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ABSTARCT
In this paper, para-octonions and their algebraic properties are provided by using the Cayley-Dickson multiplication rule between the oc-
tonionic basis elements. The trigonometric form of a para-octonion is similar to the trigonometric form of dual number and quasi-quater-
nion. We study the De-Moivre’s theorem for para-octonions, extending results obtained for real octonions and defining generalize Euler’s 
formula for para-octonions.
Keywords: Alternativity, Cayley-Dickson construction, De-Moivre’s formula, Para-octonion

Para-Ktonyonlar Üzerine; Bir İlişkisel Olmayan Normlu Cebir

ÖZET
Bu çalışmada, octonyonik baz elemanları arasında Cayley-Dickson çarpım kuralı kullanılarak para-octonyonlar ve cebirsel özellikleri ve-
rilmiştir. Bir para-octonyonun trigonometrik formu bir dual-sayının ve bir quasi-kuaterniyonun trigonometrik formuna benzerdir. Para-o-
ctonyonlar içn De-Moivre’nin teoremi ele alınarak reel-octonyonlar için elde edilen sonuçlar genelleştirilmiştir.  Ayrıca, para-octonyonlar 
için genel Euler formülleri tanımlanmıştır.
Anahtar kelimeler: Alternatiflik, Cayley-Dickson yapı, De-Moivre formu, para-oktoniyon

octonions and by using this formula, we obtain any power 
of a para-octonion. We hope that this work will contribute to 
the study of physics and other sciences.

2. THEORETICAL BACKGROUND

In this section, we give a brief summary of the generalized 
octonions. For detailed information about these octonions, 
we refer the reader to [1].

Definition 1. A generalized octonion x  is defined as

0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 ,x a e a e a e a e a e a e a e a e= + + + + + + +

where 0 7,...,a a are real numbers and , (0 7)ie i≤ ≤  are oc-
tonionic units satisfying the equalities that are given in the 
following table;

1. INTRODUCTION
The real octonions algebra as the ordered couple of real qua-
ternions, was invented by J. T. Graves (1843) and A. Cay-
ley (1845) independently. In mathematics, the real octon-
ions form a normed division algebra over the real numbers, 
usually represented by O . In our previous works, we studied 
some algebraic properties of real, split, complex, semi-oc-
tonions, and quasi-octonions.

In this paper, we study some algebraic properties of 

para-octonions, which is called 1
8 −  octonions in [9]. A 

pare-octonions can be written in form a dual quasi-quaterni-
ons. We review the generalized octonions algebra, and show 
that if put 0,α β γ= = =  we obtain para-octonions alge-
bra. Like real octonions, para-octonions form a non-associa-
tive algebra, but unlike real octonions, they are not division 
algebra. We investigate the De Moivre’s formula for these 
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The multiplication rules among the basis elements of octonions ie can be expressed in the form:

. e1 e2 e3 e4 e5 e6 e7

e1
α− e3 2eα− e5 4eα− -e7 6eα

e2 -e3 β− 1eβ e6 e7 4eβ− 5eβ−

e3 2eα 1eβ− αβ− e7 6eα− 5eβ 4eαβ−

e4 -e5 -e6 -e7 γ−
1eγ 2eγ 3eγ

e5 4eα -e7 6eα 1eγ− αγ−
3eγ− 2eαγ

e6 e7 4eβ 5eβ− 2eγ− 3eγ βγ− βγ

e7 6eα− 5eβ 4eαβ 3eγ− 2eαγ− 1eβγ αβγ−

Special Cases:

1.  If 1,α β γ= = = is considered, then O( , , )α β γ is the 
algebra of real octonions O [5].

2.  If 1, 1,α β γ= = = − is considered, then O( , , )α β γ  
is the algebra of split octonions (Psoudo-octonions) 

O' [4].

