Farklı Katılım Oranlarında Uygulanan Çeşitli Emprenye Maddelerinin Yongalevhannın Yanma Özellikleri Üzerine Etkileri

Ahmet Ali VAR

Özet

Çalışmanın amacı, ahşap koruma işlerinde geniş kullanım olan çeşitli emprenye maddelerinin katılım oranlarının yongalevhannın yanma özellikleri üzerine etkilerini araştırmak ve emprenye maddesi katılım oranlarıyla yongalevhannın yanma özellikleri arasındaki ilişkileri tespit etmektir. Bu maksatla, %30 geniş yapraklı ağac (Populus nigra L.) ve %70 iğne yapraklı ağac (Pinus brutia Ten., Pinus nigra Arn (Lamb.), Cedrus libani Ait.) türlerinden elde edilen yongaların karışımu, tür-formaldehit (%65), sertleştirici (%33, amonyum klorür), borik asit (%5), boraks (%5), borik asit/boraks (%2.5/2.5), tanalith-CBC (%10), tanalith-CBC/borik asit/boraks (%5/2.5/2.5), kolofan (%10), alkid reçinesi (%20) ve immersol-WR (%1.76) kullanılmıştır. Deneme levhaların tutkal pürkürme makinesinde önce emprenye ediliptir, sonra tutkalının yongaların 150°C sıcaklık ve 26.5kp/cm² basınçta 6 dakika preslenmesiyle üretilmiştir. Deneylerde yongalevhaların alev kaynaklı yanma, alevli yanma ve kor halinde yanma sıcaklıkları ile yanma sonrası ağırlık kayıpları test edilmiştir. Sonuç olarak, kontrol levhasına göre emprenyeli levhaların yanma sıcakıkları daha düşük olmuştur. Bunun yanında, emprenyeli levhaların yanma sonrası ağırlık kayıpları daha az gerçekleşmiştir. Alev kaynaklı yanmadan, borik asit/boraks karışımı hariç diğer emprenye maddeleri yongalevhannın yanma nukavemetini önemli ölçüde (p<0.05) etkilememiştir. Ayrıca emprenye maddesi katılım oranları ile yongalevhannın yanma özellikleri arasında negatif bir ilişki bulunmuştur. Diğer bir ifadeyle, emprenye maddesi katılım oranı arttıkça, yongalevhannın yanma özellikleri iyileşmiştir.

Anahtar Kelimeler: Ahşap, Emprenye, Yongalevha, Yanma.

Effects on Fire Properties of Particleboards of Various Wood Preservatives Applied in Different Adding Rates

Abstract

The aim of this study was to investigate effects on combustion properties of particleboard of adding rates of various wood preservatives, and determine correlations between adding rates of wood preservative and fire properties of particleboard. In this study, the following materials were used for production of experimental particleboards: wood particle mixture of 30% latifolious tree (Populus nigra L.) and 70% coniferous tree (Pinus brutia Ten., Pinus nigra Arn (Lamb.), Cedrus libani Ait.), urea-

1 Bu çalışma, DPT tarafından desteklenen 97.113.001.2 nolu araştırma projesinin bir bölümü olarak yürütülmüştür.

2 SDÜ Orman Fakültesi, Orman Endüstrisi Mühendisliği Bölümü, 32260, Isparta, ahmetalivar@orman.sdu.edu.tr
formaldehyde (65%), hardener (33%, ammonium chloride), boric acid (5%), borax (5%), boric acid/borax (2.5/2.5%), tanalith-CBC (10%), tanalith-CBC/boric acid/borax (5/2.5/2.5%), colophony (10%), alkyd resin (20%), immersol-WR (1.76%). Before adhering treatment, the wood particles were treated with wood impregnating solutions in the gluing machine. The particleboards were manufactured by pressing at temperature 150°C and pressure 26.5kN/cm² for 6 minutes. The combustion properties of particleboards were tested in four stages: flame-based, flaming, glowing, and mass loss. As a result of the tests, for treated particleboards, burning temperatures and mass losses were more than that of untreated particleboards. For flame-based stage, fire resistances of particleboard were affected significantly with added boric acid/borax mixture, but effects of the other preservatives were not important statistically (p≤0.05). It was also found a negative correlation between combustion properties of particleboard and adding rates of preservation chemicals. In other words, the combustion properties of treated particleboards increased with increasing of adding rates of wood preservatives.

Keywords: Wood, Wood impregnation, Particleboard, Fire resistance.

1. **GİRİŞ**

Yongalevhalar %90 ve daha fazla oranlarda odun veya diğer ligno-selulözik bitkisel hammaddeleri içermekteidir. Herhangi bir koruma işlemine tabi tutulmadan doğrudan üretimde kullanılan bu organik yongalar, zararlı biyotik ve abiyotik unsurların olumsuz etkisinde kalabilmezlerdir. Bunun sonucu, mamul malzemede boyut değişmeleri, renklenmeler, çürümeler ve direnç kayıpları meydana gelebilir, ayrıca doğrudan temas eden ateş ve ısının etkisiyle alev alabilme, yanabilme veya daha aşağıda belirtilen bozunmaları olabilir.

Bu çalışmada, ayır ayır olmak üzere, ahşap koruyucusu çeşitli kimyasal madde çözeltiğleryle muamele edilmiş odun yongaları kullanılarak üretilen yongalevhallarının yanmayı itici mukavemetleri araştırılmıştır. Araştırmda, ahşap koruma işlerinde geniş kullanım alan bazı bor bileşikleri ve su itici maddelerin katılım oranlarının, yongalevhanın yanma özelliklerine etkilerin saplanması, bu maddelerin katılım oranları ile yongalevhanın yanma özelliklerini arasındaki ilişkilerin belirlenmesi amaçlanmışdır. Çalışma, fabrikada tutkalanmayaa hazır endüstriyel odun yongalarından üretilen laboratuvar tipi yongalevhalar üzerinde yürütülmüştür. Araştırma, mobilya, prefabrik ev vb yapımında kullanım giderek artan ahşap esaslı yapışal levha ürünlerinin yangın
zararlarına karşı dayanımlarının ortaya konulmasına yönelik çalışmalarla katkıda bulunması bakımından önem taşımaktadır.

