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Abstract. A length ml, index l quasi-cyclic code can be viewed as a cyclic

code of length m over the field Fql via a basis of the extension Fql/Fq . This

cyclic code is an additive cyclic code. In [C. Güneri, F. Özdemir, P. Solé, On

the additive cyclic structure of quasi-cyclic codes, Discrete. Math., 341 (2018),

2735-2741], authors characterize the (l,m) values for one-generator quasi-cyclic

codes for which it is impossible to have an Fql -linear image for any choice of the

polynomial basis of Fql/Fq . But this characterization for some (l,m) values

is very intricate. In this paper, by the use of this characterization, we give a

more simple characterization.
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1. Introduction

Throughout this paper, q is a prime power, Fq denotes the finite field with q

elements, m and l are positive integers such that l > 1 and gcd(q,m) = 1. A

length ml, index l quasi-cyclic code is defined to be an Fq-linear code in Fml
q which

is closed under T l, where T is the shift operator defined by T (c0, c1, . . . , cml−1) =

(cml−1, c0, . . . , cml−2). A length ml, index l quasi-cyclic code C over Fq can be

viewed as an R(m, q)-submodule of R(m, q)l, where R(m, q) = Fq[x]/⟨xm − 1⟩.
Using a polynomial basis β of Fql/Fq and the map ϕβ defined in [2, Section 2], we

map the quasi-cyclic code C to R(m, ql) = Fql [x]/⟨xm − 1⟩. We denote this image

by ϕβ(C) and it becomes an R(m, q)-submodule of R(m, ql). Equivalently, ϕβ(C) is

an Fq-linear cyclic code of length m over Fql . Such codes are called additive cyclic

codes [1].

In [4,5], the following question was posed: when is the image under a basis

extension of a quasi-cyclic code Fql -linear, hence a classical cyclic code? In [2], the

authors answered this question and characterized quasi-cyclic codes with an Fql -

linear image in R(m, ql). This characterization is particularly simple in the case of

a one-generator quasi-cyclic code. They also characterized the (l,m) values for one-

generator quasi-cyclic codes for which it is impossible to have an Fql -linear image

for any choice of the polynomial basis of Fql/Fq. But these conclusions should be

checked for each case as in multiple steps (we will state this steps in Remark 2.1)
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and for some (l,m) values, these conclusions and characterizations are very intricate

(in Example 2.2, we will show this intricacy for q = 2, m = 3 and l = 6).

In this paper, by use of the characterizations and conclusions in [2], we give a

more simple characterization to list the (l,m) values for one-generator quasi-cyclic

codes for which it is impossible to have an Fql -linear image for any choice of the

polynomial basis of Fql/Fq. In Section 2, we assume that l > 1 is a positive integer

and m is a number with gcd(q,m) = 1. We give a characterization of the list (l,m)

values for one-generator quasi-cyclic codes for it is impossible to have an Fql -linear

image for any choice of the polynomial basis Fql/Fq. In Section 3, we list some

values (l,m) for one-generator quasi-cyclic codes for it is impossible to have an

Fql -linear image for any choice of the polynomial basis Fql/Fq, such that for these

values (l,m) we don’t need to use the characterizations stated in Section 2 and it

is sufficient to know the numbers l and m.

2. Relationship between Fql-linear quasi-cyclic codes and R(m, q)

Throughout this section, l,m are positive integers such that l > 1 and gcd(q,m) =

1. Let
∑

(q) be the set of all (l,m) values for one-generator lengthml, index l quasi-

cyclic codes C for which it is impossible to have an Fql -linear image ϕβ(C), for any

choice of the polynomial basis β. Let xm−1 = f1(x) . . . fs(x) be the decomposition

of xm − 1 into irreducible polynomials of Fq[x]. Suppose that degfi(x) = ti (1 ≤
i ≤ s). Put Tq(m) = {t1, . . . , ts}. Hence R(m, q) ∼= Fqt1 ⊕ · · · ⊕ Fqts .

