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Abstract
The Riemann-Liouville operator has been extensively investigated and has witnessed a re-
markable development in numerous fields of harmonic analysis. In this paper, we consider
the Stockwell transform associated with the Riemann-Liouville operator. Knowing the
fact that the study of the time-frequency analysis are both theoretically interesting and
practically useful, we investigated several problems for this subject on the setting of this
generalized Stockwell transform. Firstly, we study the boundedness and compactness of
localization operators associated with the generalized Stockwell transform. Next, we ex-
plore the Shapiro uncertainty principle for the previous transform. Finally, the scalogram
for the generalized Stockwell transform are introduced and studied at the end.
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1. Introduction
The spherical mean operators constitute a vital class of operators in harmonic analysis

in the sense that all the harmonic functions are characterized by the fact that they coincide
with their spherical mean values. These operators can also be viewed as the generalized
Radon transform that is self dual in the context of Helgason’s double fibration. In the
classical work of John [19], the spherical means have been successfully applied to diverse
problems in the theory of partial differential equations. Subsequently, they paved the way
into the Fourier analysis with the celebrated theorem of Stein on spherical analogue of
the Lebesgue differentiation theorem. A recent addition to the theory of spherical mean
operators on R2 appeared with the work of Trimèche [36], wherein the author general-
ized the spherical mean operators on R2 by introducing the permutation operator which
commutes with some partial differential operators. Besides, Trimèche also studied the
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harmonic analysis associated with this permutation operator, which is being widely em-
ployed in literature under the name Riemann-Liouville operator [3–8, 18, 22–25]. As of
now, these operators have found numerous applications in image processing of synthetic
aperture, radar data and acoustics [15,17].

One of the aims of the Fourier transform, is the study of the time-frequency analysis.
In the sixties the time-frequency analysis has emerged with the works of Gabor [16] who
provided an interesting way to study the local frequency spectrum of signals by introducing
many time-frequency representations, as, for instance, the short-time Fourier transform
(STFT), the continuous wavelet transform or also the Wigner distribution where all of
these representations have a same common point, that is the simultaneous representation
of the space and the frequency variables in a same set called the time-frequency plane.

The major drawback of the short-time Fourier transform is the fixed width of the
analysing window. Indeed, in many applications, the high frequency content of a signal
is more time/space-localized than the low-frequency one. Removing of the rigidity of the
window function is one of the motivations for continuous wavelet transform. Although,
the wavelet transform captures more information than the short-time Fourier transform
(STFT), however, it suffers from two apparent limitations: first, the detail measured by the
wavelet transform is not directly analogs to the frequency, because the wavelet transform
is essentially a time-scale transform with the inverse scale being interpreted as frequency;
second, the phase-information is completely lost in the case of wavelet transform, because
each wavelet component acts a local filter and the translation of the mother wavelet
destroys the phase information with respect to the origin [37, 38]. To circumvent these
limitations, Stockwell et al. [33] introduced the notion of Stockwell transform as a bridge
between the STFT and the wavelet transform. By adopting the progressive resolution of
wavelets, the Stockwell transform is able to resolve a wider range of frequencies than the
ordinary STFT, and by using a Fourier-like basis and maintaining a phase of zero about the
time t = 0, Fourier based analysis could be performed locally. This unique feature of the
Stockwell transform makes it a highly valuable tool for signal processing and is one of the
hottest research areas of the contemporary era. Indeed, the Stockwell transform has been
successfully used to analyse signals in numerous applications, such as seismic recordings,
ground vibrations, geophysics, medical imaging, hydrology, gravitational waves, power
system analysis and many other areas. Finally, we note that many extensions of the
Stockwell transform have been proposed in recent years. See, for example, [10–14, 26, 28,
29,31,32] and others.

As the harmonic analysis associated to the Riemann-Liouville operator has been
extensively investigated and has witnessed a remarkable development, it is natural to
study several aspects of the time-frequency analysis in the Riemann-Liouville operator
setting.

In this paper, we continue the study of some problems of harmonic analysis associ-
ated with the generalized Stockwell transform started in [9,27]. Particularly, motivated by
Wong’s approaches, the aim of the first part of this paper is to study the boundedness and
compactness of localization operators associated with generalized Stockwell transforms.
Our second endeavour is to study the spectral analysis associated with the generalized
concentration operator. In particular, we introduce and we study the scalogram associ-
ated with the generalized Stockwell transforms. We note that the scalogram has many
applications, for example in [2], the authors used Morlet wavelet scalogram to detected
a previously unknown coordinated contractility behavior of the atrium during ventricular
fibrillation, a phenomenon which is not captured in a normal electrocardiogram. Other ap-
plications can also be found in [35], where the authors applied the scalogram to biomedical
signals to detect their short-lived temporal interactions.
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The remaining part of the paper is organized as follows. Section 2 deals with pre-
liminaries including the fundamental results about the harmonic analysis associated with
the Riemann-Liouville operator and basic theory on the generalized Stockwell transform.
In Section 3, we study the localization operators theory in the setting of the generalized
Stockwell transform. In particular the boundedness and compactness of proposed oper-
ators are investigated in the Schatten classes. Section 4, is devoted to investigate the
Shapiro uncertainty principles associated with the generalized Stockwell transform. Fi-
nally, in the last section, we study the spectral analysis associated with the time-frequency
concentration operators to describe functions that have time-frequency content in a subset
of finite measure. Moreover, we introduce and we study the scalogram associated with the
generalized Stockwell transform.

2. Preliminaries
The aim of this section is to present a healthy overview of the prerequisites circumscrib-
ing the Riemann-Liouville operator, Schatten-von Neumann classes, and the generalized
Stockwell transform. For a detailed perspective regarding the content of the section, we
refer to [4, 9, 27, 36, 38]. For the sake of distinction, we sub-divide the section into three
subsections.

2.1. Harmonic analysis associated with the Riemann-Liouville operator
Prior to starting the formal aspects of this subsection, we fix some notations as under:

• C∗(R2) denotes the space of continuous functions on R2, even with respect to the
first variable.

• C∗,c(R2) denotes the subspace of C∗(R2) formed by functions with compact sup-
port.

• E∗(R2) is the space of infinitely differentiable functions on R2, even with respect
to the first variable.

• S∗(R2) denotes the Schwartz space of rapidly decreasing functions on R2, even
with respect to the first variable.

• S1 is the unit sphere in R2,

S1 =
{

(η, ξ) ∈ R2 : η2 + ξ2 = 1
}

.

• R2
+ =

{
(r, x) ∈ R2 : r ≥ 0

}
.

Note that, for all (µ, λ) ∈ C2, the system
∆1u(r, x) = −iλu(r, x),
∆2u(r, x) = −µ2u(r, x)
u(0, 0) = 1, ∂u

∂r (0, x) = 0, ∀ x ∈ R,

admits a unique solution φµ,λ, given by [36]

φµ,λ(r, x) = jα(r
√

µ2 + λ2)e−iλx,

where ∆1 and ∆2 denote the singular partial differential operators, given by

∆1 = ∂

∂x
,

∆2 = ∂2

∂r2 + 2α + 1
r

∂

∂r
− ∂2

∂x2 , (r, x) ∈ (0, ∞) × R, α ⩾ 0,

and jα is the normalized Bessel function defined as

∀ z ∈ C, jα(z) = Γ(α + 1)
∞∑

k=0

(−1)k

k!Γ(k + 1 + α)
(z/2)2k.
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Definition 2.1. For any (r, x) ∈ R2
+, the Riemann-Liouville operator on C∗(R2) is defined

by:

Rαf(r, x) =


α
π

∫ 1

−1

∫ 1

−1
f(rs

√
1 − t2, x + rt)(1 − t2)α− 1

2 (1 − s2)α−1dtds if α > 0

1
π

∫ 1

−1
f(r

√
1 − t2, x + rt)(1 − t2)− 1

2 dt if α = 0.

Remark 2.1. (i) The function φµ,λ, (µ, λ) ∈ C2, can be expressed as

∀(r, x) ∈ R2
+, φµ,λ(r, x) = Rα(cos(µ.)e−iλ.)(r, x).

(ii) For all ν ∈ N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2, we have

|Dν
z φµ,λ(r, x)| ≤ ||(r, x)|||ν| exp(2||(r, x)|| ||Imz||), (2.1)

where

Dν
z = ∂|ν|

∂zν1
1 ∂zν2

2
and |ν| = ν1 + ν2.

In particular, for all ν ∈ N2, (r, x) ∈ R2
+ and z = (µ, λ) ∈ C2:

|φµ,λ(r, x)| ≤ 1. (2.2)

Next, consider the set Γ defined as

Γ = R2 ∪
{

(it, x) : (t, x) ∈ R2, |t| ≤ |x|
}

,

let Γ+ denotes the subset of Γ given by

Γ+ = R2
+ ∪

{
(it, x) : (t, x) ∈ R2, 0 ≤ t ≤ |x|

}
.

Then for all (µ, λ) ∈ Γ, we have
sup

(r,x)∈R2
|φµ,λ(r, x)| = 1.

In the following, we denote by
• dνα(r, x) the measure defined on R2

+ by

dνα(r, x) = kαr2α+1dr ⊗ dx,

with
kα = 1

2αΓ(α + 1)(2π)1/2 .

