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Abstract

The paper consider the Caputo elliptic equation with nonlocal condition. We obtain the upper
bound of the mild solution. The second contribution is to provide the lower bound of the solution
at terminal time. We show that the convergence results between Caputo modi�ed Helmholtz
equation and Caputo Poisson equation. The main tool is the use of upper and lower bounds of
the Mittag-Le�er function, combined with analysis in Hilbert scales space.
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1. Introduction

Today, the topic of fractional di�erential equation has received the attention of many scien-
tists in di�erent �elds. In some real simulation models, there are some interference phenomena
due to viscous factors. Therefore, models that involve memory are more descriptive than some
classical models. A good choice is to use derivatives of order to create some models, to better
explain the phenomena that classical derivatives are missing, see [6, 7, 8, 4, 5]. Mathematicians
have spent a lot of time studying di�erent types of derivatives, but it seems that the two types
of derivatives Caputo and Riemann-Liouville are of most interest to them. The reason they are
of interest comes from the model sticking to memory e�ects. We temporarily list some articles
about Caputo or Riemann-Liouville [1, 2, 3, 18, 10, 12, 14, 9, 11, 15, 20, 13, 19] and some other
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derivatives, see [21, 22? , 23, 24, 25].
In this paper, we are interested in the following evolution equation with a time-fractional deriva-
tive 

CD
α
t w + wxx = kw, in (0, π)× (0, T ],

w(0, t) = w(π, t) = 0, 0 < t < T,

wt(x, 0) = 0, 0 < t < T,

(1)

with the nonlocal condition as follows

aw(x, 0) + bw(x, T ) +

∫ T

0
ψ(t)w(x, t)dt = f(x), 0 < x < π. (2)

In (2), the functions f and ψ are de�ned later. The number T is a positive constant. In our
problem, k is a constant k ≥ 0 and a, b are two constants which are not negative. If α = 2
and k > 0, Problem (1) is called classical modi�ed Helmholtz equation which is well-known in
physics. If α = 2 and k = 0, Problem (1) is called classical Poisson equation.

The term CD
α
t w appears on (1) is called the Caputo derivative with respect to t which is

de�ned by (see [27, 26])
CD

α
t w(x, t) =

1
Γ (2−α)

∫ t
0 (t− r)1−α∂

2w

∂r2
(x, r)dr, for 1 < α < 2,

CD
α
t w(t, x) =

∂αw

∂tα
(x, t), for α = 1, 2,

(3)

and Γ is the Gamma function.
As is known, there are a number of physical phenomena described by classical elliptic equations
that do not satisfy some explanations, thus requiring the appearance of the Caputo derivative.
This is also the reason why Problem (1) is called Caputo elliptic equation. When we encounter
some observation or physical phenomenon involving viscoelasticity, we need the Caputo deriva-
tive rather than the classical derivative. And by using Caputo derivative in the (1) model we
will obtain the better simulate.

Let us try to discuss on some fractional elliptic equations. In [14], the authors considered an
elliptic equation associated with the Riemann�Liouville derivative. Some other articles for an
elliptic equation with fractional order have been studied in [29, 30]. Let us refer to the interesting
paper [28]. The authors [28] provided the ill-posedness of the Problem (1) in the case k = 0
without giving its approximate solution. Motivated by the work [28], the author [33] studied
Cauchy problem for a semilinear fractional elliptic equation. Under some assumptions of the
sought solution, they proposed the Fourier truncation method for approximating the problem.
Some estimates of logarithmic type between the sought solution and regularized solution are
established. Further development work of [33] has been completed in detail in [34].

To the best of our knowledge, this is the �rst work to survey about Problem (1) with the
nonlocal condition (2). This condition (2) is probably the �rst to appear. For some papers on
nonlocal condition, we can take a closer look at some problems related to this model (2), such
as [37]. It can be immediately recognized that the condition in this paper is more complicated
than the conditions in [37].