In the following remark we use the notations in [2].

Remark 2.1. (i) Decompose R(m, q) to field extensions Ei (1 ≤ i ≤ s) of Fq.

(ii) Choice an irreducible polynomial fα(x) ∈ Fq[x] of degree l such that fα(α) =

0 and β = {1, α, . . . , αl−1} be a basis of Fql/Fq.

(iii) For every i (1 ≤ i ≤ s) decompose fα(x) ∈ Fq[x] into irreducible polynomi-

als fα,j(x) ∈ Ei (1 ≤ j ≤ bi), where [Ei : Fq] = ti and gcd(l, ti) = bi.

(iv) Form companion matrix of fα(x), i.e.

Mα =
[
[α.1]β [α.α]β [α.α2]β . . . [α.αl−1]β

]
.

(v) For every i (1 ≤ i ≤ s), compute the invariant subspaces W j
i (1 ≤ j ≤ bi),

where W j
i = {u ∈ El

i | fα,j(Mα)u = 0}.
(vi) Find a non-trivial one-generator quasi-cyclic code C = ⟨c0(x), c1(x), . . . , cl−1(x)⟩

⊆ R(m, q)l such that each constituent Ci = ⟨(c0(ξui), c1(ξ
ui), . . . , cl−1(ξ

ui))⟩ (1 ≤
i ≤ s) of C, be a direct sum ofW j

i s, where by the above observations ξm = 1

and Ei = Fq[ξ
ui ].

If there exists such non-trivial one-generator quasi-cyclic code, it means (l,m) /∈∑
(q). Otherwise, we should choose another basis β and check the above steps for

basis β. If for every basis β of Fql/Fq we can’t find such quasi-cyclic code, it means

(l,m) ∈
∑

(q). For some values (l,m) to check these steps are very intricate. See

the following example:
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Example 2.2. If we want to see whether (6, 3) ∈
∑

(2) or not, we should check all

steps in Remark 2.1 for every polynomial basis β of F26/F2. Hence we should find

all irreducible polynomials of degree 6 in F2[x] and it is very intricate. But as we

will see, by Theorem 2.5, it is easy to see that (6, 3) ∈
∑

(2).

Lemma 2.3. Let l,m be positive integers such that l > 1, gcd(q,m) = 1 and

Tq(m) = {t1, . . . , ts}. Suppose that for every i (1 ≤ i ≤ s), l ∤ ti. Then (l,m) ∈∑
(q).

Proof. Suppose that there exist a length ml, index l one-generator quasi-cyclic

code C and a polynomial basis β of Fql/Fq such that ϕβ(C) is Fql -linear. We will

show that C = 0. For a fixed i with 1 ≤ i ≤ s, since l ∤ ti, gcd(l, ti) = bi ̸= l

and hence
l

bi
= di > 1. By [2, Theorem 4.1(ii)] and the notation of this theorem

dimEi
Ci = kidi, for some 0 ≤ ki ≤ bi. If ki ̸= 0, then dimEi

Ci > 1. But by the

definition of Ci, dimEi
Ci ≤ 1, since C is a one-generator quasi-cyclic code. Hence

ki = 0 and so Ci = 0 (1 ≤ i ≤ s). Therefore C = 0 and hence (l,m) ∈
∑

(q). □

Proposition 2.4. Let l,m be positive integers such that l > 1, gcd(q,m) = 1 and

Tq(m) = {t1, . . . , ts}. Suppose that there exists i (1 ≤ i ≤ s) such that l|ti. Then

(l,m) /∈
∑

(q).

Proof. We will prove that there exists a non-trivial one-generator quasi-cyclic code

of length ml, with index l. C = ⟨c0(x), c1(x), . . . , cl−1(x)⟩ ⊆ R(m, q)l such that

ϕβ(C) is Fql -linear, for some polynomial basis β of Fql/Fq. Let β = {1, α, . . . , αl−1}
be a basis of Fql/Fq and Fql = Fq[x]/⟨fα(x)⟩ such that fα(x) ∈ Fq[x] is irreducible,

degfα(x) = l and fα(α) = 0. Let fα(x) = xl + al−1x
l−1 + · · · + a1x + a0 ∈ Fq[x].

