiers are obtained with respect to these parameters. 

Figure 3 shows confusion matrices of machine learning 

classifiers on the dinucleotide features extracted from the 

genome sequences. The results of four classifiers are close 

to each other.  The MLP classifier achieves better 

performance, and it correctly labels 52,752 of 54,467 

genome sequences of Alpha variant, 23,549 of 25,455 

genome sequences of Beta variant, 52,360 of 53,501 

genome sequences of Gamma variant, 44,237 of 46,221 

genome sequences of Delta variant, and 43,012 of 43,682 

genome sequences of Omicron variant. Table 3 presents 

both variant-based and average results of the machine 

learning classifiers. As seen in Table 3, average results of 

the machine learning classifiers are close to each other. The 

average accuracy values of the classifiers   vary between 

0.98 and 0.99.  Similarly, average specificity values are 

about 0.99.  On the other hand, average sensitivity and 

precision values are lower when compared to average 

accuracy and specificity values. Average sensitivity and 

precision values vary between 0.94 and 0.96. 

Table 3. Performances of the machine learning classifiers 

using dinucleotide features 

Method 
SARS-CoV-2 

Variant 

Variant based results Average results 

Acc Sen Spe Pre Acc Sen Spe Pre 

KNN 

Alpha 

Beta 

Gamma 

Delta 

Omicron 

 

0.98 

0.98 

0.99 

0.98 

0.99 

0.97 

0.93 

0.98 

0.95 

0.98 

0.99 

0.99 

0.99 

0.99 

0.99 

0.96 

0.93 

0.97 

0.96 

0.98 

0.99 0.96 0.99 0.96 

MLP 

Alpha 

Beta 

Gamma 

Delta 

Omicron 

 

0.98 

0.98 

0.99 

0.98 

0.99 

0.97 

0.93 

0.98 

0.96 

0.98 

0.99 

0.99 

0.99 

0.99 

1 

0.96 

0.94 

0.98 

0.96 

0.98 

0.99 0.96 0.99 0.96 

SVM 

Alpha 

Beta 

Gamma 

Delta 

Omicron 

0.97 

0.98 

0.98 

0.97 

0.99 

0.95 

0.89 

0.96 

0.93 

0.98 

0.98 

0.99 

0.99 

0.98 

0.99 

0.94 

0.91 

0.97 

0.94 

0.96 

0.98 0.94 0.99 0.94 

RF 

Alpha 

Beta 

Gamma 

Delta 

Omicron 

 

0.98 

0.98 

0.99 

0.98 

0.99 

0.97 

0.92 

0.98 

0.96 

0.99 

0.99 

0.99 

0.99 

0.99 

0.99 

0.97 

0.95 

0.98 

0.96 

0.97 

0.99 0.96 0.99 0.96 

Results of the machine learning classifiers on trinucleotide 

features 

In this part, we evaluate results of machine learning 

classifiers to prove the effectiveness of the trinucleotide 

features to predict SARS-CoV-2 variants. The 

hyperparameters of the classifiers are determined by grid 

search. In the KNN classifier, k is set to 1, and manhattan 

distance is used. In the MLP method, the hyperbolic tangent 

function is used as an activation function, and number of  
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neurons in the hidden layer is 100. In the SVM method, c is 

512,  is 2-9, and radial basis function is used. Finally, in RF, 

criterion is gini, maximum depth of tree is 25, the minimum 

number of the sample leaf is 1, and the minimum number of 

sample split is 3. The results of the classifiers are obtained 

with respect to these parameters. 

Figure 4 shows confusion matrices of machine learning 

classifiers on the trinucleotide features extracted from the 

genome sequences.  The SVM classifier achieves the best 

results and it correctly labels 54,310 out of 54,467 genome 

sequences of Alpha variant, 25,294 out of 25,455 genome 

sequences of Beta variant, 53,457 out of 53,501 genome 

sequences of Gamma variant, 46,146 out of 46,221 genome 

sequences of Delta variant, and 43,661 out of 43,682 

genome sequences of  Omicron variant. 

 

Figure 3 Confusion matrices of machine learning classifiers on the dinucleotide features 

Predicted Label Predicted Label 

Predicted Label Predicted Label 
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Table 4 presents variant-based and average results of the 

machine learning classifiers when trinucleotide features are 

used. As seen in Table 4, the machine learning classifiers 

with trinucleotide features have an admirable performance.  

The average accuracy and specificity values of the 

classifiers are close to 1.0. Average sensitivity and precision 

values vary between 0.99 and 1.0. When compared to 

dinucleotide features, sensitivity and precision values are 

significantly improved with trinucleotide features. 