Bu durum, konuya ilgili literatürde yer alan bazı çalışmalarla, özellikle de ahşap esastlı yapışlık levha ürünleriyle ilgili olanlara yer verilmiş ve aşağıda kısaca özetlenmiştir:

Boraks, potasyum karbonat ve wolmanit-CB maddeleri, firça ile sürme ve daldirma yöntemleri kullanılarak emprenye edilen kontrplak, yönlendirilmiş yongallevha (OSB) ve lif levha (MDF) üzerinde yapılan yanma deneyleri sonucunda, potasyum karbonat ve daldirma yöntemi uygulanan MDF’de yanma mukavetinin daha iyi olduğu belirtilmektedir (Aslan ve Özkaya, 2004).

Japon yalancı selvisi ve huş ağacı kaplama levhaları, sodyum silikat (su camı), alüminyum sülfat ve kalsiyum klorit çözeltileri ile vakum ve difüzyon yöntemleri kullanılarak üretilen kompozit levhalar üzerinde yapılan bir çalışmada, levhaların yanma mukavemetinin kontrol levhalarından daha iyi olduğu, özellikle, difüzyon yönteminde daha yüksek bulunduğu bildirilmektedir (Furuno, 1991).

Rutubet LDN civarında ve kuru halde (%20’den az) olan göknar/kayak odunu yongaları karışımı, yanmayı önleyici bazı maddeler ve kombinezonzları ile toz ve çözelti halinde püskürtme yöntemi kullanılarak bir çalışmada, levhaların yanma mukavemetinin, ikinci işlemde daha iyi olduğu belirtilmektedir (Syska, 1969).

Kontrplak, üst yüzey işlemi uygulanmış sert lif levha (HDF), PVC kaplaması, ağaç ve kumaş gibi organik polimer özellikle çeşitli malzemeler üzerinde tutuşma, alev yayılması ve duman yoğunluğu testleri yapılan bir çalışmada, HDF, kontrplak ve PVC kaplamasının, tutuşmaya karşı dayanımının iyileştiği bildirilmektedir (Hilado and Murphy, 1979).

Kontrplak, yongallevha (PTB), lif levha (MDF), yangın geçici klorlu kauçuk boya ve firça ile 1, 2, 3 kat sürme yöntemi kullanılarak bir çalışmada, yanma direncinin üç kat boya uygulanan yongallevhada en fazla, bir kat boya uygulanan lif levhada en olduğu belirlmiştir (Lee, 1989; Uysal, 1997).

2. MALZEME VE YÖNTEM
2.1. Malzeme
Çalışma, laboratuvar tipi normal yongallevhalar üzerinde gerçekleştirilmiştir. Araştırmada, %30 oranında geniş yapraklı ağaç (Populus nigra L.) odunu yongaları ve %70 oranında iğne yapraklı ağaç (Pinus brutia Ten., Pinus nigra Arn. (Lamb.), Cedrus libani Ait.) odunu yongalarından oluşan karışım, %65 derişimde üre-formaldehit tutkalı, %33 derişimde sertleştirici (amonyum klorür) ve derişimleri Çizelge 1’de verilen ahşap koryucusu emprenye maddeleri kullanılmıştır. Tutkal, levhaların dış tabakaları için %10 ve orta tabakalar için %8 oranlarında uygulanmıştır. Sertleştirici, tutkal çözeltisine %10 oranında ilave edilerek kullanılmıştır. Ahşap emprenye kimyasalları ise Çizelge 1’de belirtilen derişimlerde ve katlım oranlarında tatbik edilmiştir.
Levhanın dış tabakaları, toplam levha kalmışının %35’ini ve orta tabakaları %65’ini oluşturmaktaadır. Her tabaka için, odun yongaları ağırlık esasına göre, tutkal tam kuru yonga ağırlığına göre, sertleştirici ve emprenye kimyasalları ise tam kuru tutkal ağırlığına göre kullanılmıştır (Var, 2000).

Çizelge 1. Emprenyeli yongalevhaların üretimde kullanılan işlem değişkenleri.

<table>
<thead>
<tr>
<th></th>
<th>Emprenyede kimyasalların</th>
<th>Emprenyede maddesi</th>
<th>Emprenyede maddesi</th>
<th>Üretilen levha tipi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>maddesi dereşimi (%)</td>
<td>kullanım oranı (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>0</td>
<td>0</td>
<td>K</td>
<td></td>
</tr>
<tr>
<td>Borik asit</td>
<td>5</td>
<td>0.5</td>
<td>BA_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>BA_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>BA_{3}</td>
<td></td>
</tr>
<tr>
<td>Boraks</td>
<td>5</td>
<td>0.5</td>
<td>BR_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>BR_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>BR_{3}</td>
<td></td>
</tr>
<tr>
<td>Tanalith-CBC</td>
<td>10</td>
<td>0.6</td>
<td>CBC_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>CBC_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>CBC_{3}</td>
<td></td>
</tr>
<tr>
<td>Borik asit/Boraks</td>
<td>2.5/2.5</td>
<td>0.5</td>
<td>BB_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.75</td>
<td>BB_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>BB_{3}</td>
<td></td>
</tr>
<tr>
<td>Tanalith-CBC/Borik asit/Boraks</td>
<td>5/2.5/2.5</td>
<td>0.6</td>
<td>TBB_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>TBB_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>TBB_{3}</td>
<td></td>
</tr>
<tr>
<td>Kolofan</td>
<td>10</td>
<td>1.0</td>
<td>KLF_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>KLF_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>KLF_{3}</td>
<td></td>
</tr>
<tr>
<td>Alkid reçinesi</td>
<td>20</td>
<td>1.0</td>
<td>AR_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.5</td>
<td>AR_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>3.0</td>
<td>AR_{3}</td>
<td></td>
</tr>
<tr>
<td>Immersol-WR</td>
<td>1.76</td>
<td>0.3</td>
<td>IM_{1}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>IM_{2}</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.9</td>
<td>IM_{3}</td>
<td></td>
</tr>
</tbody>
</table>