Hence the companion matrix of fα(x) is

Mα =


0 0 . . . 0 −a0
1 0 . . . 0 −a1
0 1 . . . 0 −a2
...

...
...

...
...

0 0 . . . 1 −al−1

 .

By the notations of [2, Section 2], we have Ei = Fq[ξi], where ξi = ξui and ξm = 1.

Since [Ei : Fq] = ti and l|ti, there exists d ∈ N such that ti = ld. Hence there exists

an irreducible polynomial λ(x) ∈ Fql [x] of degree d such that Ei
∼= Fql [x]/⟨λ(x)⟩.

So there exists a root δ of λ(x) such that Ei
∼= Fql [δ] and hence Fql is embedded

in Ei. Now since α ∈ Fql , there exists ω ∈ Ei such that fα(ω) = 0 and hence

x − ω|fα(x) in Ei[x]. In this case, by the observations in [2, Section 4], we have

bi = l and di = 1. Now we constitute Ei-subspace W
1
i for fα,1(x) = x − ω.

Hence we have W 1
i = {u ∈ El

i | (Mα − ωI)u = 0}. By the observations above

[2, Theorem 4.1], dimEi
W 1

i =degfα,1(x) =deg(x − ω) = 1, and so there exist

gk(x) ∈ Fq[x] (0 ≤ k ≤ l − 1) such that W 1
i = ⟨g0(ω), . . . , gl−1(ω)⟩. Since ω ∈ Ei,

gk(ω) ∈ Ei = Fq[ξi] (0 ≤ k ≤ l−1) and hence, for every k (0 ≤ k ≤ l−1), there exist
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hk(x) ∈ Fq[x] such that gk(ω) = hk(ξi) (0 ≤ k ≤ l−1). Now let θ(x) =

s∏
i ̸=j=1

fj(x).

We have gcd(fi(x), θ(x)) = 1. Since Fq[x] is a PID, there exist ψ(x), ψ′(x) ∈ Fq[x]

such that ψ(x)fi(x) + ψ′(x)θ(x) = 1. Set ck(x) = θ(x)ψ′(x)hk(x). Now we have

Cj = ⟨c0(ξj), . . . , ci(ξj), . . . , cl−1(ξj)⟩ (1 ≤ j ≤ s). Let j ̸= i and 1 ≤ j ≤ s. Since

fj(ξj) = 0, θ(ξj) = 0 and hence ck(ξj) = θ(ξj)ψ
′(ξj)hk(ξj) = 0 (0 ≤ k ≤ l − 1).

Therefore for every j ̸= i and 1 ≤ j ≤ s, Cj = 0. Let j = i. Since fi(ξi) = 0,

ck(ξi) = θ(ξi)ψ
′(ξi)hk(ξi) = (1−fi(ξi)ψ(ξi))hk(ξi) = hk(ξi) = gk(ω) (0 ≤ k ≤ l−1).

Therefore Ci = W 1
i , and so C = C1 ⊕ · · · ⊕ Ci−1 ⊕ Ci ⊕ Ci+1 ⊕ · · · ⊕ Cl−1 =

0⊕ · · · ⊕ 0⊕W 1
i ⊕ 0⊕ · · · ⊕ 0 =W 1

i . Then, by the observation above [2, Theorem

4.1], C is Fql -linear, and so (l,m) /∈
∑

(q). □

Theorem 2.5. Let l,m be positive integers such that l > 1, gcd(q,m) = 1 and

Tq(m) = {t1, . . . , ts}. Then (l,m) ∈
∑

(q) if and only if, for every i (1 ≤ i ≤ s),

l ∤ ti.

Proof. It follows from Lemma 2.3 and Proposition 2.4. □

Set Dq(m) = {l : 1 ̸= l ∈ N, l | ti, for some i (1 ≤ i ≤ s)}.