• For p ∈ [1, ∞], p′ denotes as in all that follows, the conjugate exponent of p.
• Lp(dνα), 1 ≤ p ≤ ∞, the space of measurable functions on R2

+, satisfying

∥f∥Lp(dνα ) :=
(∫

R2
+

|f(r, x)|pdνα(r, x)
)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(dνα ) := ess sup
(r,x)∈R2

+

|f(r, x)| < ∞, p = ∞.

• BΓ+ the σ-algebra defined on Γ+ by

BΓ+ =
{

θ−1(B) : B ∈ BBor(R2
+)
}

,

where θ defined on the set Γ+ by

θ(µ, λ) = (
√

µ2 + λ2, λ). (2.3)

• dγα the measure defined on BΓ+ by
∀ A ⊂ BΓ+ , γα(A) = να(θ(A)).
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• Lp(dγα), 1 ≤ p ≤ ∞, the space of measurable functions on Γ+, satisfying

∥f∥Lp(dγα ) :=
(∫

Γ+
|f(µ, λ)|pdγα(µ, λ)

)1/p

< ∞, 1 ≤ p < ∞,

∥f∥L∞(dγα ) := ess sup
(µ,λ)∈Γ+

|f(µ, λ)| < ∞, p = ∞.

We have the following properties.

Proposition 2.1. i) For every nonnegative measurable function f on Γ+, we have∫
Γ+

f(µ, λ)dγα(µ, λ) = kα

[ ∫
R2

+

f(µ, λ)(µ2 + λ2)αµdµαdλ

+
∫
R

∫ |λ|

0
f(iµ, λ)(λ2 − µ2)αµdµαdλ

]
.

ii) For every nonnegative measurable function f on R2
+ (resp. integrable on R2

+ with
respect to the measure dνα), f ◦ θ is a measurable nonnegative function on Γ+, (resp.
integrable on Γ+ with respect to the measure dγα) and we have∫

Γ+
f ◦ θ(µ, λ)dγα(µ, λ) =

∫
R2

+

f(r, x)dνα(r, x). (2.4)

Remark 2.2. For all (µ, λ) ∈ Γ, (r, x), (s, y) ∈ R2
+, the eigenfunction φµ,λ, satisfies the

following product formula

φµ,λ(r, x)φµ,λ(s, y) = Γ(α + 1)
√

πΓ
(
α + 1

2

) ∫ π

0
φµ,λ

(√
r2 + s2 + 2rs cos θ, x + y

)
sin2α θdθ.

Definition 2.2. Let f be in Lp (dνα) , p ∈ [1, ∞], for all (r, x) ∈ R2
+, we define the

translation operator τ(r,x) associated with the Riemann-Liouville operator by

τ(r,x)(f)(s, y) = Γ(α + 1)
√

πΓ
(
α + 1

2

) ∫ π

0
f
(√

r2 + s2 + 2rs cos θ, x + y
)

sin2α θdθ, (2.5)

for all (s, y) ∈ R2
+.

Proposition 2.2. For every f ∈ Lp(dνα), 1 ⩽ p ⩽ ∞ and (r, x) ∈ R2
+, the function

τ(r,x)(f) belongs to Lp(dνα) and we have∥∥∥τ(r,x)(f)
∥∥∥

Lp(dνα )
⩽ ∥f∥Lp(dνα ) . (2.6)

Definition 2.3. The convolution product of f, g ∈ L1(dνα) is defined by

f ∗α g(r, x) =
∫
R2

+

τ(r,x)(f̌)(s, y)g(s, y)dνα(s, y), for all (r, x) ∈ R2
+, (2.7)

with f̌(s, y) = f(s, −y).

Proposition 2.3. Let 1 ≤ p, q, r ≤ ∞, such that 1
p + 1

q − 1
r = 1. If f is a function in

Lp(dνα) and g an element of Lq(dνα), then f ∗α g belongs to Lr(dνα) and we have
∥f ∗α g∥Lr(dνα ) ≤ ∥f∥Lp(dνα ) ∥g∥Lq(dνα ) . (2.8)

Next, we have the notion of generalized Fourier transform Fα associated with the Riemann-
Liouville operator Rα.

Definition 2.4. The Fourier transform associated with the Riemann-Liouville operator
is defined on L1(dνα) by

∀ (µ, λ) ∈ Γ, Fα(f)(µ, λ) =
∫
R2

+

f(r, x)φµ,λ(r, x)dνα(r, x). (2.9)
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Below, we recall some fundamental properties of the generalized Fourier transform Fα.
(i) For all f ∈ L1(dνα),

||Fα(f)||L∞(dγα ) ≤ ||f ||L1(dνα ). (2.10)
(ii) For every f ∈ L1(dνα), we have

Fα(f)(µ, λ) = F̃α(f) ◦ θ(µ, λ), (µ, λ) ∈ Γ,

where for every (µ, λ) ∈ R2,

F̃α(f)(µ, λ) =
∫
R2

+

f(r, x)jα(rµ)e−iλxdνα(r, x),

and θ is the function defined by the relation (2.3).
(iii) For f ∈ L1(dνα) such that Fα(f) ∈ L1(dγα), we have the inversion formula for Fα :
for almost every (r, x) ∈ R2

+,

f(r, x) =
∫

Γ+
Fα(f)(µ, λ)φµ,λ(r, x)dγα(µ, λ). (2.11)

Theorem 2.1. i) (Plancherel’s formula for Fα). For every f in S∗(R2), we have∫
Γ+

|Fα(f)(µ, λ)|2dγα(µ, λ) =
∫
R2

+

|f(r, x)|2dνα(r, x). (2.12)

In particular, the generalized Fourier transform Fα can be extended to an isometric iso-
morphism from L2(dνα) onto L2(dγα).
ii) (Parseval’s formula for Fα). For all f, g in L2(dνα) we have∫

Γ+
Fα(f)(µ, λ)Fα(g)(µ, λ)dγα(µ, λ) =

∫
R2

+

f(r, x)g(r, x)dνα(r, x). (2.13)

2.2. Basic generalized Stockwell theory
In this subsection, we shall recall some fundamental results on the generalized Stockwell
transforms due to Ben Hamadi, Ghandouri and Hafirassou (see [9]) and Mejjaoli [27].
For (a, b) ∈ (0, ∞) × R∗, the dilation operator D(a,b) of any measurable function h on R2

+
is defined by

∀ (r, x) ∈ R2
+, D(a,b)h(r, x) := aα+1|b|

1
2 h(ar, bx). (2.14)

In the following proposition, we assemble some fundamental properties of the dilation
operators.
Proposition 2.4. (i) For all (a, b), (c, d) ∈ (0, ∞) × R∗, we have

D(a,b) ◦ D(c,d) = D(ac,bd). (2.15)
(ii) Let (a, b) ∈ (0, ∞) ×R∗. For all h ∈ Lp(dνα), p ∈ [1, ∞]. The function D(a,b)h belongs
to Lp(dνα) and we have

||D(a,b)h||Lp(dνα) = a
(2α+2)( 1

2 − 1
p

)|b|
p−2
2p ||h||Lp(dνα). (2.16)

In particular, D(a,b) is an isometric isomorphism from L2(dνα) onto itself whose the in-
verse operator is D( 1

a
, 1

b
). Moreover we have

∀ (µ, λ) ∈ R2
+, F̃α(D(a,b)h)(µ, λ) = 1

aα+1|b|
1
2
F̃α(h)(µ

a
,
λ

b
). (2.17)

(iii) Let (a, b) ∈ (0, ∞) × R∗. For all h, g in L2(dνα), we have
⟨D(a,b)h, g⟩L2(dνα) = ⟨h, D( 1

a
, 1

b
)g⟩L2(dνα). (2.18)

(iv) Let (a, b) ∈ (0, ∞) × R∗ and (r, x) ∈ R2
+. We have

D(a,b)τ(r,x) = τ( r
a

, x
b

) D(a,b). (2.19)
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Definition 2.5. The modulation operator M(a,b) is defined for every function h in L2(dνα)
and for all (a, b) ∈ R2

+ by

M(a,b)h = F̃α

(√
τ(a,b)|F̃α(h)|2

)
.

Proposition 2.5. 1) For every h ∈ L2(dνα), (a, b) ∈ R2
+, M(a,b)h belongs to L2(dνα) and

we have

∥M(a,b)h∥L2(dνα) = ∥h∥L2(dνα). (2.20)

2) For every h ∈ L2(dνα), (a, b) ∈ (0, ∞) × R∗, we have

M(a,b)D(a,b)h = D(a,b)M(1,1)h. (2.21)

Definition 2.6. Let h ∈ L2(dνα), we define the family hα
a,b,r,x, (a, b) ∈ (0, ∞) × R∗,

(r, x) ∈ R2
+, as

hα
a,b,r,x(s, y) = τ(r,x)M(a,b)D(a,b)h(s, y), ∀(s, y) ∈ R2

+. (2.22)

Definition 2.7. We say that a function h ∈ L2(dνα) is a generalized Stockwell wavelet if

0 < Ch := cα

∫ ∞

0

∫ ∞

0
τ(1,1)

(
|F̃α(h)|2

)
(a, b)da

a

db

b
< ∞,

where
cα = 1

2α
√

2πΓ(α + 1)
.