CBC: Bakır – Borat – Kromat, WR: Water repellent

2.2. Yongalevha Üretimi

Yongalevhalar, laboratuvar koşullarında ve 560x760x20mm boyutlarda üretilmiştir. Üretime, öncelikle, odun yongaları tutkallama makinesinde emprenye edilmiştir. Bu işlem, makinenin karıştırma kolları bir taraftan yongaları karıştırırken, diğer taraftan da üst enjektördenden emprenye çözeltisi yongaların üzerine püskürtülcerek gerçekleştirilmiştir. Sonra, makededeki emprenyeli yongalar, emprenye işleminde olduğu gibi, tutkal çözeltisi ile muamele edilmiştir. Ayrıca ayrı olmak üzere, her iki işlem için, yongalar 5’er dakika süreyle karıştırılmıştır. Bunu takiben, yongalar serme ve soğuk pres brimine tasınmıştır. Burada, sırasıyla, alt dış tabaka yongaları, orta tabaka yongaları ve üst dış tabaka yongaları el ile serilmiştir. Ardından, soğuk pres yapılıarak taslak levhalar oluşturulmuştur. Daha sonra, levha taslakları hidrolik

2.3. Yanma Özelliklerinin Tayini

Levhaların yanma özelliklerinin tayinine ilişkin deneyler ASTM E 160–50 (1975)’e göre yapılmıştır. Bu maksatla, her levha tipi için, 76x13x20mm boylutunda, 24’er adet örnek hazırlanmıştır. Örnekler, %7 rutubete ulaş yaccaya kadar 27±2°C sıcaklık ve %30±3 bağıl nem şartlarında bekletildikten sonra, ağırlıkları 0.01g duyarlılıkla tartılmıştır. Örnekler, Şekil 1’de verilen yanma düzeneğindeki tel kafesin her katına 2’şer adet dizilerek 12 katlı bir istif oluşturulmuştur. Her kattaki örnekler, aralarında 2.5cm mesafe ve bir alt kattaki örneklerle diş açı yapacak biçimde yerleşilmiştir. Deneýde yakıt olarak kullanılan bıtan gazın basınç 0.5kgf/cm²’də sabitlenmiştir. Gaz akımı, ocaktaki izgaranın hemen üstünde mavi renkli alev oluşturacak şekilde sürekli denetlenmiş ve gaz yandığında bacadaki sıcaklık 315±8°C olarak şekilde ayarlanmıştır.

\[
AK = \frac{(A_0 - A_s)}{A_0} \times 100
\]

Burada;

\[
AK = \text{Ağırlık kaybı (}),
\]

\[
A_0 = \text{Yanna öncesi } 7 \text{ rutubetteki ağırlık (g),}
\]

\[
A_s = \text{Yanna sonrası ağırlık (g)} \text{'dir.}
\]

2.4. İstatistiksel Analiz

Deneyle tamamlanıktan sonra, her emprenye maddesi katılm oranı için, alev kaynaklı yanma, alevli yanma ve kor halinde yanma sırasında ölçulen sıcaklık değerleri ile yanma sonrası ağırlık kayıına ilişkin değerlerin aritmetik ortalamaları, standart sapmaları ve varyasyon katsayları ayrı ayrı hesaplanmıştır. Her emprenye maddesi için elde edilen bulgular, %5 anlamıyla, varyans analizi, duncan testi ve korelasyon analizine tabi tutulmuştur. Bu aşamada, her emprenye kimyasal için, emprenye maddesi katılm oranlarının yongalevhann yanma özellikleri üzerine etkilerinin önem kontrollü yapılmış (p<0.05). Etkilerin önemli çıkması halinde, duncan testi yardımıyla emprenye maddesi katılm oranlarının (levha tiplerini) homojenlik grupları araştırılmıştır. Korelasyon analizyile ise, emprenye maddesi katılm oranlarıyla yongalevhanın yanma özellikleri arasındaki ilişkileri ve bu ilişkilerin anlamılı olup olmadığını bakılmıştır. Elde edilen her analiz ve test sonuçları için, ayrı ayrı çizelgeler hazırlanmıştır. Ayrıca her emprenye maddesi
için, yanma deneyi esnasında ve sonrasında çuplak göze incelemeler de yapılmıştır.

3. BULGULAR VE TARTIŞMA
3.1. Bulgular
Emprenyeli ve emprynesiz yongalar kullanılanlar üretlen yongalevhalar üzerinde yapılan 4 farklı yanma deneyi neticesinde elde edilen istatistiksel bulgular Çizelge 2’de, bunlara ilişkin varyans analizi sonuçları Çizelge 3’de, dünan testi sonuçları Çizelge 4’de ve korelasyon analizi sonuçları da Çizelge 5’de verilmiştir.

Çizelge 2. Deneme levhalarının yanma özelliklerine dair istatistik sonuçlar.