3.  If 1, 0,α β γ= = = is considered, then O( , , )α β γ  is 
the algebra of semi-octonions OS [3].

4.  If 1, 0,α β γ= = − = is considered, then O( , , )α β γ
is the algebra of split semi-octonions O'S [5].

5.  If 1, 0,α β γ= = = is considered, then O( , , )α β γ is 
the algebra of quasi-octonions Oq [6].

6.  If 1, 0,α β γ= − = = is considered, then O( , , )α β γ
is the algebra of split quasi-octonions O'q  [8].

7.  If 0,α β γ= = = is considered, then O( , , )α β γ is the 
algebra of para-octonions O p .

The generalized octonions algebra, O( , , )α β γ , is a 
non-commutative, non-associative, alternative, flexible and 
power-associative [1].

3. PARA-OCTONIONS ALGEBRA

Definition 2. A para-octonion x  is expressed as a real linear 
combination of the unit octonions 0 1 7( , ,..., )e e e , i.e.

7

0 1 7 0 0
1

( , ,..., ) ,i i
i

x x x x x e x e
=

= = +∑

where 0 7,...,x x  are real numbers and ,ie (0 7)i≤ ≤  are 

imaginary octonion units satisfying the non-commutative 

multiplication rules;

2

1 2 3 2 1 2 4 6 4 2

1 4 5 4 1 2 5 7 5 2

1 6 7 6 1 3 4 7 4 3

0, 0,...,7
,
,

,

ke k
e e e e e e e e e e
e e e e e e e e e e
e e e e e e e e e e

= =
= = − = = −
= = − = = −
= − = − = = −

The above multiplication rules are given in the following Table;

. e1 e2 e3 e4 e5 e6 e7

e1 0 e3 0 e5 0 -e7 0

e2 -e3 0 0 e6 e7 0 0

e3 0 0 0 e7 0 0 0

e4 -e5 -e6 -e7 0 0 0 0

e5 0 -e7 0 0 0 0 0

e6 e7 0 0 0 0 0 0

e7 0 0 0 0 0 0 0

This form,
7

0 0
1

,i i
i

x x e x e
=

= +∑ is called the standard form 

of a para-octonion. By using the Cayley-Dickson construc-

tion, a para-octonion x can also be written as
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0 0 1 1 2 2 3 3 4 5 1 6 2 7 3 4( ) ( ) ' ,x a e a e a e a e a a e a e a e e q q l= + + + + + + + = +

where 2 0l = and , 'q q are quasi-quaternions (1/4 -quaternions) [2], i.e.

{ }2 2 2
0 1 1 2 2 3 3 1 2 3 1 2 3 1 3 2 3, ' H 0, , 0 , R ,q iq q q a a e a e a e e e e e e e e e e e a∈ = = + + + = = = = = = ∈

This construction lets us view the para-octonions as a two dimensional vector space over quasi-quaternions.
A para-octonion x can be decomposed in terms of its scalar ( )xS and vector ( )xV


 parts as

0 ,xS a= 1 1 2 2 3 3 4 4 5 5 6 6 7 7.xV a e a e a e a e a e a e a e= + + + + + +


For two para-octonions 

7

0
i i

i
x a e

=

=∑ and

7

0
,i i

i
w b e

=

=∑ the summation and substraction processes are given as 
7

0
( ) .i i i

i
x w a b e

=

± = ±∑
The product of two para-octonions ,x x w wx S V w S V= + = +

 
 is expressed as

. ,x w x w x w w x x wx w S S V V S V S V V V= − + + + ×
     

7

0 0
1

.i i x x
i

x a e a e S V
=

= − = −∑


Conjugate of product of two para-octonions and its own 
are described as

,xy y x x x= =

It is clear that the scalar and vector parts of x is denoted 

by 
2x

x xS +
= and .

2x
x xV −

=


1) The norm of x is

2 2
0 .xN x x x x x a= = = =

It satisfies the following property

xy x y y xN N N N N= =

If 1,xN =  then x is called a unit para-octonion. We will 

use to denote the set of unit para-octonions.