There are three main results in this paper. The �rst result shows the well-posedness when
the input data is in Hilbert scale space. The second result shows that the lower bound of the
mild solution at the �nal time t = T . According to our research, there are very few results on
the lower bound of the solution. In addition, we show that the solution to Caputo modi�ed
Hemholtz equation will tends to the mild solution to Caputo Poisson equation. In order to
overcome some di�cult things for the proof, we need to use some techniques related to the
bounds of the Mittag Le�er functions.
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2. Preliminaries

De�nition 2.1. (Hilbert scale space). Let us de�ne the Hilbert scale space Hθ(0, π) given as
follows

Hθ(0, π) =

v ∈ L2(0, π)
∣∣∣ ∞∑

j=1

j4θ
(∫

Ω
f(x)ej(x)dx

)2
<∞

 ,

for any s ≥ 0. It is well-known that Hs(Ω) is a Hilbert space corresponding to the norm

∥v∥Hθ(0,π) =

( ∞∑
j=1

j4θ
(∫

Ω
v(x)ej(x)dx

)2)1/2

, v ∈ Hθ(0, π).

Here ej(x) =
√

2
π sin(jx).

De�nition 2.2. The Mittag-Le�er function is de�ned by

Eα,θ(z) =
∞∑

m=0

zm

Γ (αm+ θ)
, z ∈ C, (4)

where α > 0 and θ ∈ R are arbitrary constants.

The following lemmas provide upper and lower bounds of the Mittag-Le�er functions Eα,1(z),
Eα,2(z), Eα,α(z) by the exponential functions.

Lemma 2.1 (See [31]). Let 0 < α0 < α1 < 2 and α ∈ [α0, α1]. Then there exists two constants
µ1, µ2 > 0 and z > 0 such that

µ1
α

exp
(
z

1
α

)
≤ Eα,1(z) ≤

µ2
α

exp
(
z

1
α

)
. (5)

In addition, there exists two constants µ3, µ4 > 0 such that

µ3
α

exp
(
z

1
α

)
≤ z

α−1
α Eα,α(z) ≤

µ4
α

exp
(
z

1
α

)
, (6)

for any z > 0.

Lemma 2.2. (see [31]) Let z ∈ R. Then we have

d

dz
Eα,1(z) =

Eα,α(z)

α
(7)

and
d

dz
Eα,1(λz

α) =
1

z
Eα,0(λz

α). (8)

Theorem 2.1. Let the function f ∈ Hθ(0, π). Then if a ≥ 0, b ≥ 0 and ψ(t) > 0 then problem
(1)-(2) has a unique solution w which satis�es∥∥∥w∥∥∥

L∞(0,T ;Hθ(0,π))
≤ µ2
bµ1

∥∥∥f∥∥∥
Hθ(0,π)

. (9)

Let us assume that f ∈ Hθ+ 1
α (0, π). If a = b = 0 and ψ(t) > M0 > 0 for any 0 ≤ t ≤ T then∥∥∥w∥∥∥

L∞(0,T ;Hθ(0,π))
≲
∥∥∥f∥∥∥

Hθ+ 1
α (0,π)

. (10)
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Proof. First, we need to give the explicit fomula of the mild solution to (1)-(2). Let us assume
that Problem (1)-(2) has a solution

w(x, t) =

∞∑
j=1

wj(t)ej(x), wj(t) =

∫ π

0
w(x, t)ej(x)dx.

It is obvious to see that zn satis�es the following system

CD
α
t wj(t) = j2wj(t) + kwj(t),

d

dt
wj(0) = 0, (11)

and ∫ T

0
ψ(t)wj(t)dt =

∫
Ω
f(x)ej(x)dx. (12)

In view of the previous result of [26, Section 2], we give the solution of (11) in the following

wj(t) =Eα,1

(
(j2 + k)tα

)
wj(0). (13)

The condition (2) provide us to get that

awj(0) + bwj(T ) +

∫ T

0
ψ(t)wj(t)dt = fj , 0 < x < π. (14)

Thus, we get that the following estimate

awj(0) + bEα,1

(
(j2 + k)Tα

)
wj(0) +

(∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt

)
wj(0) = fj . (15)

Hence, we have immediately that

wj(0) =
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

. (16)

Combining (13) and (16), we get

w(x, t) =

∞∑
j=1

Eα,1

(
(j2 + k)tα

)
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

ej(x). (17)

If a ≥ 0, b > 0 and ψ(t) > 0 then we get

∥∥∥w(., t)∥∥∥2
Hθ(0,π)

=
∞∑
j=1

j4θ

(
Eα,1

(
(j2 + k)tα

)
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

)2

≤
∞∑
j=1

j4θ

(
Eα,1

(
(j2 + k)tα

)
fj

bEα,1 ((j2 + k)Tα)

)2

. (18)

Here, since the condition a ≥ 0, b > 0 and ψ(t) > 0, we note that

a+ bEα,1

(
(j2 + k)Tα

)
+

∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt ≥ bEα,1

(
(j2 + k)Tα

)
.