<table>
<thead>
<tr>
<th>Emprenye maddesi</th>
<th>Levha tipi</th>
<th>Yanma özellikleri</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Alev kayaklı yanma sıcaklığı (°C)</td>
<td>Alevli yanma sıcaklığı (°C)</td>
<td>Kor halinde yanma sıcaklığı (°C)</td>
<td>Yanma sonrası ağrılık kaybı (%)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>S</td>
<td>V</td>
<td>X</td>
<td>S</td>
</tr>
<tr>
<td>Kontrol</td>
<td>K</td>
<td>627</td>
<td>129.84</td>
<td>23.43</td>
<td>474</td>
<td>191.37</td>
</tr>
<tr>
<td>Borik asit</td>
<td>BA1</td>
<td>557</td>
<td>157.32</td>
<td>25.75</td>
<td>389</td>
<td>75.87</td>
</tr>
<tr>
<td></td>
<td>BA2</td>
<td>566</td>
<td>157.33</td>
<td>27.78</td>
<td>362</td>
<td>145.93</td>
</tr>
<tr>
<td></td>
<td>BA3</td>
<td>555</td>
<td>157.46</td>
<td>28.37</td>
<td>339</td>
<td>102.87</td>
</tr>
<tr>
<td>Boraks</td>
<td>BR1</td>
<td>538</td>
<td>165.58</td>
<td>28.43</td>
<td>405</td>
<td>108.87</td>
</tr>
<tr>
<td></td>
<td>BR2</td>
<td>531</td>
<td>142.73</td>
<td>26.86</td>
<td>401</td>
<td>92.22</td>
</tr>
<tr>
<td></td>
<td>BR3</td>
<td>515</td>
<td>129.47</td>
<td>25.16</td>
<td>364</td>
<td>181.63</td>
</tr>
<tr>
<td>Tanalith - CBC</td>
<td>CBC1</td>
<td>579</td>
<td>147.59</td>
<td>25.50</td>
<td>390</td>
<td>78.28</td>
</tr>
<tr>
<td></td>
<td>CBC2</td>
<td>576</td>
<td>156.27</td>
<td>27.12</td>
<td>335</td>
<td>96.39</td>
</tr>
<tr>
<td></td>
<td>CBC3</td>
<td>575</td>
<td>160.29</td>
<td>27.88</td>
<td>298</td>
<td>102.88</td>
</tr>
<tr>
<td>Borik asit / Boraks</td>
<td>BB1</td>
<td>550</td>
<td>147.11</td>
<td>22.64</td>
<td>431</td>
<td>124.85</td>
</tr>
<tr>
<td></td>
<td>BB2</td>
<td>524</td>
<td>148.25</td>
<td>23.78</td>
<td>419</td>
<td>72.19</td>
</tr>
<tr>
<td></td>
<td>BB3</td>
<td>518</td>
<td>130.72</td>
<td>25.25</td>
<td>410</td>
<td>114.00</td>
</tr>
<tr>
<td>Tanalith - CBC / Borik asit / Boraks</td>
<td>TBB1</td>
<td>525</td>
<td>150.35</td>
<td>24.93</td>
<td>385</td>
<td>201.03</td>
</tr>
<tr>
<td></td>
<td>TBB2</td>
<td>519</td>
<td>146.99</td>
<td>28.15</td>
<td>357</td>
<td>93.65</td>
</tr>
<tr>
<td></td>
<td>TBB3</td>
<td>505</td>
<td>135.09</td>
<td>26.77</td>
<td>339</td>
<td>120.31</td>
</tr>
<tr>
<td>Kolofan</td>
<td>KLF1</td>
<td>519</td>
<td>133.18</td>
<td>25.64</td>
<td>308</td>
<td>162.12</td>
</tr>
<tr>
<td></td>
<td>KLF2</td>
<td>504</td>
<td>114.87</td>
<td>22.78</td>
<td>297</td>
<td>173.79</td>
</tr>
<tr>
<td></td>
<td>KLF3</td>
<td>493</td>
<td>114.22</td>
<td>23.19</td>
<td>293</td>
<td>158.64</td>
</tr>
<tr>
<td>Alkid reçinesi</td>
<td>AR1</td>
<td>558</td>
<td>147.64</td>
<td>26.48</td>
<td>374</td>
<td>120.21</td>
</tr>
<tr>
<td></td>
<td>AR2</td>
<td>555</td>
<td>131.02</td>
<td>23.59</td>
<td>315</td>
<td>173.56</td>
</tr>
<tr>
<td></td>
<td>AR3</td>
<td>521</td>
<td>146.93</td>
<td>28.18</td>
<td>301</td>
<td>171.88</td>
</tr>
<tr>
<td>Immersol - WR</td>
<td>IM1</td>
<td>572</td>
<td>165.20</td>
<td>26.33</td>
<td>459</td>
<td>199.20</td>
</tr>
<tr>
<td></td>
<td>IM2</td>
<td>568</td>
<td>150.88</td>
<td>26.55</td>
<td>428</td>
<td>103.14</td>
</tr>
<tr>
<td></td>
<td>IM3</td>
<td>518</td>
<td>121.71</td>
<td>23.51</td>
<td>396</td>
<td>183.51</td>
</tr>
</tbody>
</table>