Remark 2.3. If h ∈ L2(dνα) is a generalized Stockwell wavelet in the sense of the previous
Definition, then for every (µ, λ) ∈ (0, ∞) × (0, ∞), we have

0 < Ch = cα

∫ ∞

0

∫ ∞

0
τ(1,1)

(
|F̃α(h)|2

)(µ
a

,
λ

b

)da

a

db

b
< ∞. (2.23)

Remark 2.4. Let h be in L2(dνα). We have

∀ (a, b) ∈ (0, ∞) × R∗, ∀ (r, x) ∈ R2
+, ||ha,b,r,x||L2(dνα) ≤ ||h||L2(dνα). (2.24)

Notation. We denote by
Lp

µα
(R2

+ × R2
+), p ∈ [1, ∞], the space of measurable functions f on R2

+ × R2
+ such that

∥f∥Lp
µα

(R2
+×R2

+) :=
(∫

R2
+×R2

+

|f(a, b, r, x)|pdµα(a, b, r, x)
) 1

p

< ∞, 1 ≤ p < ∞,

∥f∥L∞
µα

(R2
+×R2

+) := ess sup
(a,b,r,x)∈R2

+×R2
+

|f(a, b, r, x)| < ∞,

where the measure µα is defined by

∀ (a, b, r, x) ∈ R2
+ × R2

+, dµα(a, b, r, x) = dνα(a, b)dνα(r, x).

Definition 2.8. Let h be a generalized Stockwell wavelet on R2
+ in L2(dνα). The gener-

alized continuous Stockwell transform Sα
h on R2

+ is defined for regular functions f on R2
+

by

∀ (a, b) ∈ (0, ∞) × R∗, (r, x) ∈ R2
+, Sα

h(f)(a, b, r, x) =
∫
R2

+

f(s, y)hα
a,b,r,x(s, y)dνα(s, y),

(2.25)
where hα

a,b,r,x is given by relation (2.22).
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Definition 2.8 can be recast as

Sα
h(f)(a, b, r, x) = f̆ ∗α M(a,b)D(a,b)h(r, x), (2.26)

where ∗α is the generalized convolution product given by (2.7).
We note that the adjoint of Sα

h is (Sα
h)∗ : L2

µα
(R2

+ × R2
+) → L2(dνα) and is defined as

(Sα
h)∗(F )(s, y) = 1

Ch

∫
R2

+×R2
+

F (a, b; r, x)ha,b;r,x(s, y)dµα(a, b; r, x), (s, y) ∈ R2
+. (2.27)

Theorem 2.2. (Plancherel’s formula for Sα
h). Let h be a generalized Stockwell wavelet on

R2
+ in L2(dνα). For all f in L2(dνα) we have∫

R2
+

|f(r, x)|2dνα(r, x) = 1
Ch

∫
R2

+×R2
+

|Sα
h(f)(a, b, r, x)|2dµα(a, b, r, x). (2.28)

Corollary 2.1. (Parseval’s formula for Sα
h). Let h be a generalized Stockwell wavelet on

R2
+ in L2(dνα) and f1, f2 in L2(dνα). Then, we have∫
R2

+

f1(r, x)f2(r, x)dνα(r, x) = 1
Ch

∫
R2

+×R2
+

Sα
h(f1)(a, b, r, x)Sα

h(f2)(a, b, r, x)dµα(a, b, r, x).

(2.29)

Remark 2.5. Let h be a generalized Stockwell wavelet in L2(dνα). Then from the rela-
tions (2.25) and (2.24), for all f in L2(dνα) we have

∥Sα
h(f)∥L∞

µα
(R2

+×R2
+) ≤ ∥f∥L2(dνα)∥h∥L2(dνα). (2.30)

2.3. Schatten-von Neumann classes
In this subsection, we recall the notion of Schatten-von Neumann classes. Prior to that,
we set the following notation:

• lp(N), 1 ≤ p ≤ ∞, the set of all infinite sequences of real (or complex) numbers
x := (xj)j∈N, such that

||x||p :=
( ∞∑

j=1
|xj |p

) 1
p

< ∞, if 1 ≤ p < ∞,

||x||∞ := sup
j∈N

|xj | < ∞.

For p = 2, we provide this space l2(N) with the scalar product

⟨x, y⟩2 :=
∞∑

j=1
xjyj .

• B(Lp(dνα)), 1 ≤ p ≤ ∞, the space of bounded operators from Lp(dνα) into itself.

Definition 2.9. (i) The singular values (sn(A))n∈N of a compact operator A in B(L2(dνα))
are the eigenvalues of the positive self-adjoint operator |A| =

√
A∗A.

(ii) For 1 ≤ p < ∞, the Schatten class Sp is the space of all compact operators whose
singular values lie in lp(N). The space Sp is equipped with the norm

||A||Sp :=
( ∞∑

n=1
(sn(A))p

) 1
p
. (2.31)

Remark 2.6. We note that the space S2 is the space of Hilbert-Schmidt operators, and
S1 is the space of trace class operators.
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Definition 2.10. The trace of an operator A in S1 is defined by

tr(A) =
∞∑

n=1
⟨Avn, vn⟩L2(dνα ) (2.32)

where (vn)n is any orthonormal basis of L2(dνα).

Remark 2.7. If A is positive, then

tr(A) = ||A||S1 . (2.33)

Moreover, a compact operator A on the Hilbert space L2(dνα) is Hilbert-Schmidt, if the
positive operator A∗A is in the space of trace class S1. Then

||A||2HS := ||A||2S2 = ||A∗A||S1 = tr(A∗A) =
∞∑

n=1
||Avn||2L2(dνα ) (2.34)

for any orthonormal basis (vn)n of L2(dνα).

Definition 2.11. We define S∞ := B(L2(dνα)), equipped with the norm,

||A||S∞ := sup
v∈L2(dνα ):||v||L2(dνα )=1

||Av||L2(dνα ). (2.35)

3. Localization operators for the generalized Stockwell transform
3.1. Preliminaries
In this subsection, we define the two-wavelet localization operator associated for the gen-
eralized Stockwell transform, and we give the expression of its adjoint.

Definition 3.1. Let h, k be measurable functions on R2
+ and σ be measurable function

on R2
+ × R2

+, we define the two-wavelet localization operator for the generalized Stockwell
transform, denoted by Lh,k(σ), on Lp(dνα), 1 ≤ p ≤ ∞, by ∀ (s, y) ∈ R2

+,

Lh,k(σ)(f)(s, y) = 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)Sα
h(f)(a, b, r, x) ka,b,r,x(s, y)dµα(a, b, r, x).

(3.1)
Often it is more convenient to interpret the definition of Lh,k(σ) in a weak sense, that is,
for f in Lp(dνα), 1 ≤ p ≤ ∞, and g in Lp′(dνα), where p′ is the conjugate exponent of p

⟨Lh,k(σ)(f), g⟩L2(dνα) = 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)Sα
h(f)(a, b, r, x)Sα

k (g)(a, b, r, x)dµα(a, b, r, x).

(3.2)

In accordance with the different choices of the symbols σ and the different continuities
required, we need to impose different conditions on h and k. And then we obtain an
operator on Lp(dνα). In what follows, such operator Lh,k(σ) will be named localization
operator for the sake of simplicity.

Proposition 3.1. Let p ∈ [1, ∞). The adjoint of the localization operator

Lh,k(σ) : Lp(dνα) → Lp(dνα)

is Lk,h(σ) : Lp′(dνα) → Lp′(dνα).
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Proof. For all f in Lp(dνα) and g in Lp′(dνα) it follows immediately from (3.2)

⟨Lh,k(σ)(f), g⟩L2(dνα) = 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)Sα
h(f)(a, b, r, x)Sα

k (g)(a, b, r, x)dµα(a, b, r, x)

= 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)Sα
k (g)(a, b, r, x)Sα

h(f)(a, b, r, x)dµα(a, b, r, x)

= ⟨Lk,h(σ)(g), f⟩L2(dνα) = ⟨f,Lk,h(σ)(g)⟩L2(dνα).

Thus we get
L∗

h,k(σ) = Lk,h(σ). (3.3)
□

In the sequel of this section, h and k will be a generalized Stockwell wavelets in L2(dνα)
such that

∥h∥L2(dνα) = ∥k∥L2(dνα) = 1.

3.2. Boundedness
In this subsection, we prove that the linear operators

Lh,k(σ) : L2(dνα) → L2(dνα)
are bounded for all symbol σ ∈ Lp

µα
(R2

+ × R2
+), p ∈ [1, ∞].

We first tackle this problem for σ in L1
µα

(R2
+ ×R2

+) or L∞
µα

(R2
+ ×R2

+) and we conclude by
using interpolation theory.

Proposition 3.2. Let σ be in L1
µα

(R2
+ ×R2

+), then the localization operator Lh,k(σ) is in
S∞ and we have

||Lh,k(σ)||S∞ ⩽ 1√
ChCk

∥σ∥L1
µα

(R2
+×R2

+).