2) The inverse of x with 0,xN ≠  is

1 1 .
x

x x
N

− =

4) The trace of element x is defined as ( ) .t x x x= +

This product can be described by a matrix-vector product as

0 0

1 0 1

2 0 2

3 2 1 0 3

4 0 1 4

5 4 1 0 5

6 4 2 0 6

7 6 5 4 3 2 1 0 7

0 0 0 0 0 0 0
0 0 0 0 0 0

0 0 0 0 0 0
0 0 0 0

. .
0 0 0 0 0

0 0 0 0
0 0 0 0

a b
a a b
a a b
a a a a b

x w
a a a b
a a a a b
a a a a b
a a a a a a a a b

   
   
   
   
   −   =    
   

−   
   −
   

− − −      

Para-octonions multiplication is not associative, since

1 2 4 1 6 7

1 2 4 3 4 7

( ) ,
( ) .
e e e e e e

e e e e e e
= = −
= =

But it has the property of alternativity, that is, any two 
elements in it generate an associative subalgebra isomorphic 
to R, ₵0, 0H .

0e  and (1 7)ie i≤ ≤  generate a subalgebra isomorphic 
to dual numbers ₵0,

Subalgebra with bases 0 , , ,i j ke e e e (1 , , 7)i j k≤ ≤ is 

isomorphic to quasi-quaternions algebra
0Hq .

2.1 Some Properties of Para-octonions

The conjugate of para-octonion
7

0
i i x x

i
x a e S V

=

= = +∑


is
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The para-octonions algebra is not division algebra, be-
cause for every nonzero x∈ OP  the relation 0,xN = im-
plies 0.x ≠
Example 1. Consider the para-octonions

1 1 (1, 1,2, 2,0,1,1),x = + − −

2 0 (1, 1,1, 2,0,1,1)x = + − − and 

3 2 (1, 1, 2, 2,2,1,1);x = − + − −

1. The vector parts of 1 2,x x are

1 2
(1, 1, 2, 2,0,1,1), (1, 1,1, 2,0,1,1).x xV V= − − = − −

 

2. The conjugates of 1 2,x x are

1 21 (1, 1,2, 2,0,1,1), 0 (1, 1,1, 2,0,1,1).x x= − − − = − − −

3. The norms are given by

1 2 3
1, 0, 4.x x xN N N= = =

4. The inverses are

1 1
1 3

11 (1, 1,2, 2,0,1,1), [ 2 (1, 1, 2, 2, 2,1,1)],
4

x x− −= − − − = − − − −

and 2x  not invertible.

5. One can realize the following operations

1 2

1 2

1 2

2 1

1 (2, 2,3, 4,0,2,2)
2 (0,0,1,0,0,0)

0 (1, 1,1, 2,0,1, 1)
0 (1, 1,1, 2,0,1,3)

x x
x x
x x
x x

+ = + − −
− = +
= + − − −
= + − −

1 2 1 2 2 1
0.x x x x x xN N N N= = =

Theorem 1.4. The set 1OP of unit split semi-octonions is a 

subgroup of the group 0OP  where 0O O [0 0].P P= − −


Proof: Let 1, OPx y∈ . We have 1,xyN =  i.e. 1OPxy∈
and thus the first subgroup requirement is satisfied. Also, by 
the property

1 1,x x x
N N N −= = =

the second subgroup requirement 1 1O .Px− ∈

3.2 Trigonometric form and De Moivre’s theorem
The trigonometric (polar) form of a nonzero para-octonion

7

0
i i

i
x a e

=

=∑ is

(cos sin )x r wϕ ϕ= +


where xr x N= = is the modulus of x,

0cos a
r

ϕ =  , 

1 27
2

1sin
i

i
a

r
ϕ ϕ =

 
 
 = =
∑

and

1 2 7 1 2 77
2 1 2

1

1( , ,..., ) ( , ,..., ).
( )i

i

w w w w a a a
a

=

= =

∑


This is similar to polar coordinate expression of a qua-
si-quaternion and dual number.