X: Aritmetik ortalama, S: Standart sapma, V: Varyasyon katsayısı
| Çizelge 3. Deneme levhalarının yanma özelliklerine dair varyans analizi sonuçları. |
|-------------------------------|-------------------------------|-------------------------------|-------------------------------|---------------------------------
<p>| Yanma özellikleri | Yanma özellikleri | Yanma özellikleri | Yanma sonrası ağrılık kayb |
| | Alev kaynaklı yanma sıcaklığı | Alevli yanma sıcaklığı | Kor halinde yanma sıcaklığı | Yanma sonrası ağrılık kayb | | | | | | | | | | | | | | | | |
| | KT | SD | KO | F | p | KT | SD | KO | F | p | KT | SD | KO | F | p | KT | SD | KO | F | p |
| GA | 61171.40 | 3 | 2039.47 | 0.89 | ÖD | 1329746.0 | 3 | 443248.6 | 8 | 23.42 | 3 | 15656.3 | 4 | 3.46 | 3 | 4.83 | 3 | 1.61 | 2.31 | ÖI |
| BA | 1002686.50 | 44 | 22788.33 | 8 | 13926.03 | 542599.5 | 6 | 120 | 4521.66 | 5.57 | 8 | 0.69 |
| T | 1063857.90 | 47 | 3790129.3 | 133 | 123 | 589568.6 | 0 | 10411 | 11 |
| GA | 39431.17 | 3 | 13143.72 | 0.64 | ÖD | 1542819.9 | 3 | 514273.3 | 1 | 21.18 | 3 | 10531.2 | 3 | 1.88 | ÖD | 37.29 | 3 | 12.43 | 18.2 | ** |
| BR | 895517.83 | 44 | 20352.67 | 3 | 76 | 438723.2 | 2 | 42.74 | 11 |
| T | 934949.00 | 47 | 5183592.3 | 153 | 76 | 438723.2 | 2 | 42.74 | 11 |
| GA | 39616.75 | 3 | 13205.58 | 0.59 | ÖD | 2108360.4 | 3 | 702786.8 | 0 | 40.48 | 3 | 3302.28 | 0.54 | ÖD | 7.79 | 3 | 2.59 | 3.84 | ÖI |
| CB | 97943.17 | 44 | 22157.79 | 4 | 51 | 308678.8 | 4 | 6052.52 | 5.41 | 8 | 0.67 |
| T | 1014559.90 | 47 | 4694679.7 | 152 | 54 | 318585.7 | 1 | 13.26 | 11 |
| GA | 184788.92 | 3 | 61596.30 | 3.17 | *** | 1970424.4 | 3 | 656808.1 | 4 | 34.34 | 3 | 25646.68 | 3 | 1.35 | ÖD | 3.95 | 3 | 1.31 | 1.92 | ÖI |
| BB | 853202.33 | 44 | 19390.96 | 3 | 76 | 550309.2 | 7 | 6325.39 | 5.47 | 8 | 0.68 |
| T | 1037991.30 | 47 | 4819586.9 | 152 | 90 | 575955.9 | 6 | 9.43 | 11 |</p>
<table>
<thead>
<tr>
<th>Column</th>
<th>GA</th>
<th>74791.75</th>
<th>3</th>
<th>24930.58</th>
<th>1.26</th>
<th>ÖD</th>
<th>849591.0</th>
<th>3</th>
<th>283196.9</th>
<th>9</th>
<th>10.82</th>
<th>***</th>
<th>801.77</th>
<th>3</th>
<th>267.25</th>
<th>0.05</th>
<th>ÖD</th>
<th>0.83</th>
<th>3</th>
<th>0.27</th>
<th>0.40</th>
<th>ÖF</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TB</td>
<td>868608.1</td>
<td>3</td>
<td>19741.09</td>
<td>0</td>
<td>44</td>
<td>4605981.8</td>
<td>176</td>
<td>26170.35</td>
<td>184891.4</td>
<td>3</td>
<td>41</td>
<td>4509.54</td>
<td>5.51</td>
<td>8</td>
<td>0.68</td>
<td>11</td>
<td>6.34</td>
<td>11</td>
<td>57.6</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>GI</td>
<td>943399.9</td>
<td>2</td>
<td>5455772.8</td>
<td>179</td>
<td>47</td>
<td>379672.6</td>
<td>7</td>
<td>12.73</td>
<td>75820.64</td>
<td>3</td>
<td>44</td>
<td>26173.5</td>
<td>56.5</td>
<td>0</td>
<td>770.1</td>
<td>3</td>
<td>256.7</td>
<td>9</td>
<td>67.6</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>943399.9</td>
<td>2</td>
<td>5455772.8</td>
<td>179</td>
<td>47</td>
<td>379672.6</td>
<td>7</td>
<td>12.73</td>
<td>75820.64</td>
<td>3</td>
<td>44</td>
<td>26173.5</td>
<td>56.5</td>
<td>0</td>
<td>770.1</td>
<td>3</td>
<td>256.7</td>
<td>9</td>
<td>67.6</td>
<td>**</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KL</td>
<td>669211.5</td>
<td>0</td>
<td>4175332.5</td>
<td>140</td>
<td>44</td>
<td>15209.35</td>
<td>7</td>
<td>15209.35</td>
<td>129013.2</td>
<td>2</td>
<td>112</td>
<td>50492.57</td>
<td>463.23</td>
<td>3.54</td>
<td>8</td>
<td>0.44</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F</td>
<td>673783.9</td>
<td>2</td>
<td>4314550.6</td>
<td>143</td>
<td>47</td>
<td>15209.35</td>
<td>7</td>
<td>15209.35</td>
<td>129013.2</td>
<td>2</td>
<td>112</td>
<td>50492.57</td>
<td>463.23</td>
<td>3.54</td>
<td>8</td>
<td>0.44</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>AR</td>
<td>20415.33</td>
<td>3</td>
<td>6805.11</td>
<td>1078728.5</td>
<td>3</td>
<td>359576.1</td>
<td>7</td>
<td>13.48</td>
<td>149299.3</td>
<td>4</td>
<td>3</td>
<td>49766.4</td>
<td>482.7</td>
<td>348.3</td>
<td>3</td>
<td>116.1</td>
<td>7</td>
<td>36.9</td>
<td>**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>GI</td>
<td>851519.3</td>
<td>3</td>
<td>2932319.5</td>
<td>110</td>
<td>44</td>
<td>19352.71</td>
<td>7</td>
<td>13.48</td>
<td>123710.7</td>
<td>4</td>
<td>120</td>
<td>1030.92</td>
<td>2.55</td>
<td>8</td>
<td>0.32</td>
<td>11</td>
<td>350.9</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>871934.6</td>
<td>7</td>
<td>4011048.0</td>
<td>113</td>
<td>47</td>
<td>19352.71</td>
<td>7</td>
<td>13.48</td>
<td>123710.7</td>
<td>4</td>
<td>120</td>
<td>1030.92</td>
<td>2.55</td>
<td>8</td>
<td>0.32</td>
<td>11</td>
<td>350.9</td>
<td>4</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM</td>
<td>105414.8</td>
<td>3</td>
<td>35138.27</td>
<td>1.72</td>
<td>ÖD</td>
<td>514429.5</td>
<td>3</td>
<td>171476.4</td>
<td>8</td>
<td>6.83</td>
<td>***</td>
<td>89221.72</td>
<td>3</td>
<td>29740.5</td>
<td>34.9</td>
<td>7</td>
<td>119.8</td>
<td>3</td>
<td>39.95</td>
<td>5</td>
<td>64.7</td>
</tr>
<tr>
<td></td>
<td>GI</td>
<td>899000.8</td>
<td>3</td>
<td>20431.83</td>
<td>3</td>
<td>25078.99</td>
<td>130</td>
<td>125009.3</td>
<td>2</td>
<td>850.40</td>
<td>4.93</td>
<td>8</td>
<td>0.61</td>
<td>11</td>
<td>124.8</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T</td>
<td>1004415.7</td>
<td>70</td>
<td>3774698.4</td>
<td>133</td>
<td>47</td>
<td>20431.83</td>
<td>3</td>
<td>25078.99</td>
<td>125009.3</td>
<td>2</td>
<td>147</td>
<td>850.40</td>
<td>4.93</td>
<td>8</td>
<td>0.61</td>
<td>11</td>
<td>124.8</td>
<td>1</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emprenye maddesi</td>
<td>Levha tipi</td>
<td>Alev kaynaklı yanma sıcaklığı</td>
<td>Alevli yanma sıcaklığı</td>
<td>Kor halinde yanma sıcaklığı</td>
<td>Yanma sonrası ağırlık kaybı</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-----------</td>
<td>-------------------------------</td>
<td>-----------------------</td>
<td>----------------------------</td>
<td>--------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>X</td>
<td>HG</td>
<td>X</td>
<td>HG</td>
<td>X</td>
<td>HG</td>
<td>X</td>
<td>HG</td>
<td></td>
</tr>
<tr>
<td>Borik asit</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA₂</td>
<td>575.38</td>
<td>a</td>
<td>388.72</td>
<td>e</td>
<td>142.72</td>
<td>a</td>
<td>74.36</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA₃</td>
<td>566.41</td>
<td>a</td>
<td>362.00</td>
<td>e</td>
<td>131.46</td>
<td>a</td>
<td>73.91</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BA₁</td>
<td>555.08</td>
<td>a</td>
<td>338.94</td>
<td>e</td>
<td>119.67</td>
<td>e</td>
<td>72.67</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Boraks</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR₂</td>
<td>538.05</td>
<td>a</td>
<td>404.83</td>
<td>f</td>
<td>150.25</td>
<td>a</td>
<td>75.33</td>
<td>g</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR₁</td>
<td>531.41</td>
<td>a</td>
<td>400.80</td>
<td>f</td>
<td>146.13</td>
<td>a</td>
<td>72.26</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR₃</td>
<td>514.58</td>
<td>a</td>
<td>363.85</td>
<td>f</td>
<td>135.51</td>
<td>a</td>
<td>70.46</td>
<td>h</td>
<td></td>
</tr>
<tr>
<td>Tanalith-CBC</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC₂</td>
<td>578.83</td>
<td>a</td>
<td>390.70</td>
<td>i</td>
<td>165.45</td>
<td>a</td>
<td>72.93</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC₃</td>
<td>576.25</td>
<td>a</td>
<td>334.81</td>
<td>h</td>
<td>163.45</td>
<td>a</td>
<td>72.48</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CBC₄</td>
<td>575.25</td>
<td>a</td>
<td>298.28</td>
<td>h</td>
<td>160.08</td>
<td>a</td>
<td>71.18</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Borik asit /</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Boraks</td>
<td>BB₁</td>
<td>549.83</td>
<td>a</td>
<td>430.66</td>
<td>g</td>
<td>150.94</td>
<td>a</td>
<td>73.09</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB₂</td>
<td>523.50</td>
<td>a</td>
<td>418.82</td>
<td>g</td>
<td>114.52</td>
<td>a</td>
<td>73.01</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BB₃</td>
<td>517.66</td>
<td>b</td>
<td>409.92</td>
<td>g</td>
<td>134.07</td>
<td>a</td>
<td>71.84</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Tanalith-CBC /</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Borik asit /</td>
<td>TBB₂</td>
<td>524.75</td>
<td>a</td>
<td>384.85</td>
<td>j</td>
<td>164.60</td>
<td>a</td>
<td>73.40</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Boraks</td>
<td>TBB₁</td>
<td>519.00</td>
<td>a</td>
<td>357.08</td>
<td>j</td>
<td>158.85</td>
<td>a</td>
<td>72.99</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td>Kolofan</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KLF₂</td>
<td>519.41</td>
<td>a</td>
<td>307.92</td>
<td>b</td>
<td>109.90</td>
<td>b</td>
<td>70.05</td>
<td>b</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KLF₃</td>
<td>504.33</td>
<td>a</td>
<td>296.53</td>
<td>b</td>
<td>106.26</td>
<td>b</td>
<td>63.78</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td></td>
<td>KLF₄</td>
<td>492.58</td>
<td>a</td>
<td>292.59</td>
<td>c</td>
<td>103.37</td>
<td>b</td>
<td>63.62</td>
<td>c</td>
<td></td>
</tr>
<tr>
<td>Alkid reçinesi</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AR₁</td>
<td>557.50</td>
<td>a</td>
<td>374.29</td>
<td>d</td>
<td>125.70</td>
<td>a</td>
<td>66.55</td>
<td>d</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AR₂</td>
<td>555.33</td>
<td>a</td>
<td>315.00</td>
<td>ç</td>
<td>111.08</td>
<td>c</td>
<td>63.66</td>
<td>e</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AR₃</td>
<td>521.33</td>
<td>a</td>
<td>300.58</td>
<td>ç</td>
<td>107.85</td>
<td>c</td>
<td>62.25</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>Immersol-WR</td>
<td>K</td>
<td>626.50</td>
<td>a</td>
<td>473.72</td>
<td>a</td>
<td>168.22</td>
<td>a</td>
<td>83.32</td>
<td>a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM₁</td>
<td>572.33</td>
<td>a</td>
<td>458.54</td>
<td>f</td>
<td>135.78</td>
<td>f</td>
<td>69.24</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM₂</td>
<td>568.25</td>
<td>a</td>
<td>428.17</td>
<td>a</td>
<td>109.09</td>
<td>g</td>
<td>67.22</td>
<td>i</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM₃</td>
<td>517.58</td>
<td>a</td>
<td>395.83</td>
<td>k</td>
<td>104.48</td>
<td>g</td>
<td>64.68</td>
<td>j</td>
<td></td>
</tr>
</tbody>
</table>