Proof. For every functions f and g in L2(dνα), we have from the relations (3.2) and
(2.30),

|⟨Lh,k(σ)(f), g⟩L2(dνα)| ⩽
1√

ChCk

∫
R2

+×R2
+

|σ(a, b, r, x)||Sα
h(f)(a, b, r, x)||Sα

k (g)(a, b, r, x)|dµα(a, b, r, x)

⩽ 1√
ChCk

∥Sα
h(f)∥L∞

µα
(R2

+×R2
+)∥Sα

k (g)∥L∞
µα

(R2
+×R2

+)∥σ∥L1
µα

(R2
+×R2

+)

⩽ 1√
ChCk

∥f∥L2(dνα)∥g∥L2(dνα)∥σ∥L1
µα

(R2
+×R2

+).

Thus,
||Lh,k(σ)||S∞ ⩽ 1√

ChCk
∥σ∥L1

µα
(R2

+×R2
+).

□
Proposition 3.3. Let σ be in L∞

µα
(R2

+ ×R2
+), then the localization operator Lh,k(σ) is in

S∞ and we have
||Lh,k(σ)||S∞ ⩽ ∥σ∥L∞

µα
(R2

+×R2
+).

Proof. For all functions f and g in L2(dνα), we have from Hölder’s inequality

|⟨Lh,k(σ)(f), g⟩L2(dνα)| ⩽
1√

ChCk

∫
R2

+×R2
+

|σ(a, b, r, x)||Sα
h(f)(a, b, r, x)||Sα

k (g)(a, b, r, x)|dµα(a, b, r, x)

⩽ 1√
ChCk

∥σ∥L∞
µα

(R2
+×R2

+)∥Sα
h(f)∥L2

µα
(R2

+×R2
+)∥Sα

k (g)∥L2
µα

(R2
+×R2

+).
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Using Plancherel’s formula for Sα
h and Sα

h , given by the relation (2.28), we get

|⟨Lh,k(σ)(f), g⟩L2(dνα)| ⩽ ∥σ∥L∞
µα

(R2
+×R2

+)∥f∥L2(dνα)∥g∥L2(dνα).

Thus,
||Lh,k(σ)||S∞ ⩽ ∥σ∥L∞

µα
(R2

+×R2
+).

□

We can now associate a localization operator Lh,k(σ) : L2(dνα) → L2(dνα) to every
function σ in Lp

µα
(R2

+ × R2
+), 1 ≤ p ≤ ∞ and prove that Lh,k(σ) is in S∞. The precise

result is the following theorem.

Theorem 3.1. Let σ be in Lp
µα

(R2
+×R2

+), 1 ≤ p ≤ ∞. Then there exists a unique bounded
linear operator Lh,k(σ) : L2(dνα) → L2(dνα), such that

||Lh,k(σ)||S∞ ⩽ ( 1√
ChCk

)
1
p ∥σ∥Lp

µα
(R2

+×R2
+).

Proof. Let f be in L2(dνα). We consider the following operator

T : L1
µα

(R2
+ × R2

+) ∩ L∞
µα

(R2
+ × R2

+) → L2(dνα),

given by
T (σ) := Lh,k(σ)(f).

Then by Proposition 3.2 and Proposition 3.3

||T (σ)||L2(dνα) ≤ 1√
ChCk

||f ||L2(dνα)∥σ∥L1
µα

(R2
+×R2

+) (3.4)

and
||T (σ)||L2(dνα) ≤ ||f ||L2(dνα)∥σ∥L∞

µα
(R2

+×R2
+). (3.5)

Therefore, by (3.4), (3.5) and the Riesz-Thorin interpolation theorem (see [34, Theorem
2], and [38, Theorem 2.11] ), T may be uniquely extended to a linear transformation on
Lp

µα
(R2

+ × R2
+), and we have

||Lh,k(σ)(f)||L2(dνα) = ||T (σ)||L2(dνα) ≤ ( 1√
ChCk

)
1
p ||f ||L2(dνα)∥σ∥Lp

µα
(R2

+×R2
+). (3.6)

Since (3.6) is true for arbitrary functions f in L2(dνα), then we obtain the desired result.
□

3.3. Schatten-von Neumann properties for Lh,k(σ)
In this subsection, we will prove that, the localization operator

Lh,k(σ) : L2(dνα) → L2(dνα)

is in the Schatten class Sp. The first result on the Schatten property of localization
operators, is given in the following proposition.

Proposition 3.4. Let σ be in L1
µα

(R2
+ × R2

+), then the localization operator

Lh,k(σ) : L2(dνα) → L2(dνα)

is in S2 and we have

∥Lh,k(σ)∥S2 ⩽ 1√
ChCk

∥σ∥L1
µα

(R2
+×R2

+).
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Proof. Let {ϕj , j = 1, 2...} be an orthonormal basis for L2(dνα). Then by (3.2), Fubini’s
theorem, Parseval’s identity and the relations (2.25) and (3.3), we have

∞∑
j=1

||Lh,k(σ)(ϕj)||2L2(dνα) =
∞∑

j=1
⟨Lh,k(σ)(ϕj),Lh,k(σ)(ϕj)⟩L2(dνα)

= 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)⟨L∗
h,k(σ) k

a,b,r,x
, h

a,b,r,x
⟩L2(dνα)dµα(a, b, r, x).

Thus, we get
∞∑

j=1
||Lh,k(σ)(ϕj)||2L2(dνα) ≤ 1√

ChCk

∫
R2

+×R2
+

|σ(a, b, r, x)| ||L∗
h,k(σ)||S∞dµα(a, b, r, x)

= 1√
ChCk

||L∗
h,k(σ)||S∞∥σ∥L1

µα
(R2

+×R2
+) < ∞. (3.7)

So, by (3.7) and Proposition 2.8 in the book [38], by Wong, Lh,k(σ) : L2(dνα) → L2(dνα)
is in the Hilbert-Schmidt class S2 and hence compact. □

Proposition 3.5. Let σ be in Lp
µα

(R2
+ ×R2

+), 1 ⩽ p < ∞. Then, the localization operator
Lh,k(σ) is compact.

Proof. Let σ be in Lp
µα

(R2
+ × R2

+) and let (σn)n∈N be a sequence of functions in

L1
µα

(R2
+ × R2

+)
⋂

L∞
µα

(R2
+ × R2

+)

such that σn → σ in Lp
µα

(R2
+ × R2

+) as n → ∞. Then by Theorem 3.1

||Lh,k(σn) − Lh,k(σ)||S∞ ≤
( 1√

ChCk

) 1
p

||σn − σ||Lp
µα

(R2
+×R2

+).

Hence Lh,k(σn) → Lh,k(σ) in S∞ as n → ∞. On the other hand as by Proposition 3.4,
Lh,k(σn) is in S2 hence compact, it follows that Lh,k(σ) is compact. □

Theorem 3.2. Let σ be in L1
µα

(R2
+ × R2

+). Then,

2
Ch + Ck

∥σ̃∥L1
µα

(R2
+×R2

+) ⩽ ∥Lh,k(σ)∥S1 ⩽ 1√
ChCk

∥σ∥L1
µα

(R2
+×R2

+), (3.8)

where σ̃ is given by

σ̃(a, b, r, x) = ⟨Lh,k(σ)( ha,b,r,x), ka,b,r,x⟩L2(dνα), (a, b, r, x) ∈ R2
+ × R2

+.

Proof. Since σ is in L1
µα

(R2
+ ×R2

+), by Proposition 3.4, Lh,k(σ) is in S2. Using [38, Theo-
rem 2.2], there exists an orthonormal basis {ϕj , j = 1, 2...} for the orthogonal complement
of the kernel of Lh,k(σ), consisting of eigenvectors of |Lh,k(σ)| and {φj , j = 1, 2...} an
orthonormal set in L2(dνα), such that

Lh,k(σ)(f) =
∞∑

j=1
sj⟨f, ϕj⟩L2(dνα)φj , (3.9)

where sj , j = 1, 2... are the positive singular values of Lh,k(σ) corresponding to ϕj . Then,
we get

∥Lh,k(σ)∥S1 =
∞∑

j=1
sj =

∞∑
j=1

⟨Lh,k(σ)(ϕj), φj⟩L2(dνα).
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Thus, by Fubini’s theorem, Schwarz’s inequality, Bessel’s inequality, relations (2.24) and
(2.25), we get

∥Lh,k(σ)∥S1 =
∞∑

j=1
⟨Lh,k(σ)(ϕj), φj⟩L2(dνα)

=
∞∑

j=1

1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)Sα
h(ϕj)(a, b, r, x)Sα

k (φj)(a, b, r, x)dµα(a, b, r, x)

⩽ 1√
ChCk

∫
R2

+×R2
+

|σ(a, b, r, x)|

 ∞∑
j=1

|Sα
h(ϕj)(a, b, r, x)|2

 1
2
 ∞∑

j=1
|Sα

k (φj)(a, b, r, x)|2
 1

2

dµα(a, b, r, x)

⩽ 1√
ChCk

∫
R2

+×R2
+

|σ(a, b, r, x)|∥ ha,b,r,x∥L2(dνα)∥ ka,b,r,x∥L2(dνα)dµα(a, b, r, x)

⩽ 1√
ChCk

∥σ∥L1
µα

(R2
+×R2

+).

Thus

∥Lh,k(σ)∥S1 ≤ 1√
ChCk

∥σ∥L1
µα

(R2
+×R2

+).