Using Lemma (2.1), we obtain that

Eα,1

(
(j2 + k)tα

)
≤ µ2

α
exp

(
(j2 + k)

1
α t
)

(19)
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and

Eα,1

(
(j2 + k)Tα

)
≥ µ1

α
exp

(
(j2 + k)

1
αT
)

(20)

From some previous observations, we deduce that∥∥∥w(., t)∥∥∥2
Hθ(0,π)

≤ µ22
b2µ21

∞∑
j=1

j4θ exp
(
2(j2 + k)

1
α (t− T )

)
f2j ≤ µ22

b2µ21

∞∑
j=1

j4θf2j . (21)

This implies that ∥∥∥w(., t)∥∥∥
Hθ(0,π)

≤ µ2
bµ1

∥∥∥f∥∥∥
Hθ(0,π)

. (22)

Thus, we infer that w ∈ L∞(0, T ;Hθ(0, π)) and∥∥∥w∥∥∥
L∞(0,T ;Hθ(0,π))

≤ µ2
bµ1

∥∥∥f∥∥∥
Hθ(0,π)

. (23)

We show the second case. If ψ(t) ≥M0 then we get∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt ≥M0

∫ T

0
Eα,1

(
(j2 + k)tα

)
dt ≥ M0µ1

α

∫ T

0
exp

(
(j2 + k)

1
α t
)
dt.

Thus, we obtain∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt ≥ M0µ1

α(j2 + k)
1
α

[
exp

(
(j2 + k)

1
αT
)
− 1
]
. (24)

This implies that (
Eα,1

(
(j2 + k)tα

)
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

)2

≤
µ22(j

2 + k)
2
α exp

(
2(j2 + k)

1
α t
)

M2
0µ

2
1

[
exp

(
(j2 + k)

1
αT
)
− 1
]2 ≲ (j2 + k)

2
α . (25)

From above observation and noting that a = b = 0, we deduce that

∥∥∥w(., t)∥∥∥2
Hθ(0,π)

=
∞∑
j=1

j4θ

(
Eα,1

(
(j2 + k)tα

)
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

)2

≲
∞∑
j=1

j4θ(j2 + k)
2
α |fj |2 ≲

∥∥∥f∥∥∥2
Hθ+ 1

α (0,π)
. (26)

The above estimate allows us to get the desired result (10).

The following theorem gives us an interesting conclusion that solution of the Caputo modi�ed
Helmholtz equation (k > 0) will converge to the solution of Caputo Poisson equation (k = 0).

Theorem 2.2. Let ψ = 0. Let wk be the solution to problem (1)-(2) with k > 0. Let w∗ be the
solution problem (1)-(2) with k = 0. Then if f ∈ Hθ(0, π) then we get∥∥wk − w∗∥∥

L∞(0,T ;Hθ(0,π))
≲ k

1
α

∥∥f∥∥Hθ(0,π)
. (27)

209



Proof. Since (17), we infer that

wk(x, t) =

∞∑
j=1

Eα,1

(
(j2 + k)tα

)
fj

a+ bEα,1 ((j2 + k)Tα)
ej(x), w∗(x, t) =

∞∑
j=1

Eα,1

(
j2tα

)
fj

a+ bEα,1 (j2Tα)
ej(x). (28)

From above observation, we �nd that

wk(x, t)− w∗(x, t)

=
∞∑
j=1

Eα,1

(
(j2 + k)tα

) (
a+ bEα,1

(
j2Tα

) )
− Eα,1

(
j2tα

) (
a+ bEα,1

(
(j2 + k)Tα

) )(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

) fjej(x).