Corollary 2.6. Let l,m be positive integers such that l > 1 and gcd(q,m) = 1. We

have:

(i) (l,m) ∈
∑

(q) if and only if l /∈ Dq(m).

(ii) For every l ≥ m, (l,m) ∈
∑

(q).

Proof. (i) It is clear from Theorem 2.5.

(ii) Clearly for every l ≥ m, l /∈ Dq(m), and so by part(i), (l,m) ∈
∑

(q). □

Example 2.7.

(i) Let q = 2 and m = 9. We have x9 − 1 = (x− 1)(x2 + x+1)(x6 + x3 +1), and so

T2(9) = {1, 2, 6} and D2(9) = {2, 3, 6}. Hence by Corollary 2.6, (2, 9), (3, 9), (6, 9) /∈∑
(2) and, for every l /∈ {2, 3, 6}, (l, 9) ∈

∑
(2).

(ii) Let q = 2 andm = 37. We have x37−1 = (x−1)(x36+x35+x34+· · ·+x2+x+1),

and so T2(37) = {1, 36} and D2(37) = {2, 3, 4, 6, 9, 12, 18, 36}. Hence by Corollary

2.6, (2, 37), (3, 37), (4, 37), (6, 37), (9, 37), (12, 37), (18, 37), (36, 37) /∈
∑

(2) and for

every l /∈ {2, 3, 4, 6, 9, 12, 18, 36}, (l, 37) ∈
∑

(2).

In the following tables, for the convenience of the reader, we list the set T2(m)

for odd m values up to 73 and T3(m) for m values up to 43 with gcd(m, 3) = 1.



WHEN DO QUASI-CYCLIC CODES HAVE F
ql
-LINEAR IMAGE? 81

m T2(m) m T2(m) m T2(m) m T2(m)

3 {1, 2} 21 {1, 2, 3, 6} 39 {1, 2, 12} 57 {1, 2, 18}
5 {1, 4} 23 {1, 11} 41 {1, 20} 59 {1, 58}
7 {1, 3} 25 {1, 4, 20} 43 {1, 14} 61 {1, 60}
9 {1, 2, 6} 27 {1, 2, 6, 18} 45 {1, 2, 4, 6, 12} 63 {1, 2, 3, 6}
11 {1, 10} 29 {1, 28} 47 {1, 23} 65 {1, 4, 12}
13 {1, 12} 31 {1, 5} 49 {1, 3, 21} 67 {1, 66}
15 {1, 2, 4} 33 {1, 2, 10} 51 {1, 2, 8} 69 {1, 2, 11, 22}
17 {1, 8} 35 {1, 3, 4, 12} 53 {1, 52} 71 {1, 35}
19 {1, 18} 37 {1, 36} 55 {1, 4, 10, 20} 73 {1, 9}

m T3(m) m T3(m) m T3(m) m T3(m)

2 {1} 13 {1, 3} 23 {1, 11} 34 {1, 16}
4 {1, 2} 14 {1, 6} 25 {1, 4, 20} 35 {1, 4, 6, 12}
5 {1, 4} 16 {1, 2, 4} 26 {1, 3} 37 {1, 18}
7 {1, 6} 17 {1, 16} 28 {1, 2, 6} 38 {1, 18}
8 {1, 2} 19 {1, 18} 29 {1, 28} 40 {1, 2, 4}
10 {1, 4} 20 {1, 2, 4} 31 {1, 30} 41 {1, 8}
11 {1, 5} 22 {1, 5} 32 {1, 2, 4, 8} 43 {1, 42}

Example 2.8. Let Ω =
⋃

{D2(m) | m ≤ 73,m is odd }= {2, 3, 4, 5, 6, 7, 8, 9, 10, 11,
12, 13, 14, 15, 18, 20, 21, 22, 23, 26, 28, 29, 30, 33, 35, 36, 52, 58, 60, 66}. By Corollary