We prove now that Lh,k(σ) satisfies the first member of (3.8). It is easy to see that σ̃
belongs to L1

µα
(R2

+ × R2
+) and using formula (3.9), we get

|σ̃(a, b, r, x)| = |⟨Lh,k(σ)( ha,b,r,x), ka,b,r,x⟩L2(dνα)|

= |
∞∑

j=1
sj⟨ ha,b,r,x, ϕj⟩L2(dνα)⟨φj , ka,b,r,x⟩L2(dνα)|

⩽ 1
2

∞∑
j=1

sj

(
|⟨ ha,b,r,x, ϕj⟩L2(dνα)|2 + |⟨ ka,b,r,x, φj⟩L2(dνα)|2

)
.

Then by Fubini’s theorem, we obtain∫
R2

+×R2
+

|σ̃(a, b, r, x)|dµα(a, b, r, x) ≤ 1
2

∞∑
j=1

sj

( ∫
R2

+×R2
+

|⟨ ha,b,r,x, ϕj⟩L2(dνα)|2dµα(a, b, r, x)

+
∫
R2

+×R2
+

|⟨ ka,b,r,x, φj⟩L2(dνα)|2dµα(a, b, r, x)
)
.

Thus using Plancherel’s identity for Sα
h , Sα

h , we get∫
R2

+×R2
+

|σ̃(a, b, r, x)|dµα(a, b, r, x) ≤ Ch + Ck

2

∞∑
j=1

sj = Ch + Ck

2
∥Lh,k(σ)∥S1 .

The proof is complete. □

Corollary 3.1. For σ in L1
µα

(R2
+ × R2

+), we have the following trace formula

tr(Lh,k(σ)) = 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)⟨ka,b,r,x, ha,b,r,x⟩L2(dνα)dµα(a, b, r, x). (3.10)

Proof. From Theorem 3.2, the localization operator Lh,k(σ) belongs to S1, then by the
definition of the trace given by the relation (2.32), we have
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tr(Lh,k(σ)) =
∞∑

j=1
⟨Lh,k(σ)(ϕj), ϕj⟩L2(dνα)

=
∞∑

j=1

1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)⟨ϕj , h(a,b,r,x)⟩L2(dνα)⟨ϕj , k(a,b,r,x)⟩L2(dνα)dµα(a, b, r, x)

= 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)
∞∑

j=1
⟨ϕj , h(a,b,r,x)⟩L2(dνα)⟨ϕj , k(a,b,r,x)⟩L2(dνα)dµα(a, b, r, x)

= 1√
ChCk

∫
R2

+×R2
+

σ(a, b, r, x)⟨k(a,b,r,x), h(a,b,r,x)⟩L2(dνα)dµα(a, b, r, x),

and the proof is complete. □

In the following we give the main result of this section.

Corollary 3.2. Let σ be in Lp
µα

(R2
+ × R2

+), 1 ⩽ p ⩽ ∞. Then, the localization operator

Lh,k(σ) : L2(dνα) −→ L2(dνα)

is in Sp and we have

∥Lh,k(σ)∥Sp ⩽
( 1√

ChCk

) 1
p

∥σ∥Lp
µα

(R2
+×R2

+).

Proof. The result follows from Proposition 3.3, Theorem 3.2 and by interpolation [38,
Theorem 2.10 and Theorem 2.11]. relation □

Remark 3.1. If h = k and if σ is a real valued and nonnegative function in L1
µα

(R2
+ ×R2

+)
then Lh,k(σ) : L2(dνα) → L2(dνα) is a positive operator. So, by (2.33) and Corollary 3.1

||Lh,k(σ)||S1 =
∫
R2

+×R2
+

σ(a, b; r, x)||h
a,b;r,x

||2L2(dνα)dµα(a, b; r, x). (3.11)

Now we state a result concerning the trace of products of localization operators.

Corollary 3.3. Let σ1 and σ2 be any real-valued and nonnegative functions which belong
to L1

µα
(R2

+ × R2
+). We assume that h = k and h is a function in L2(dνα) such that

||h||L2(dνα) = 1. Then, the localization operators Lh,k(σ1), Lh,k(σ2) are positive trace class
operators and∣∣∣∣∣∣(Lh,k(σ1)Lh,k(σ2)

)n∣∣∣∣∣∣
S1

= tr
(
Lh,k(σ1)Lh,k(σ2)

)n

≤
(
tr
(
Lh,k(σ1)

))n(
tr
(
Lh,k(σ2)

))n

=
∣∣∣∣∣∣Lh,k(σ1)

∣∣∣∣∣∣n
S1

∣∣∣∣∣∣Lh,k(σ2)
∣∣∣∣∣∣n

S1
,

for any natural number n.

Proof. By Theorem 1 in the paper [20] by Liu we know that if A and B are in the trace
class S1 and are positive operators, then

∀ n ∈ N, tr(AB)n ≤
(
tr(A)

)n(
tr(B)

)n
.

So, if we take A = Lh,k(σ1), B = Lh,k(σ2) and we invoke the previous remark, the desired
result is obtained and the proof is completed. □
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4. Mean dispersion theorem for the generalized Stockwell transform
In this section, we shall present some useful results regarding the concentration of Sα

h(f)
on small sets.

Proposition 4.1. Suppose that U ⊂ R2
+ × R2

+ satisfies

µα(U) <
Ch

||h||2L2(dνα)
, (4.1)

then, for all f in L2(dνα), we have

∥χ
Uc

Sα
h(f)∥L2

µα (R2
+×R2

+) ≥
√

Ch

√√√√1 −
||h||2L2(dνα)

Ch
µα(U)∥f∥L2(dνα), (4.2)

where χ
Uc

denotes the characteristic function of the complementary U c of U .

Proof. From Plancherel’s Theorem 2.2, we have

Ch||f ||2L2(dνα) = ∥Sα
h(f)∥2

L2
µα

(R2
+×R2

+) = ∥Sα
h(f)∥2

L2
µα

(U) + ∥Sα
h(f)∥2

L2
µα

(Uc). (4.3)

On the other hand from the relation (2.30), we have∫
U

|Sα
h(f)(a, b, r, x)|2dµα(a, b, r, x) ≤ ∥Sα

h(f)∥2
L∞

µα
(R2

+×R2
+)µα(U)

≤ µα(U)∥f∥2
L2(dνα)∥h∥2

L2(dνα). (4.4)

Thus, the result follows immediately from the relations (4.3) and (4.4). □

Remark 4.1. Let U be a subset of R2
+ × R2

+ satisfying the relation (4.1). If Sα
h(f) is

supported in U , then f = 0.

Proposition 4.2. Let h be a generalized Stockwell wavelet such that ∥h∥
L2(dνα)

= 1. Let
s > 0. Then the following uncertainty inequality hold.
There exists a positive constant C(s) such that, for all f in L2(dνα), we have∣∣∣∣∣∣ ||(a, b, r, x)||sSα

h(f)
∣∣∣∣∣∣

L2
µα (R2

+×R2
+)

≥ C(s)∥f∥
L2(dνα)

. (4.5)

Proof. Let δ > 0. We consider the subset Vδ of R2
+ × R2

+ defined by

Vδ =
{

(a, b, r, x) ∈ R2
+ × R2

+ : ||(a, b, r, x)|| < δ
}

,

and satisfying 0 < µα(Vδ) < Ch. By applying the relation (4.2) with U = Vδ we obtain

||f ||2L2(dνα) ≤ 1
C

h
− µα(Vδ)

∫
V c

δ

|Sα
h(f)(a, b, r, x)|2dµα(a, b, r, x)

≤ 1
δ2s(C

h
− µα(Vδ))

∫
||(a,b,r,x)||≥δ

||(a, b, r, x)||2s|Sα
h(f)(a, b, r, x)|2dµα(a, b, r, x)

≤ 1
δ2s(C

h
− µα(Vδ))

∣∣∣∣∣∣ ||(a, b, r, x)||sSα
h(f)

∣∣∣∣∣∣2
L2

µα
(R2

+×R2
+)

.

Thus, we obtain the relation (4.5) with C(s) := δs
√

Ch − µα(Vδ). □

Proposition 4.3. ([27]). Let h be a generalized Stockwell wavelet on R2
+ in L1(dνα)

⋂
L2(dνα).

Then, Sα
h(L2(dνα)) is a reproducing kernel Hilbert space with kernel function

Kh(a′, b′, r′, x′; a, b, r, x) := 1
Ch

∫
R2

+

ha′,b′,r′,x′(s, y)ha,b,r,x(s, y)dν(s, y). (4.6)
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The kernel satisfies:

∀ (a′, b′, r′, x′), (a, b, r, x) ∈ R2
+ × R2

+, |Kh(a′, r′, x′; a, b, r, x)| ≤
||h||2L2(dνα)

Ch
. (4.7)

Notation. We shall adopt the following notations:
(i) Ph : L2

µα
(R2

+ × R2
+) → L2

µα
(R2

+ × R2
+) denotes the orthogonal projection from L2

µα
(R2

+ × R2
+)

onto Sα
h(L2(dνα)).