(29)

The above expression is rewritten as follows

wk(x, t)− w∗(x, t) =
∞∑
j=1

a
(
Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

)fjej(x)
+

∞∑
j=1

bEα,1

(
j2Tα

) (
Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

) fjej(x)
−

∞∑
j=1

bEα,1

(
j2tα

) (
Eα,1

(
(j2 + k)Tα

)
− Eα,1

(
j2Tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

) fjej(x)

= I1(k) + I2(k) + I3(k). (30)

Step 1. Estimation of I1(k).
Let us �rst consider the term I1(k). Indeed, we get∥∥∥I1(k)∥∥∥2

Hθ(0,π)
=

∞∑
j=1

j4θ

(
a
(
Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

))2

|fj |2. (31)

In view of the equality d
dzEα,1(z) =

Eα,α(z)
α , we know that∣∣∣Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

) ∣∣∣ = ∣∣∣ 1
α

∫ (j2+k)tα

j2tα
Eα,α(ξ)dξ

∣∣∣
≤ µ4
α2

∫ (j2+k)tα

j2tα
ξ

1−α
α exp(ξ

1
α )dξ

=
µ4
α2

exp(ξ
1
α )|(j

2+k)tα

j2tα
=
µ4
α2

[
exp(t(j2 + k)

1
α )− exp(t(j2)

1
α )

]
.

(32)

In addition, using the inequality 1− e−z ≤ z for any z > 0, we have

exp(t(j2 + k)
1
α )− exp(t(j2)

1
α ) = exp(t(j2 + k)

1
α )
[
1− etj

2
α−t(j2+k)

1
α
]

≤ T exp((j2 + k)
1
α t)
(
(j2 + k)

1
α − j

2
α

)
. (33)

Using the inequality (a+ b)m ≤ am + bm for 0 < m < 1 and a, b > 0, we obtain

(j2 + k)
1
α − j

2
α ≤ k

1
α (34)
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since we note that 1
α ≤ 1. Due to some previous results, we know that

exp(t(j2 + k)
1
α )− exp(t(j2)

1
α ) ≤ exp((j2 + k)

1
α t). (35)

This follows from (32) that∣∣∣Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

) ∣∣∣ ≤ Tµ4
α2

k
1
α exp((j2 + k)

1
α t), (36)

for any 0 ≤ t ≤ T . In addition, since (44), we �nd that

a+ bEα,1

(
(j2 + k)Tα

)
≥ bµ1

α
exp

(
(j2 + k)

1
αT
)
. (37)

Combining (31) and (37), we get∥∥∥I1(k)∥∥∥2
Hθ(0,π)

≤
(
Tµ4
αbµ1

)2

k
2
α

∞∑
j=1

j4θ|fj |2. (38)

Thus, we deduce that ∥∥∥I1(k)∥∥∥
Hθ(0,π)

≤ Tµ4
αbµ1

k
1
α

∥∥∥f∥∥∥
Hθ(0,π)

. (39)

Step 2. Estimation of I2(k).
Using Parseval's equality, we get that

∥∥∥I2(k)∥∥∥2
Hθ(0,π)

=
∞∑
j=1

j4θ

(
bEα,1

(
j2Tα

) (
Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

) )2

|fj |2

≤
∞∑
j=1

j4θ

((
Eα,1

(
(j2 + k)tα

)
− Eα,1

(
j2tα

))
a+ bEα,1 ((j2 + k)Tα)

)2

|fj |2. (40)

Combining (36) and (37) and (40), we infer that∥∥∥I2(k)∥∥∥
Hθ(0,π)

≤ Tµ4
αbµ1

k
1
α

∥∥∥f∥∥∥
Hθ(0,π)

. (41)

Step 3. Estimation of I3(k).
Using Parseval's equality, we get that

∥∥∥I3(k)∥∥∥2
Hθ(0,π)

=
∞∑
j=1

j4θ

(
bEα,1

(
j2tα

) (
Eα,1

(
(j2 + k)Tα

)
− Eα,1

(
j2Tα

))(
a+ bEα,1 ((j2 + k)Tα)

)(
a+ bEα,1 (j2Tα)

) )2

|fj |2. (42)

Using Lemma (2.1), we obtain that

Eα,1

(
j2tα

)
≤ µ2

α
exp

(
j

2
α t
)
, (43)

and

Eα,1

(
j2Tα

)
≥ µ1

α
exp

(
j

2
αT
)