HG: Homojenlik grubu
Çizelge 5. Deneme levhalarının yanma özelliklerine dair korelasyon analizi sonuçları.

<table>
<thead>
<tr>
<th>Emprenye maddesi</th>
<th>Yanma sıcaklığı</th>
<th>Alevli yanma sıcaklığı</th>
<th>Kor halinde yanma sıcaklığı</th>
<th>Yanma sonrası ağırlık kaybı</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>r</td>
<td>p</td>
<td>r</td>
<td>p</td>
</tr>
<tr>
<td>Borik asit</td>
<td>-0.13</td>
<td>ÖD</td>
<td>-0.44</td>
<td>***</td>
</tr>
<tr>
<td>Boraks</td>
<td>-0.01</td>
<td>ÖD</td>
<td>-0.36</td>
<td>***</td>
</tr>
<tr>
<td>Tanalith-CBC</td>
<td>-0.14</td>
<td>ÖD</td>
<td>-0.28</td>
<td>***</td>
</tr>
<tr>
<td>Borik asit/Boraks</td>
<td>-0.04</td>
<td>ÖD</td>
<td>-0.49</td>
<td>***</td>
</tr>
<tr>
<td>Tanalith-CBC/Asit/Boraks</td>
<td>-0.25</td>
<td>ÖD</td>
<td>-0.02</td>
<td>ÖD</td>
</tr>
<tr>
<td>Kolofan</td>
<td>-0.04</td>
<td>ÖD</td>
<td>-0.41</td>
<td>***</td>
</tr>
<tr>
<td>Alkid reçinesi</td>
<td>-0.09</td>
<td>ÖD</td>
<td>-0.03</td>
<td>ÖD</td>
</tr>
<tr>
<td>Immersol-WR</td>
<td>-0.27</td>
<td>ÖD</td>
<td>-0.08</td>
<td>ÖD</td>
</tr>
</tbody>
</table>

r: Korelasyon katsayısı (pozitif / negatif ilişki)

Ayrıca yanma deneyleri esnasında ve sonrasında çıplak gözle yapılan inceleme lerde aşağıdaki bulgular elde edilmiştir:

Genel olarak yanma sırasında çıkan duman yoğunluğu, emprenyeli levhalarda kontrol levhasından daha az olmuştur. Deney sonunda emprenyeli örneklerdeki fiziki görünüş kontrol örneklerine göre daha iyi olup çoğulukla daha iyi muhafaza edilmiştir.