(ii) PU : L2
µα

(R2
+ × R2

+) → L2
µα

(R2
+ × R2

+) denotes the orthogonal projection from L2
µα

(R2
+ × R2

+)
onto the subspace of functions of L2

µα
(R2

+ × R2
+) supported in a subset U ⊂ R2

+ × R2
+ sat-

isfying

0 < µα(U) :=
∫

U
dµα(a, b, r, x) < ∞. (4.8)

Next, we recall that

||PU Ph||HS :=
( ∫

R2
+×R2

+×U
|Kh(a′, b′, r′, x′; a, b, r, x)|2dµα(a′, b′, r′, x′)dµα(a, b, r, x)

) 1
2

(4.9)

≤
||h||L2(dνα)√

Ch

√
µα(U) < ∞.

That is, PU Ph is a Hilbert-Schmidt operator and, therefore it is a compact operator.

Remark 4.2. i) The operator Ph = Sα
h(Sα

h)∗ can be explicitly expressed as an integral
operator

PhF (z) =
∫
R2

+×R2
+

F (a, b, r, x)Kh(z; a, b, r, x)dµα(a, b, r, x), z = (a′, b′, r′, x′) ∈ R2
+ × R2

+,

with integral kernel Kh.
ii) As Kh is the integral kernel of an orthogonal projection, it satisfies

Kh(z; z′) = Kh(z′; z), for all z, z′ ∈ R2
+ × R2

+, (4.10)

and
Kh(z; z′) =

∫
R2

+×R2
+

Kh(z; z′′)Kh(z′′; z′)dµα(z′′), z, z′ ∈ R2
+ × R2

+. (4.11)

iii) If {vn : n ∈ N} is an orthonormal basis of Sα
h(L2(dνα)), Kh can be expanded as

Kh(z; z′) =
∞∑

n=1
vn(z)vn(z′), z, z′ ∈ R2

+ × R2
+. (4.12)

Definition 4.1. Let 0 < ε < 1 and U ⊂ R2
+ × R2

+ be a measurable subset. Let h be a
generalized Stockwell wavelet and let f ∈ L2(dνα) be a nonzero function.
We say that Sα

h(f) is ε-time-concentrated on U , if∣∣∣∣∣∣ Sα
h(f)

∣∣∣∣∣∣
L2

µα
(Uc)

≤ ε
∣∣∣∣∣∣ Sα

h(f)
∣∣∣∣∣∣

L2
µα

(R2
+×R2

+)
.

Proposition 4.4. Let h be a generalized Stockwell wavelet and (uβ)β∈N2 be an orthonormal
sequence in L2(dνα) and U be a measurable subset of R2

+ × R2
+. If µα(U) < ∞, then for

every nonempty finite subset K ⊂ N2, we have

∑
β∈K

(√
Ch − ∥χUcSα

h(uβ)∥L2
µα

(R2
+×R2

+)

)
⩽

∥h∥2
L2(dνα)√

Ch
µα(U).
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Proof. As PU Ph is an Hilbert-Schmidt operator then by (2.34)∑
β∈K

⟨PUS
α
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+) =
∑
β∈K

⟨PhPU PhS
α
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+)

≤ Chtr(PhPU Ph)
= Ch∥PU Ph∥2

HS .

Then by (4.9) we get∑
β∈K

⟨PUS
α
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+) ⩽ ∥h∥2
L2(dνα) µα(U). (4.13)

Now by the Cauchy-Schwarz inequality we have for every β ∈ K,
⟨PUS

α
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+) = Ch − ⟨PUcSα
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+)

⩾ Ch −
√

Ch∥χUcSα
h(uβ)∥L2

µα
(R2

+×R2
+)

in particular, using relation (4.13), we obtain∑
β∈K

(
Ch −

√
Ch∥χUcSα

h(uβ)∥L2
µα

(R2
+×R2

+)

)
⩽
∑
β∈K

⟨PUS
α
h(uβ), Sα

h(uβ)⟩L2
µα

(R2
+×R2

+) ⩽ ∥h∥2
L2(dνα) µα(U),

and the conclusion follows. □
As a consequence of the proposition 4.4, we shall demonstrate that, if the generalized con-
tinuous Stockwell transform of an othornormal sequence are ε time-frequency concentrated
in a given centered ball of R2

+ × R2
+, then such a sequence is necessarily finite.

Proposition 4.5. Let ε and δ be positive real numbers such that 0 < ε < 1, and h be
a generalized Stockwell wavelet. Let K ⊂ N2 be a nonempty subset and (uβ)β∈K

be an
orthonormal sequence in L2(dνα). If Sα

h(uβ) is ε-time-frequency concentrated in the set

Bδ :=
{

(a, b, r, x) ∈ R2
+ × R2

+ : ||(a, b, r, x)|| ≤ δ
}

for every β ∈ K, then K is finite and

Card(K) ⩽ δ4α+6

1 − ε
M(α, h). (4.14)

where M(α, h) =
∥h∥2

L2(dνα)
Ch

µα(B1).

Proof. Let M ⊂ K be a nonempty finite subset, then by Proposition 4.4, we deduce that∑
β∈M

(√
Ch − ∥χUcSα

h(uβ)∥L2
µα

(R2
+×R2

+)

)
⩽

∥h∥2
L2(dνα)√

Ch
µα(Bδ), (4.15)

however for every β ∈ M, ∥χBc
δ
Sα

h(uβ)∥L2
µα

(R2
+×R2

+) ⩽ ε
√

Ch, and

µα(Bδ) = µα(B1)δ4α+6, (4.16)
hence by combining relations (4.15) and (4.16), we deduce that

Card(M) ⩽
µα(B1)∥h∥2

L2(dνα)
(1 − ε)Ch

δ4α+6,

which means that K is finite and satisfies relation (4.14). □
Let p be a positive real number, h be a generalized Stockwell wavelet and f ∈ L2(dνα),
we define the generalized pth time-frequency dispersion of Sα

h(f) by

ρp(Sα
h(f)) =

(∫
R2

+×R2
+

||(a, b, r, x)||p |Sα
h(f)(a, b; r, x)|2 dµα(a, b, r, x)

) 1
p

.
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Corollary 4.1. Let A, p be positive real numbers and h ∈ L2(dνα) be a generalized
Stockwell wavelet. Let K ⊂ N2 be a nonempty subset and (uβ)β∈K

be an orthonormal
sequence in L2(dνα). Assume that for every β ∈ K,

ρp(Sα
h(uβ)) ⩽ A,

then K is finite and
Card(K) ⩽ A4α+6M ′(α, p, h),

where M ′(α, p, h) = 21+ 8α+12
p M(α, h).

Proof. Assume that ρp(Sα
h(uβ)) ⩽ A for every β ∈ K, then we have∫

Bc

A2
2
p

|Sα
h(uβ)(a, b, r, x)|2dµα(a, b, r, x) ⩽ 1(

A2
2
p

)p ρp
p(Sα

h(f)) ⩽ 1
4

. (4.17)

Relation (4.17) means that for every β ∈ K, uβ is 1
2

-concentrated in the set B
A2

2
p
, hence

according to Proposition 4.5, we deduce that K is finite and

Card(K) ⩽ A4α+6M ′(α, p, h).

□

Lemma 4.1. Let h be a generalized Stockwell wavelet and p be a positive real number. If
(uβ)β∈N2 is an orthonormal sequence in L2(dνα), then there exists j0 ∈ Z such that

∀β ∈ N2, ρp(Sα
h(uβ)) ⩾ 2j0 .

Proof. The proof is an immediate consequence of Heisenberg-type inequality (4.5). □

Theorem 4.1 (Shapiro’s Dispersion Theorem). Let h be a generalized Stockwell wavelet
and (uβ)β∈N2 be an orthonormal sequence in L2(dνα), then for every positives reals num-
bers p and for every nonempty finite subset K ⊂ N2, we have

∑
β∈K

(ρp(Sα
h(uβ)))p ≥ 1

2

( 3
M ′(α, p, h)28α+13

) p
4α+6

(Card(K))1+ p
4α+6 . (4.18)

Proof. For every j ∈ Z, let

Pj =
{

β ∈ N2 : ρp(Sα
h(uβ)) ∈ [2j−1, 2j)

}
,

then for every β ∈ Pj∫
R2

+×R2
+

||(a, b, r, x)||p |Sα
h(uβ)(a, b, r, x)|2 dµα(a, b, r, x) ⩽ 2pj ,

thus, using the relation (4.17) yields∫
Bc

2
j+ 2

p

|Sα
h(uβ)(a, b, r, x)|2 dµα(a, b, r, x) ⩽ 1

4
ρp(uβ)p

2jp
⩽ 1

4
. (4.19)

Therefore, as a consequence of the relation (4.19), we deduce that every β ∈ Pj , uβ

is 1
2 -concentrated in the ball B

2j+ 2
p
, In other words, the sequence (uβ)β∈Pj

satisfies the
conditions of proposition 4.5, which shows that Pj is finite and

Card(Pj) ⩽ 2j(4α+6)M ′(α, p, h). (4.20)
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For m ∈ Z, m ⩾ j0, we denote by Qm =
m⋃

j=j0

Pj then according to relation (4.20), we have

Card (Qm) =
m∑

j=j0

Card(Pj) ⩽ M ′(α, p, h)
3

2(m+1)(4α+6).