2.6, for every number 1 ̸= l /∈ Ω and every odd number m ≤ 73, we have

(l,m) ∈
∑

(2). In the following table, for every l ∈ Ω, we list the odd m val-

ues up to 73 such that (l,m) ∈
∑

(2).
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l m

2 7,23,31,47,49,71,73

3 3,5,11,15,17,23,25,29,31,33,41,43,47,51,53,55,59,69,71

4 3,7,9,11,19,21,23,27,31,33,43,47,49,57,59,63,67,69,71,73

5 3,5,7,9,13,15,17,19,21,23,27,29,35,37,39,43,45,47,49,51,53,57,

59,63,65,67,69,71,73

6 3,5,7,11,15,17,23,25,29,31,33,41,43,47,49,51,53,55,59,69,71,73

7 3,5,7,9,11,13,15,17,19,21,23,25,27,31,33,35,37,39,41,45,47,51,53,55,57,

59,61,63,65,67,69,73

8 3,5,7,9,11,13,15,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,51,53,

55,57,59,61,63,65,67,69,71,73

9 3,5,7,9,11,13,15,17,21,23,25,29,31,33,35,39,41,43,45,47,49,51,53,55,

59,61,63,65,67,69,71

10 3,5,7,9,13,15,17,19,21,23,27,29,31,35,37,39,43,45,47,49,51,53,57,59,

63,65,67,69,71,73

11 3,5,7,9,11,13,15,17,19,21,25,27,29,31,33,35,37,39,41,43,45,47,49,51,

53,55,57,59,61,63,65,71,73

12 3,5,7,9,11,15,17,19,21,23,25,27,29,31,33,41,43,47,49,51,53,55,57,59,

63,67,69,71,73

13 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,55,57,59,61,63,65,67,69,71,73

14 3,5,7,9,11,13,15,17,19,21,23,25,27,31,33,35,37,39,41,45,47,49,51,53,

55,57,59,61,63,65,67,69,71,73
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l m

15 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,63,65,67,69,71,73

18 3,5,7,9,11,13,15,17,21,23,25,29,31,33,35,39,41,43,45,47,49,

51,53,55,59,61,63,65,67,69,71,73

20 3,5,7,9,11,13,15,17,19,21,23,27,29,31,33,35,37,39,43,45,47,49,

51,53,57,59,63,65,67,69,71,73

21 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,

51,53,55,57,59,61,63,65,67,69,71,73

22 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,71,73

23 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,49,

51,53,55,57,59,61,63,65,67,69,71,73

26 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,55,57,59,61,63,65,67,69,71,73

28 3,5,7,9,11,13,15,17,19,21,23,25,27,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,67,69,71,73

29 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,61,63,65,67,69,71,73

30 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,63,65,67,69,71,73

33 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,69,71,73

l m

35 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,67,69,73

36 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,67,69,71,73

52 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,55,57,59,61,63,65,67,69,71,73

58 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,61,63,65,67,69,71,73

60 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,63,65,67,69,71,73

66 3,5,7,9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39,41,43,45,47,49,

51,53,55,57,59,61,63,65,69,71,73

Example 2.9. Let Ω =
⋃

{D3(m)|m ≤ 43, gcd(m, 3) = 1} = {2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 14, 15, 16, 18, 20, 21, 28, 30, 42}. By Corollary 2.6, for every number 1 ̸= l /∈ Ω

and every m ≤ 43 with gcd(m, 3) = 1, we have (l,m) ∈
∑

(3). In the following

table, for every l ∈ Ω, we list m values up to 43 with gcd(m, 3) = 1 such that

(l,m) ∈
∑

(3).
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l m

2 2,11,13,22,23,26

3 2,4,5,8,10,11,16,17,20,22,23,25,29,32,34,40,41

4 2,4,7,8,11,13,14,19,22,23,26,28,31,37,38,42

5 2,4,5,7,8,10,13,14,16,17,19,20,23,26,28,29,32,34,35,37,38,40,41,43

6 2,4,5,8,10,11,13,16,17,20,22,23,25,26,29,32,34,40,41

7 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41

8 2,4,5,7,8,10,11,13,14,16,19,20,22,23,25,26,28,29,31,35,37,38,40,43

9 2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,28,29,31,32,34,35,40,41,43