Yanma düzeneğinin tel kafesindeki 12 katlı istifte bulunan emprenyeli 24 adet örnekten 8–10 tanesi hariç, diğer örnekler yıkılamamış, fakat kontrol örnekleri tamamen yıktılmıştır. Çoğulukla, yıkılan emprenyeli örneklerin üç kısımları kümürlüşmüş, diğer kısımları yanmamıştır. Yımnayan kısımlarda ise film tabakası gibi, parlak, siyah bir görünüş ortaya çıkmıştır.

3.2. Tartışma

Alev Kaynaklı Yanma

Alev kaynaklı yanmada, emprenyeye maddesi türüne göre, ortalama yanma sıcaklığı en yüksek %10 derişimdeki tanalith–CBC ile emprenyede 576.66°C olarak, en düşük ise %10 derişimdeki kolofan ile emprenyede 505.33°C olarak
tespit edilmiştir. Emprenye maddesi katılm oranına göre, yanma sıcaklığı en yüksek %0.6 katılm oranındaki \(\text{CBC}_1 \) tipi levhada 579°C olarak, en düşük ise %3.0 katılm oranındaki \(\text{KLF}_3 \) tipi levhada 493 °C olarak bulunmuştur (Cizelge 2). Varyans analizi sonuçlarına göre, yongalevhanın yanma özellikleri üzerine porik asit/boraks karşımı dışında, diğer emprenye maddelerinin katılm oranlarının etkileri önemsiz çıkmıştır (Cizelge 3). Duncan testi sonuçlarına göre, porik asit/boraks ile emprenyeli levha tipleri (emprenye maddesi katılm oranları) farklı homojenlik gruplarında yer alırken, diğer levha tipleri aynı homojenlik gruplarında yer almıştır (Cizelge 4). Korelasyon analizi sonuçlarına göre, bütün emprenye maddeleri için, emprenye maddesinin katılm oranı ile yongalevhanın alev kaynaklı yanma sıcaklığı arasında negatif ve önemli bir ilişki bulunmuştur (Cizelge 5).

Alevli Yanma

Alevli yanmada, emprenye maddesi türüne göre, ortalama yanma sıcaklığı en yüksek %1.76 derişimdeki imersol-WR ile emprenyede 427.67°C olarak, en düşük ise %10 derişimdeki kolofanda 299.33°C olarak elde edilmiştir. Emprenye maddesi katılm oranına göre, yanma sıcaklığı en yüksek %0.3 katılm oranındaki \(\text{IM}_1 \) tipi levhada 459°C olarak, en düşük ise %3.0 katılm oranındaki \(\text{KLF}_3 \) tipi levhada 293°C olarak gerçekleşmiştir (Cizelge 2). Varyans analizi sonuçlarına göre, bütün emprenye maddeleri için, yongalevhanın yanma özelliklerini üzerine emprenye maddesi katılm oranlarının etkileri önemli çıkmıştır (Cizelge 3). Duncan testi sonuçlarına göre, bütün levha tipleri farklı homojenlik gruplarında toplannmıştır (Cizelge 4). Korelasyon analizi sonuçlarına göre, bütün emprenye maddeleri için, emprenye maddesi katılm oranı ile yongalevhanın alevli yanma sıcaklığı arasında negatif bir ilişki bulunmuştur. Bu ilişki alkid reçinesi, imersol-WR ve tanalith-CBC/borik asit/boraks maddeleri için önemlisiz iken, diğer emprenye maddeleri için önemli olmuştur (Cizelge 5).

Kor Halinde Yanma

Kor halinde yanmada, emprenye maddesi türüne göre, ortalama yanma sıcaklığı en yüksek %10 derişimdeki tanalith–CBC'de ile emprenyede 162.67°C olarak, en düşük ise %10 derişimdeki kolofan ile emprenyede 106.33°C olarak bulunmuştur. Emprenye maddesi katılm oranına göre, yanma sıcaklığı en yüksek %0.6 katılm oranındaki \(\text{CBC}_1 \) tipi levhada 165°C olarak, en düşük ise %3.0 katılm oranındaki \(\text{KLF}_3 \) tipi levhada 103.37°C olarak ortaya çıkmıştır (Cizelge 2). Varyans analizi sonuçlarına göre, yongalevhanın yanma özellikleri üzerine porik asit, kolofan, alkid reçinesi ve imersol-WR maddeleri için, emprenye maddesi katılm oranlarının etkileri önemli bulunurken, boraks, tanalith-CBC, borik asit/boraks ve tanalith-CBC/borik asit/boraks maddelerinin etkileri ise önemsiz olmuştur (Cizelge 3). Duncan testi sonuçlarına göre, porik
asit, kolofan, alkid reçinesi ve immersol-WR levha tipleri farklı homojenlik gruplarını oluştururken, diğer levha tipleri aynı homojenlik gruplarını oluşturmuştur (Çizelge 4). Korelasyon analizi sonuçlarına göre, bütün emprenye maddeleri için, emprenye maddesi katımm oranı ile yongalevhanın kor halinde yanma sıcaklığı arasında negatif bir ilişki bulunmuştur. Bu ilişki boraks, kolofan ve alkid reçinesi için önemli olurken, diğer emprenye maddeleri için önemli olmamıştır (Çizelge 5).

Yanma Sonrası Ağırlık Kaybı

Ağırlık kayıbında, emprenye maddesi türüne göre, ortalama ağırlık kaybı en yüksek %5 derişimdeki borik asit ile emprenyede %73.65 olarak, en düşük ise %20 derişimdeki alkid reçinesi ile emprenyede %64.15 olarak tespit edilmiştir. Emprenye maddesi katımm oranına göre, ağırlık kaybı en yüksek %0.5 katımm oranındaki BR₁ tipi levhada %75.33 olarak, en düşük ise %3.0 katımm oranındaki AR₁ tipi levhada %62.25 olarak bulunmaktadır (Çizelge 2). Varyans analizi sonuçlarına göre, boraks, kolofan, alkid reçinesi ve immersol-WR maddeleri için, yongalevhanın yanma sonrası ağırlık kaybı üzerinde emprenye maddesi katımm oranlarının etkileri önemli iken, diğer emprenye maddelerinin etkileri önemlisi bulunmuştur (Çizelge 3). Duncan testi sonuçlarına göre, boraks, kolofan, alkid reçinesi ve immersol-WR levha tipleri farklı homojenlik gruplarını teşkil ederken, diğer levha tipleri aynı homojenlik gruplarında toplanmıştır (Çizelge 4). Korelasyon analizi sonuçlarına göre, bütün emprenye maddeleri için, emprenye maddesi katımm oranı ile yongalevhanın yanma sonrası ağırlık kaybı arasında negatif bir ilişki bulunmaktadır. Bu ilişki kolofan ve alkid reçinesi için önemli iken, diğer emprenye maddeleri için önemlisi bulunmuştur (Çizelge 5).