Now, if Card(K) >
2M ′(α, p, h)

3
2(j0+1)(4α+6), then we can choose an integer n > j0 such

that
2M ′(α, p, h)

3
2n(4α+6) < Card(K) ⩽ 2M ′(α, p, h)

3
2(n+1)(4α+6). (4.21)

Thus, by relation (4.21) we get∑
β∈K

(ρp(Sα
h(vβ)))p ⩾ Card(K)

2
2(n−1)p ⩾ 1

2
(Card(K))1+ p

4α+6

( 3
28α+13M ′(α, p, h)

) p
4α+6

.

Finally, if Card(K) ⩽ 2M ′(α, p, h)
3

2(j0+1)(4α+6), then

∑
β∈K

(ρp(Sα
h(vβ)))p ⩾ Card(K)2(j0−1)p ⩾ Card(K)1+ p

4α+6

( 3
M ′(α, p, h)28α+13

) p
4α+6

.

□
Corollary 4.2. Let p > 0, h be a generalized Stockwell wavelet and let (uβ)β∈N2 be an
orthonormal sequence in L2(dνα). Then for every K ⊂ N2∑

β∈K

(∣∣∣∣∣∣ ||(a, b)||
p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣2

L2
µα

(R2
+×R2

+)
+
∣∣∣∣∣∣ ||(r, x)||

p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣2

L2
µα

(R2
+×R2

+)

)
≥ 1

2

(
3

M ′(α,p,h)212α+19

) p
4α+6 Card(K)1+ p

4α+6 .

Proof. The result is an immediate consequence of the previous theorem and the fact that
||(a, b, r, x)||p ≤ 2p(||(a, b)||p + ||(r, x)||p).

□
As a consequence of the last dispersion inequality, we infer that, there does not exist an
infinite sequence (uβ)β∈K

in L2(dνα) such that the two sequences∣∣∣∣∣∣ ||(a, b)||
p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣

L2
µα

(R2
+×R2

+)

and ∣∣∣∣∣∣ ||(r, x)||
p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣

L2
µα

(R2
+×R2

+)

are bounded.

Corollary 4.3. Let p > 0, h be a generalized Stockwell wavelet and let (uβ)β∈N2 be an
orthonormal sequence in L2(dνα). Then for every K ⊂ N2

supβ∈K

(∣∣∣∣∣∣ ||(a, b)||
p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣2

L2
µα

(R2
+×R2

+)
,
∣∣∣∣∣∣ ||(r, x)||

p
2 Sα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣2

L2
µα

(R2
+×R2

+)

)
≥ 1

4

(
3

M ′(α,p,h)212α+19

) p
4α+6 Card(K)

p
4α+6 .

In particular

sup
β∈N2

(∣∣∣∣∣∣ ||(a, b)||pSα
h(uβ)(a, b, r, x)

∣∣∣∣∣∣
L2

µα
(R2

+×R2
+)

+
∣∣∣∣∣∣ ||(r, x)||pSα

h(uβ)(a, b, r, x)
∣∣∣∣∣∣

L2
µα

(R2
+×R2

+)

)
= ∞.
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Theorem 4.2 (Shapiro’s Umbrella Theorem ). Let h be a generalized Stockwell wavelet
and K ⊂ N2 be a nonempty subset and (uβ)β∈K

be an orthonormal sequence in L2(dνα),
if there is a function g ∈ L2

µα
(R2

+ × R2
+) such that

|Sα
h(uβ)(a, b, r, x)| ⩽ g(a, b, r, x),

for every β ∈ K and for almost every (a, b, r, x) ∈ R2
+ × R2

+, then K is finite.

Proof. Following the idea of Malinnikova [21], for every positive real number 0 < ε < Ch,
there is a subset ∆g,ε ⊂ R2

+ × R2
+, such that

µα(∆g,ε) = inf
{

µα(U) :
∫ ∫

R2
+×R2

+\U
|g(a, b, r, x)|2 dµα(a, b, r, x) ⩽ ε2

}
,

and ∫ ∫
R2

+×R2
+\∆g,ε

|g(a, b, r, x)|2 dµα(a, b, r, x) = ε2.

Hence, according to the hypothesis, for every α ∈ K, we have∫ ∫
R2

+×R2
+\∆g,ε

|Sα
h (uβ) (a, b, r, x)|2 dµα(a, b, r, x) ⩽ ε2,

and by the Proposition 4.4, we get Card(K)(
√

Ch − ε) ⩽
∥h∥2

L2(dνα)√
Ch

µα(∆g,ε). □

5. Spectral analysis for the generalized concentration operator
The aim of this section is to study the scalograms associated with the Riemann-Liouville
Stockwell transform.

5.1. Calderón-Toeplitz operator
Definition 5.1. Let h be a generalized Stockwell wavelet on R2

+ in L2(dνα). We define
the Riemann-Liouville wavelet scalogram of f as

Sα
h(f)(a, b, r, x) = C−1

h |Sα
hf(a, b, r, x)|2, (a, b, r, x) ∈ R2

+ × R2
+. (5.1)

Remark 5.1. From the Plancherel formula associated with Sα
h , we have∫

R2
+×R2

+

Sα
h(f)(a, b, r, x)dµα(a, b, r, x) = ∥f∥2

L2(dνα). (5.2)

It justifies the interpretation of a scalogram as a time-frequency energy density. Also, note
that (3.2)

⟨Lh,h(σ)f, f⟩L2(dνα) =
∫
R2

+×R2
+

σ(a, b, r, x)Sα
h(f)(a, b, r, x)dµα(a, b, r, x). (5.3)

In this section we shall keep our focus on localization operators Lh,h(σ) with symbol
σ = χU , and h is a generalized Stockwell wavelet on R2

+ in L2(dνα), and U is subset of
R2

+ ×R2
+ with finite measure µα(U) < ∞. For the sake of simplicity, such an operator will

be denoted as Lh(U).

Definition 5.2. We define the Calderón-Toeplitz operator

Th,U : Sα
h(L2(dνα)) → Sα

h(L2(dνα))

by
Th,U F = PhPU F. (5.4)



768 N. Ben Hamadi, Z. Hafirassou, H. Mejjaoli

Proposition 5.1. The operator Th,U : Sα
h(L2(dνα)) → Sα

h(L2(dνα)) is trace-class operator
and satisfies

0 ≤ Th,U ≤ PU ≤ I, (5.5)
and

Th,U = Sα
hLh(U)(Sα

h)∗. (5.6)

Proof. For all F ∈ Sα
h(L2(dνα)), we have

⟨Th,U F, F ⟩L2
µα

(R2
+×R2

+) = ⟨Ph(PU F ), F ⟩L2
µα

(R2
+×R2

+)

= ⟨PU F, F ⟩L2
µα

(R2
+×R2

+)

=
∫

U
|F (a, b, r, x)|2dµα(a, b, r, x).

(5.7)

Thus we deduce (5.5), and Th,U is bounded and positive.
Now, we want to prove (5.6). Indeed, using Sα

h and (Sα
h)∗, the time-frequency localization

operator
Lh(U) : L2(dνα) → L2(dνα)

can be expressed as
Lh(U)(f) = (Sα

h)∗(PUS
α
hf), f ∈ L2(dνα).

Therefore,
(Sα

hLh(U)(Sα
h)∗)F = PhPU F = Th,U F, F ∈ Sα

h(L2(dνα)). (5.8)
Therefore, the time-frequency operator Lh(U) and the Calderón-Toeplitz operator Th,U

are related by
Th,U = Sα

hLh(U)(Sα
h)∗.

□
Remark 5.2. From the above proposition, we deduce that Th,U and Lh(U) enjoy the
same spectral properties, in particular, we have the following proposition.

Proposition 5.2. The Calderón-Toeplitz operator Th,U is compact and even trace class
with

tr(Th,U ) = tr(Lh(U)) = Mα(h, U), (5.9)
where

Mα(h, U) := 1
Ch

∫
U

∥ha,b,r,x∥2
L2(dνα)dµα(a, b, r, x). (5.10)

Proof. Note that the operator Th,U : Sα
h(L2(dνα)) → Sα

h(L2(dνα)) is bounded and pos-
itive. Now, let {en}∞

n=1 be an arbitrary orthonormal basis for Sα
h(L2(dνα)). Then, if we

denote by vn =
√

Ch(Sα
h)∗(en), then {vn}∞

n=1 is an orthonormal basis for L2(dνα).
Thus, by (3.2) and Fubini’s theorem, we get

∞∑
n=1

⟨Th,U (en), en⟩L2
µα

(R2
+×R2

+) = Ch

∞∑
n=1

⟨Lh(U)(Sα
h)∗(en), (Sα

h)∗(en)⟩L2(dνα)

= 1
Ch

∞∑
n=1

∫
U

|Sα
h(vn)(a, b, r, x)|2dµα(a, b, r, x)

= 1
Ch

∫
U

∞∑
n=1

|Sα
h(vn)(a, b, r, x)|2dµα(a, b, r, x)

= 1
Ch

∫
U

∞∑
n=1

| ⟨vn, ha,b,r,x⟩L2(dνα) |2dµα(a, b, r, x)

= 1
Ch

∫
U

∥ha,b,r,x∥2
L2(dνα)dµα(a, b, r, x)

= Mα(h, U).
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Therefore, by Definition 2.10 and Remark 2.7, the operator Th,U is trace class with

∥Th,U ∥S1 = tr(Th,U ) = Mα(h, U).