Example 2. The trigonometric forms of the para-octonions

1 1 (1, 1,0,1,1,1, 1)x = + − − is 1 1cos sin ,x wϕ ϕ= +


2 2 (2, 1,0,1, 1,2,1)x = − + − − is 2 22[cos sin ]x wϕ ϕ= +


where

1
1 (1, 1,0,1,1,1, 1),
6

w = − −


2
1 (2, 1,0,1, 1, 2,1)
12

w = − −


and 
1 2

0.w wN N= = 

Theorem 1.5. (De Moivre’s theorem) If (cos sin )x r wϕ ϕ= +


 
be a para-octonion and n is any positive integer, then

(cos sin )n nx r n w nϕ ϕ= +


Proof: The proof easily follows by induction on n. ■
The Theorem holds for all integers n, since

1 cos sin ,q wϕ ϕ− = −


cos( ) sin( )
cos sin .

nq n w n
n w n

ϕ ϕ
ϕ ϕ

− = − + −
= −





Example 3. Let 1 (1, 1,2,1,2,2, 1)x = + − − . Find 10x and 
45.x−

Solution: First write x in trigonometric form.

cos sin ,x wϕ ϕ= +

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where 1cos 1, sin 4, (1, 1,2,1,2,2, 1).4wϕ ϕ= = = − −


Applying de Moivre’s theorem gives:

10

45

cos10 sin10 1 40 1 10(1, 1,2,1,2,2, 1)
cos( 45 ) sin( 45 ) 1 45(1, 1,2,1,2, 2, 1).

x w w
x w

ϕ ϕ
ϕ ϕ−

= + = + = + − −

= − + − = − − −

 



Corollary 1.5. The equation 1,  doesn’t have solution 
for a unit para-octonion.

Example 3.5. Let 1 (1, 1,2,1,1,0, 1)x = − + − −  be a unit pa-
ra-octonion. There is no n (n > 0) such that 1.nx =

For any unit para-octonion cos sin ,x wϕ ϕ= +


since 
2 0,w =
 a natural generalization of Euler’s formula is

2 3( ) ( )1 ... 1 cos sin ,
2! 3!

w w we w w w xϕ ϕ ϕϕ ϕ ϕ ϕ= + + + + = + = + =


 
  

3.3 Roots of Para-octonion

Theorem 1.6. Let (cos sin )x r wϕ ϕ= +


be a para-octon-
ion. The equation na x= has only one root and this is

(cos sin )na r w
n n
ϕ ϕ

= +


Proof: We assume that (cos sin )a M wλ λ= +


is a 

root of the equation na x= , since the vector parts of x  
and a are the same. From Theorem 4.5, we have

(cos sin ).n na M n w nλ λ= +


Now, we find

, cos cos , sin sin .nM r n nϕ λ ϕ λ= = =

So, (cos sin )na r w
n n
ϕ ϕ

= +
 is a root of equation 

.na x=  If we suppose that there are two roots satisfying 

the equality, we obtain that these roots must be equal to each 
other.

 ■

Example 1.6. Let 8 (1,0, 2,0,2, 1,0)x = + − − be a pa-
ra-octonion. The cube root of the octonion x is

1 33 8(cos sin )
3 3

12(1 ).
3 8

x w

w

ϕ ϕ
= +

= +





Conclusion
In this paper, we defined and gave some of algebraic prop-
erties of para-octonions and showed that the trigonometric 
form of para-octonions is similar to quasi-quaternions and 
dual numbers. The De Moivre’s formulas for these octon-
ions is obtained. We gave some examples for clarification.

Further Work
We will give a complete investigation to real matrix repre-
sentations of para-octonions, and give any powers of these 
matrices.
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