10 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,26,28,29,32,34,35,37,38,40,41,43

11 2,4,5,7,8,10,11,13,14,16,17,19,20,22,25,26,28,29,31,32,34,35,37,38,40,41,43

12 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,37,38,40,41,43

14 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41

15 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,32,34,35,37,38,40,41,43

16 2,4,5,7,8,10,11,13,14,16,19,20,22,23,25,26,28,29,31,32,35,37,38,40,41,43

18 2,4,5,7,8,10,11,13,14,16,17,20,22,23,25,26,28,29,31,32,34,35,40,41,43

20 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,26,28,29,31,32,34,35,37,38,40,41,43

21 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35,37,38,40,41

28 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,31,32,34,35,37,38,40,41,43

30 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,32,34,35,37,38,40,41,43

42 2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26,28,29,31,32,34,35,37,38,40,41

3. Relationship between Fql-linear quasi-cyclic codes and values (l,m)

In this section, without using the decomposition of R(m, q), we prepare a list of

some values of (l,m) that shows whether (l,m) is in
∑

(q) or not.

Definition 3.1. Letm be co-prime to q. The cyclotomic coset of q (or q-cyclotomic

coset) modulom containing i is defined byDi = {i.qj(mod m) ∈ Zm | j = 0, 1, . . . }.
A subset {i1, . . . , ik} of Zm is called a complete set of representatives of cyclotomic

cosets of q modulo m if Di1 , . . . , Dik are distinct and

k⋃
j=1

Dij = Zm.

Lemma 3.2. Let {s1, . . . , sk} be a complete set of representatives of cyclotomic

cosets of q modulo qn − 1. Then, for i with 1 ≤ i ≤ k, |Dsi | | n.

Proof. Set |Dsi | = ti (1 ≤ i ≤ k). For a fixed i with 1 ≤ i ≤ k, we prove ti|n. By
Definition 3.1, ti is the minimal number such that siq

ti ≡ si(mod qn−1). By using

the division algorithm, there exist unique numbers ai, bi ∈ N with 0 ≤ bi ≤ ti − 1

such that n = aiti + bi. Since siq
ti ≡ si(mod qn − 1), it is easy to see that si ≡

siq
n ≡ siq

bi(mod qn − 1). Since ti is minimal , bi = 0 and so ti|n (1 ≤ i ≤ k). □

Proposition 3.3. Let m|qn−1, for some n ≥ 1 and n be minimal. Then Dq(m) =

{l : 1 ̸= l ∈ N, l | n}.
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Proof. Let {s1, . . . , sk} be a complete set of representatives of cyclotomic cosets

of q modulo m and d =
qn − 1

m
. Suppose that Ddsi(1 ≤ i ≤ k) are some cyclotomic

cosets of q modulo qn − 1. Put |Ddsi | = ti (1 ≤ i ≤ k). By [3, Theorem 3.4.11 and

Remark 3.4.9(i)], we have Tq(m) = {t1, . . . , tk}. By Lemma 3.2, ti|n (1 ≤ i ≤ k)

and so Dq(m) ⊆ {l : 1 ̸= l ∈ N, l | n}. Conversely, let 1 ̸= l|n. We will prove that

l ∈ Dq(m). Without loss of generality, we may assume that s1 = 0 and s2 = 1.

Then |Dds2 | = |Dd| = t2. Since t2|n, t2 ≤ n. We will prove t2 = n. By Definition

3.1, t2 is the minimal number such that dqt2 ≡ d(mod qn − 1). Since qn − 1 = md,

m|qt2 − 1 and, since n is minimal, t2 = n. Then n ∈ Tq(m). Now, by the definition

of Dq(m), l ∈ Dq(m) and the proof is complete. □

Corollary 3.4. Let l,m be positive integers such that l > 1. Suppose that n ≥ 1 is

a positive integer such that is minimal with respect to m|qn−1. Then (l,m) ∈
∑

(q)

if and only if l ∤ n.