(44)
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Thus, we provide that

bEα,1

(
j2tα

)
a+ bEα,1 (j2Tα)

≤
Eα,1

(
j2tα

)
Eα,1 (j2Tα)

≤ µ2
µ1

exp
(
j

2
α (t− T )

)
≤ µ2
µ1
. (45)

Moreover, using (36) and (37), we get that∣∣∣Eα,1

(
(j2 + k)Tα

)
− Eα,1

(
j2Tα

) ∣∣∣
a+ bEα,1 ((j2 + k)Tα)

≤ Tµ4
αbµ1

k
1
α (46)

Combining (42), (45) and (46), we deduce that∥∥∥I3(k)∥∥∥2
Hθ(0,π)

≤
(
Tµ4µ2
αb|µ1|2

)2

k
2
α

∞∑
j=1

j4θ|fj |2. (47)

Therefore ∥∥∥I3(k)∥∥∥
Hθ(0,π)

≤ Tµ4µ2
αb|µ1|2

k
1
α

∥∥∥f∥∥∥
Hθ(0,π)

. (48)

In view of three results as in three steps, we conclude that

∥∥∥wk(., t)− w∗(., t)
∥∥∥
Hθ(0,π)

≤
3∑

j=1

∥∥∥Ij(k)∥∥∥
Hθ(0,π)

≲ k
1
α

∥∥∥f∥∥∥
Hθ(0,π)

. (49)

From the right hand side of the above expression independent of t, we immediately obtain the
assertion (27).

Theorem 2.3. Let the function f ∈ Hθ(0, π). Then if a ≥ 0, b ≥ 0 and 0 < ψ(t) ≤ M1,
M1 > 0. Then problem (1)-(2) has a unique solution w which satis�es∥∥∥w(., T )∥∥∥

Hθ(0,π)
≥ µ1

α

(
a+ bµ2

α + M1µ2

α(1+k)
1
α

)∥∥∥f∥∥∥
Hθ(0,π)

. (50)

Proof. In view of (17), we get that

w(x, T ) =

∞∑
j=1

Eα,1

(
(j2 + k)Tα

)
fj

a+ bEα,1 ((j2 + k)Tα) +
∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

ej(x). (51)

Using the Parseval's equality, we get that

∥∥∥w(., T )∥∥∥2
Hθ(0,π)

=

∞∑
j=1

j4θ

(
Eα,1

(
(j2 + k)Tα

)
a+ bEα,1 ((j2 + k)Tα) +

∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

)2

|fj |2. (52)

We recall that from (44)

µ2
α

exp
(
(j2 + k)

1
αT
)
≥ Eα,1

(
(j2 + k)Tα

)
≥ µ1

α
exp

(
(j2 + k)

1
αT
)
. (53)

Since the condition ψ(t) ≤M1, we know that
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∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt ≤M1

∫ T

0
Eα,1

(
(j2 + k)tα

)
dt

≤ M1µ2
α

∫ T

0
exp

(
(j2 + k)

1
α t
)
dt

=
M1µ2

α(j2 + k)
1
α

[
exp

(
(j2 + k)

1
αT
)
− 1
]
. (54)

Since j2 + k ≥ 1 + k, we follows from two above observations that

a+ bEα,1

(
(j2 + k)Tα

)
+

∫ T

0
ψ(t)Eα,1

(
(j2 + k)tα

)
dt

≤

(
a+

bµ2
α

+
M1µ2

α(1 + k)
1
α

)
exp

(
(j2 + k)

1
αT
)
. (55)

Hence, we deduce that

Eα,1

(
(j2 + k)Tα

)
a+ bEα,1 ((j2 + k)Tα) +

∫ T
0 ψ(t)Eα,1 ((j2 + k)tα) dt

≥ µ1

α
(
a+ bµ2

α + M1µ2

α(1+k)
1
α

) . (56)

Thus, we follows from (57) that

∥∥w(., T )∥∥2Hθ(0,π)
≥ µ21

α2
(
a+ bµ2

α + M1µ2

α(1+k)
1
α

)2 ∞∑
j=1

j4θ|fj |2. (57)

The proof is completed.
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