Yukarıda verilen bulgular ve tartışmalara göre;

Alev kaynaklı yanmada, borik asit/boraks karışımının yongalevhanın yanma özelliklerini önemli ölçüde etkilemesi, bu iki maddenin, aynı derişim ve katımm oranında bir bor solüşyonu halinde birlikte kullanıldığında, daha iyi ve kalıcı bir etki yapanlarından kaynaklanabilir. Çünkü yangında yüksek sıcaklığa maruz kaldığında, boraksın alevin dağılmasını azaltma yönünde etki yaptığı, borik asitin ise yanmayı bastırma yönünde etki yaptığı belirtilmektedir (Haflızoğlu ve ark., 1994).

Emprenye maddesi katımm oranı arttıkça yongalevhanın yanma özelliklerinin iyileştiği söylenebilir. Bu iyileşmenin, istatistiksel olarak, alev

Yanma sırasında emprenye maddelerinin yanmayı engelleyen madde(ler) çıkarmak suretiyle, emprenyeli levhaları yanmaya karşı daha dayanıklı kıldıkları ve yanma ile meydana gelen aşırık kayıpları azaltılabılır. Çünkü erime noktasında düşük olan kimyasal maddeler veya bileşikler yüksek yanma sıcaklığının etkisinde kıldıkları zaman, bu maddelerin kömürleşmede katalizör etkisi yaparak ve yüzeyde camış bir film tabakası oluşturarak yanmayı geçiktirdikleri belirtilmektedir (Nussbaum, 1988; Richardson, 1978).

Genel olarak, her emprenye maddesi katılm oranı için, ortalama yanma sıcaklıkları ve aşırık kayıpları, yani; yanma değerleri bakımından emprenyeli levhalı ile kontrol levhalı karşılaştırıldığında, emprenyeli levhaların yanma değerlerinin daha düşük olduğu görülmüştür. Bu değerler, kontrol levhası için, alev kaynaklı yanmada 627°C, alevli yanmada 474°C, kor halinde yanmada 168°C ve aşırık kayıbında %83.32 olurken, emprenyeli levhalar için, sırasıyla,

Ağırlık kayıpların bakımından, araştırmda elde edilen bulgular ile literatür karşılaştırıldığında, benzer sonuçların olduğu görülmuştur. Çünkü yanma etkisinde bırakılan emprenyeli malzemedeki ağırlık kayıpları %9–94 arasında değişiken (Hafızoğlu ve ark., 1994; Syska, 1969; Örs ve ark., 2002), bu araştırmda ise söz konusu kayıplar %62–73 arasında değişmiştir.

4. SONUÇ VE ÖNERİLER

Emprenyeli levhaların yanma sıcaklıklarını ve yanma sonrası ağırlık kayıpları kontrol levhasından daha az olmuştur. Emprenyeyi maddesi katımlı oranı artıtırça levhanın yanma sıcaklığı ve yanma sonrası kütle kaybı azalmıştır. Diğer bir ifadeyle, toplam yongalevha malzemeleri içinde emprenye maddesi katımlı oran arttırcaya, kontrol levhasına göre, hem yongalevha daha az sıcaklık veverek yanmış, hem alevli ve kor halinde yanma daha kısa sürede tamamlanmış, hem de ağırlık kaybı daha az olmuştur.

Yanma sıcaklığı için, alev kaynaklı yanmada en yüksek değer (579°C) %10 derişim ve %0.6 katılm oranındaki tanalılıt–CBC ile emprenyede, en
düşük değer (493°C) %10 derişim ve %3.0 katlım oranındaki kolofan ile emprenyede bulunmuştur. Alevli yanmadan en yüksek değer (459°C) %1.76 derişim ve %0.3 katlım oranındaki immersol–WR ile emprenyede, en düşük değer (293°C) %10 derişim ve %3.0 katlım oranındaki kolofan ile emprenyede saptanmıştır. Kor halindeki yanmadan en yüksek değer (165°C) %10 derişim ve %0.6 katlım oranındaki tanalith–CBC ile emprenyede, en düşük değer (103°C) %10 derişim ve %3.0 katlım oranındaki kolofan ile elde edilmiştir. Yanma sonrası ağırlık kaybı için ise, en fazla kayıp (%75.33) %5 derişim ve %0.5 katlım oranındaki boraks ile emprenyede, en az kayıp (%62.25) %20 derişim ve %3.0 katlım oranındaki alkid reçinesi ile emprenyede gerçekleşmiştir.

Alev kaynaklı yanma göz önüne alındığında, emprenye maddesi katlım oranın bakımından borik asit/boraks karışımı yorgalıyanın yanma mukavemetini önemli ölçüde etkilemiş, diğer emprenye maddelerinin etkileri ise önumsiz olmuştur (p<0.05). Buna göre, yanmaya dayanıklı levha üretiminde, yorgaların %2.5/2.5 derişim ve %0.5, 0.75 ve 1.5 katlım oranlarındaki borik asit/boraks karışımıyla emprenyesi önerilebilir.

Borik asit, boraks, tanalith-CBC veya bunların farklı karışım oranları kullanılmak suretiyle hazırlanan soluşyonlarla emprenye edilerek üretilen yorgalıyanlar hava kurusu rutubete sahip yerler için, özellikle de mantar ve böcek tambattına maruz kalabileceği ortamlar için uygun olabilir. Aksi halde, levhaların yüzeyleri ve kenarları rutubet almayan maddelerle Kaplanmalıdır. Kolofan, alkid reçinesi ve su itici katlı immersol ile emprenye edilen yorgalıyandan üretilen yorgalıyan ise LDN ve aşağısi rutubete sahip artık ya da yari açık ortamlar için önerilebilir.

5. KAYNAKLAR