Proof. It follows by Corollary 2.6 and Proposition 3.3. □

Example 3.5.

(i) Let m = 1023. Since 1023 = 210 − 1, by Corollary 3.4, (l, 1023) ∈
∑

(2) if and

only if l /∈ {2, 5, 10}.
(ii) Letm = 51. We have 51|28−1 and 8 is minimal. By Corollary 3.4, (l, 51) ∈

∑
(2)

if and only if l /∈ {2, 4, 8}.

Let A(q) = {m ∈ N | m | qm−1 − 1 and m ∤ qn − 1, for all n < m− 1}.

Corollary 3.6. Let k ∈ A(q) and m ≡ k(mod qk). Then for every l, such that

l|k − 1, (l,m) /∈
∑

(q).

Proof. Let k ∈ A(q) and m ≡ k(mod qk). So there exists t ∈ N such that m =

qtk + k. Hence xm − 1 = (x − 1)(xqtk+k−1 + xqtk+k−2 + · · · + x2 + x + 1). Let

f(x) = xk−1+· · ·+x2+x+1. Since k ∈ A(q), the cyclotomic cosets of q modulo k are

C0 = {0} and C1 = {1, q, . . . , qk−2}. So {0, 1} is a complete set of representatives of

cyclotomic cosets of q modulo k. Therefore, by [3, Corollary 3.4.12], the number of

monic irreducible factors of xk−1 over Fq is equal to 2. Then xk−1 = (x−1)f(x),

and so f(x) ∈ Fq[x] is irreducible. Let g(x) = xqtk+k−1+xqtk+k−2+ · · ·+x2+x+1

and h(x) = xqtk + x(qt−1)k + · · ·+ x2k + xk + 1. We have g(x) = f(x)h(x), and so

f(x)|g(x). Hence f(x)|xm − 1. Now, since degf(x) = k− 1, k− 1 ∈ Tq(m) and the

proof follows by Proposition 2.4. □

Example 3.7.

(i) In Example 2.7(ii), since 37 ∈ A(2), by Corollary 3.6, without the decomposition

of x37 − 1, we have

(2, 37), (3, 37), (4, 37), (6, 37), (9, 37), (12, 37), (18, 37), (36, 37) /∈
∑

(2) and for every

l /∈ {2, 3, 4, 6, 9, 12, 18, 36}, (l, 37) ∈
∑

(2).

(ii) It is easy to see that 3 ∈ A(2). LetM = {m | gcd(m, 2) = 1 and m ≡ 3(mod 6)}.
We have M = {3, 9, 15, 21, 27, . . . }. Since 2|2 = 3 − 1, by Corollary 3.6, for every

m ∈M , (2,m) /∈
∑

(2).
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4. Conclusion

Let l,m, q be positive integers such that q be a prime power, l > 1 and gcd(m, q) =

1. In this paper, we characterize all (l,m) values for quasi-cyclic codes C with one-

generator, length ml and index l, for which it is impossible to have an Fql-linear

image ϕβ(C) for any choice of the polynomial basis β. We denote these all (l,m)

values by
∑

(q). Suppose that the positive integers l,m, q be given. We want to see

(l,m) ∈
∑

(q) or not? At first we decompose the polynomial xm−1 ∈ Fq[x] into irre-

ducible polynomials f1(x), f2(x), . . . , fs(x) of Fq[x] with degfi(x) = ti, (1 ≤ i ≤ s).

Then we prove that (l,m) ∈
∑

(q) if and only if, for every i(1 ≤ i ≤ s), l ∤ ti.
Acknowledgment. The authors would like to thank the referee for the valuable

suggestions and comments.

References

[1] J. Bierbrauer, The theory of cyclic codes and a generalization to additive codes,

Des. Codes Cryptogr., 25(2) (2002), 189-206.
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