 

 

Figure 4. Confusion matrices of machine learning classifiers on the trinucleotide features 

Predicted Label Predicted Label 

Predicted Label Predicted Label 
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Table 4. Performances of the machine learning classifiers 

using trinucleotide features 

Method 

SARS-

CoV-2 

Variant 

Variant based results Average results 

Acc Sen Spe Pre Acc Sen Spe Pre 

KNN 

Alpha 

Beta 

Gamma 
Delta 

Omicron 

 

1 
1 

1 

1 
1 

0.99 
0.99 

1 

1 
1 

1 
1 

1 

1 
1 

0.99 
0.98 

1 

1 
1 

1 0.99 1 0.99 

MLP 

Alpha 
Beta 

Gamma 

Delta 
Omicron 

 

1 

1 
1 

1 

1 

1 

0.99 
1 

1 

1 

1 

1 
1 

1 

1 

1 

0.99 
1 

1 

1 

1 1 1 1 

SVM 

Alpha 
Beta 

Gamma 

Delta 
Omicron 

1 
1 

1 

1 
1 

1 
0.99 

1 

1 
1 

1 
1 

1 

1 
1 

1 
0.99 

1 

1 
1 

1 1 1 1 

RF 

Alpha 

Beta 
Gamma 

Delta 

Omicron 
 

1 
1 

1 
1 

1 

1 
0.98 

1 
1 

1 

1 
1 

1 
1 

1 

0.99 
0.99 

1 
1 

1 

1 0.99 1 0.99 

  Feature Selection using Whale Optimization Algorithm 

The trinucleotide features identify SARS-CoV-2 variants 

more accurately than dinucleotide features. In order to 

choose the most relevant trinucleotide features and reduce 

dimensionality of the dataset, we use the WOA. As a result 

of the WOA, the trinucleotides occurrences that are AAA, 

ACA, ATG, ACC, AGT, AGC, AGG, CTA, CCC, TAT, 

TTC, TTT, TTG, TCT, GTT, GTG, GCC, GCT, GGC, and 

GGT are excluded from the feature set, and the remaining 

trinucleotide occurrences are used to detect SARS-CoV-2 

variants. Thus, the initial set of 64 features is reduced to 44. 
Table 5 presents variant-based and average results of the 

machine learning classifiers when 44 trinucleotide features 

are used. When the SVM classsifier with 44 trinucleotide 

features is used, an average accuracy, precision, sensitivity, 

and specificity is ∼ 1.0. Furthermore, Table 6 presents 

average results of classifiers using trinucleotide features for 

full set of features (64 features in total) and reduced set of 

features (44 features in total). The results of full set and the 

reduced set of features are close to each other.   

We present the total number of incorrectly classified 

instances for each classifier when 16 dinucleotide, 64 

trinucleotide, and 44 selected features are separately used in 

Figure 5. As can be seen in Figure 5a, the number of 

genome sequences that are incorrectly classified 

remarkably decreases when the trinucleotide features are 

used.  For instance, the SVM classifier with trinucleotide 

features misclassifies 157 out of 54,467 genome sequences 

of Alpha variant, 161 out of 25,455 genome sequences of 

Beta variant, 44 out of 53,501 genome sequences of Gamma 

variant, 75 out of 46,221 genome sequences of Delta 

variant, and 21 out of 43,682 genome sequences of Omicron 

variant. In total, it misclassifies 458 out of 223,326 genome 

sequences. Furthermore, the results of 64 trinucleotide 

features and 44 selected features are close as shown in 

Figure 5b. 

Table 5 Performances of the machine learning classifiers 

using 44 trinucleotide features 

Method 

SARS-

CoV-2 

Variant 

Variant based results Average results 

Acc Sen Spe Pre Acc Sen Spe Pre 

KNN 

Alpha 

Beta 
Gamma 

Delta 

Omicron 
 

1 

1 

1 
1 

1 

0.99 

0.98 

1 
0.99 

1 

1 

1 

1 
1 

1 

0.99 

0.98 

1 
1 

1 

1 0.99 1 0.99 

MLP 

Alpha 

Beta 

Gamma 
Delta 

Omicron 

 

1 
1 

1 

1 

1 

1 
0.99 

1 

1 

1 

1 
1 

1 

1 

1 

1 
0.99 

1 

1 

1 

1 1 1 1 

SVM 

Alpha 

Beta 

Gamma 
Delta 

Omicron 

1 

1 

1 
1 

1 

1 

0.99 

1 
1 

1 

1 

1 

1 
1 

1 

1 

0.99 

1 
1 

1 

1 1 1 1 

RF 

Alpha 
Beta 

Gamma 

Delta 
Omicron 

 

1 

1 
1 

1 

1 

0.99 

0.98 
1 

1 

1 

1 

1 
1 

1 

1 

0.99 

0.99 
1 

1 

1 

1 0.99 1 0.99 

 

Table 6. Average results of classifiers using trinucleotide 

features for full set of features and reduced set of features 

Method 

Full set of features Reduced set of features 

Average(%) Average(%) 

Acc Sen Spe Pre Acc Sen Spe Pre 

KNN 1.0 0.99 1.0 0.99 1.0 0.99 1.0 0.99 

MLP 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

SVM 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 

RF 1.0 0.99 1.0 0.99 1.0 0.99 1.0 0.99 

 

 

Figure 5. Incorrectly classified instances for each classifier 

Comparison with Existing Methods Detecting SARS-

CoV-2 Variants 

Table 7 analyzes the performances of the methods detecting 

SARS-CoV-2 variants in the literature. Jamil and Rahman 

[17] proposed a deep learning approach to detect SARS-
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CoV-2 variants, Alpha, Beta, Gamma, and Delta from CT 

scans and X-ray images.  They used five convolution units 

with a rectified unit as an activation function. They reported 

accuracy results for each variant. Their prediction 

accuracies are 99.7%, 99.6%, 99.6%, 98.6% for detecting 

Alpha, Beta, Gamma, and Delta variants, respectively on X- 

ray images. Ali et al. [16] proposed to use k-mer based 

features to detect SARS-CoV-2 variants. Then they applied 

lasso regression and ridge regression methods, which are 

feature selection methods to reduce the dimension of the 

dataset. As a result of lasso regression, they used 964 

features out of 4977 to predict SARS-CoV-2 variants. K-

means clustering with lasso regression achieved F1-scores 

of 99.87%, 27.05%, 99.91%, 99.98%, and 97.04% for 

identifying Alpha, Beta, Delta, Gamma, and Epsilon 

variants, respectively. Their method failed to predict Beta 

variants. Togrul and Arslan [20] performed CNN to detect 

features that discriminate variants of SARS-CoV-2. After 

feature extraction, they used various types of ML 

algorithms including SVM, KNN, RF, and MLP.  Their 

experimental results achieved about 100% accuracy on the 

dataset including 1000 sequences of each variants of 

concern when 1563 features are used. Main disadvantage of 

their method was the use a large number of features, which 

required a lot of time. Arslan [21] used nucleotide 

frequencies to diagnose SARS-CoV-2 variants. Their 

method reached a relatively low accuracy (94%) on average 

using a dataset including fewer sequences from Turkey 

when four features are used. 

Table 7. Comparison of the methods identifying SARS-

CoV-2 variants 

Study Method Fetaures Image Dataset Acc(%) 

Jamil and 

Rahman 

[17] 

CNN 
Vocabulary 

of features 

1345 Alpha 

10,192 Beta 

6,012 Gamma 

3,616 Delta 

99.7 

99.6 

99.6 

98.6 

Study Method 
# of 

Fetaures 

# of Amino 

Acid Sequence 
Acc(%) 

Ali et al. 

[16] 

K-means with 

Lasso Regression 
964 

13,966 Alpha 

1,727 Beta 

7,551 Delta 

26,629 Gamma 

12,784 Epsilon 

99.87 

27.05 

99.91 

99.98 

97.04 

Togrul 

and 

Arslan 

[20] 

CNN,KNN,MLP, 

SVM, RF 
1563 

1000 Alpha 

1000 Beta 

1000 Gamma 

1000 Delta 

1000 Omicron 

100 

100 

100 

100 

100 

Arslan 

[21] 
KNN 4 

436 Alpha 

357 Beta 

110 Gamma 

500 Delta 

94 

93 

93 

95 

Study Method 
# of 

Fetaures 

# of Amino 

Acid Sequence 
Acc(%) 

Proposed 

Method 
SVM with WOA 

44 

trinucleotide 

54,467 Alpha 

25,455 Beta 

53,501 Gamma 

46,221 Delta 

43,682 Omicron 

 

100 

100 

100 

100 

100 

When we compare the proposed method with these 

methods, the dataset used in this study is larger and includes 

current SARS-CoV-2 variants of concern. Moreover, most 

of the methods shown in Table 7 are more expensive than 

the proposed method since our method predicts SARS-

CoV-2 variants by using fewer number of features. The 

proposed method can accurately predict current SARS-

CoV-2 variants of concern, and achieves an accuracy of 

100%. 

Conclusion 

Emerging variants of SARS-CoV-2 causes a devastating 

effect on human health. Determining variants of SARS-

CoV-2 is crucial to follow correct treatment strategy and 

taking under control to contagious of the virus.  In this 

study, we introduce a method to determine SARS-CoV-2 

variants. We determine 16 dinucleotide and 64 trinucleotide 

features representing the whole genome sequences.  The 

WOA is applied to select the most relevant features and 

reduce the dimensionality. The proposed method reaches 

full accuracy for detecting current SARS-CoV-2 variants of 

concern when the SVM classifier with 44 trinucleotide 

features are employed. In future, we will investigate effect 

on SARS-CoV-2 variants on patients with any types of 

cancer to decrease the date ratio of COVID-19. 
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