□

Let Vh,U : L2
µα

(R2
+ × R2

+) → L2
µα

(R2
+ × R2

+) the operator defined by Vh,U = PhPU Ph.

The advantage of Vh,U compared to Th,U is that it is defined on L2
µα

(R2
+ × R2

+) and
consequently its spectral properties can be easily related to its integral kernel. Since Th,U

is positive and trace-class, then using the decomposition

L2
µα

(R2
+ × R2

+) = Sα
h(L2(dνα)) ⊕

(
Sα

h(L2(dνα))
)⊥

,

we deduce that Vh,U is also positive and trace-class with

tr(Vh,U ) = tr(Th,U ) = Mα(h, U). (5.11)

In addition, we have the following result.

Proposition 5.3. The trace of T 2
h,U is given by

tr(T 2
h,U ) =

∫
U

∫
U

|Kh(a, b, r, x; a′, b′, r′, x′)|2dµα(a, b, r, x)dµα(a′, b′, r′, x′). (5.12)

Proof. Since, Vh,U is positive, then

tr(T 2
h,U ) = tr(V2

h,U ). (5.13)

On the other hand using the fact that the space Sα
h(L2(dνα)) is a reproducing kernel

Hilbert space with kernel Kh, we get that for F ∈ Sα
h(L2(dνα))

Vh,U F (a, b, r, x) =
∫
R2

+×R2
+

F (a′, b′, r′, x′)
∫
R2

+×R2
+

χU (c, d, t, y)Kh(a, b, r, x; c, d, t, y)

Kh(c, d, t, y; a′, b′, r′, x′)dµα(c, d, t, y)dµα(a′, b′, r′, x′). (5.14)

That is, Vh,U has integral kernel

Nh,U (a, b, r, x; a′, b′, r′, x′) =
∫
R2

+×R2
+

χU (c, d, t, y)Kh(a, b, r, x; c, d, t, y)

Kh(c, d, t, y; a′, b′, r′, x′)dµα(c, d, t, y).
(5.15)

Therefore,

tr(V2
h,U ) =

∫
R2

+×R2
+

∫
R2

+×R2
+

|Nh,U (a, b, r, x; a′, b′, r′, x′)|2dµα(a, b, r, x)dµα(a′, b′, r′, x′)

=
∫
R2

+×R2
+

∫
R2

+×R2
+

χU (z1)χU (z2)Kh(z1; z2)dµα(z1)dµα(z2)

where by using the properties of the kernel of the reproducing kernel Hilbert space

Kh(z1; z2) =
∫
R2

+×R2
+

∫
R2

+×R2
+

Kh(z2; a, b, r, x)Kh(a, b, r, x; z1)Kh(z1; a′, b′, r′, x′)

Kh(a′, b′, r′, x′; z2)dµα(a, b, r, x)dµα(a′, b′, r′, x′)
= Kh(z2; z1)Kh(z1; z2).

Using (4.10), we get
Kh(z1; z2) = |Kh(z1; z2)|2. (5.16)

This follows us to conclude. □
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5.2. Eigenvalues and eigenfunctions
Since the localization operator Lh(U) = (Sα

h)∗χUS
α
h that we consider is a compact and

self-adjoint operator, the spectral theorem gives the following spectral representation

Lh(U)(f) =
∞∑

n=1
sn(U)

〈
f, vU

n

〉
L2(dνα)

vU
n , f ∈ L2(dνα), (5.17)

where {sn(U)}∞
n=1 are the positive eigenvalues arranged in a nonincreasing manner and

{vU
n }∞

n=1 is the corresponding orthonormal set of eigenfunctions. Note that sn(U) ↘ 0
and we have for all n ≥ 1,

sn(U) ≤ s1(U) ≤ 1. (5.18)
This, together with (5.6), we can deduce that the Calderón-Toeplitz operator

Th,U : Sα
h(L2(dνα)) → Sα

h(L2(dνα))

can be diagonalized as

Th,U F =
∞∑

n=1
sn(U)

〈
F, eU

n

〉
L2

µα
(R2

+×R2
+)

eU
n , F ∈ Sα

h(L2(dνα)), (5.19)

where eU
n = 1√

Ch
Sα

h(vU
n ).

Lemma 5.1. For all z = (a, b, r, x) ∈ R2
+ × R2

+, we have

Θ(z) :=
∫
R2

+×R2
+

χU (ω)|Kh(ω; z)|2dµα(ω) =
∞∑

n=1
sn(U)Sα

h(vU
n )(z). (5.20)

Proof. From (4.6), we have for all z = (a, b, r, x) ∈ R2
+ × R2

+, the function Kh(.; z) is in
Sα

h(L2(dνα)). Therefore using the properties of the kernel of the reproducing kernel Hilbert
space, we get

⟨Th,U Kh(.; z),Kh(.; z)⟩L2
µα

(R2
+×R2

+) = ⟨PUKh(.; z),Kh(.; z)⟩L2
µα

(R2
+×R2

+)

=
∫
R2

+×R2
+

χU (ω)Kh(ω; z)Kh(ω; z)dµα(ω)

=
∫
R2

+×R2
+

χU (ω)|Kh(ω; z)|2dµα(ω).

Let {wU
n }∞

n=1 ⊂ Sα
h(L2(dνα)) be an orthonormal basis of Ker(Th,U ) ( eventually empty).

Hence, {eU
n }∞

n=1 ∪ {wU
n }∞

n=1 is an orthonormal basis of Sα
h(L2(dνα)) and therefore the

reproducing kernel Kh can be written as

Kh(a, b, r, x; a′, b′, r′, x′) = Kh(a′, b′, r′, x′; z)

=
∞∑

n=1
eU

n (z)eU
n (a′, b′, r′, x′) +

∞∑
n=1

wU
n (z)wU

n (a′, b′, r′, x′).

(5.21)
Using this, we compute again

⟨Th,U Kh(.; z),Kh(.; z)⟩L2
µα

(R2
+×R2

+) =
〈

Th,U

∞∑
n=1

eU
n (z)eU

n ,
∞∑

k=1
ϕU

k (z)ϕU
k

〉
L2

µα
(R2

+×R2
+)

=
∑
n,k

eU
n (z)ϕU

α (z)
〈
Th,U eU

n , ϕU
k

〉
L2

µα
(R2

+×R2
+)

=
∞∑

n=1
sn(U)|eU

n (z)|2,

and the conclusion follows. □
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Let ε ∈ (0, 1) and define the quantity

n(ε, U) := card
{

j : sj(U) ≥ 1 − ε
}

.

Then an easy adaptation of the proof of Lemma 3.3 in [1], we obtain the following estimate
for the eigenvalue distribution.

Proposition 5.4. Let ε ∈ (0, 1). We have

|n(ε, U) − Mα(h, U)| ≤ max{1
ε , 1

1−ε}
∣∣∣ 1

Ch

∫
U

∫
U

|Kh(a′, b′, r′, x′; a, b, r, x)|2dµα(a, b, r, x)

dµα(a′, b′, r′, x′) − Mα(h, U)
∣∣∣.

5.3. Scalogram of a subspace
Given an N -dimentional subspace V of L2(dνα), PV the orthogonal projection onto V
with projection kernel kV , is defined as

PV f(.) =
∫
R2

+

kV (.; t, s)f(t, s)dνα(t, s). (5.22)

Recall that if {vn}N

n=1 is an orthonormal basis of V , then

kV (r, x; , t, s) =
N∑

n=1
vn(r, x)vn(t, s). (5.23)

The kernel kV is independent of the choice of orthonormal basis for V .

Definition 5.3. The scalogram of the space V with generalized Stockwell wavelet h is
defined

SCALα
hV (a, b, r, x) :=

∫
R2

+

∫
R2

+

kV (t, s; b, y)ha,b,r,x(t, s)ha,b,r,x(b, y)dνα(t, s)dνα(b, y).

(5.24)

Then, we have the following result.

Lemma 5.2. The scalogram SCALα
hV is given by

SCALα
hV = Ch

N∑
n=1

Sα
h(vn). (5.25)

Proof. We have

SCALα
hV (a, b, r, x) =

∫
R2

+

∫
R2

+

N∑
n=1

vn(t, s)vn(b, y)ha,b,r,x(t, s)ha,b,r,x(b, y)dνα(t, s)dνα(b, y)

=
N∑

n=1
⟨vn, ha,b,r,x⟩L2(dνα) ⟨vn, ha,b,r,x⟩L2(dνα)

=
N∑

n=1
Sα

h(vn)(a, b, r, x)Sα
h(vn)(a, b, r, x)

=
N∑

n=1
|Sα

h(vn)(a, b, r, x)|2.

This completes the proof. □
Definition 5.4. We define the time-frequency concentration of a subspace V in U as:

ξU,h(V ) := 1
N

∫
U

SCALα
hV (a, b, r, x)dµα(a, b, r, x). (5.26)
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Then, using Lemma 5.2, we get the desired result:

ξU,h(V ) := Ch

N

N∑
n=1

∫
U

Sα
h(vn)(a, b, r, x)dµα(a, b, r, x). (5.27)

Theorem 5.1. The N -dimentional signal space VN = span{vU
n }N

n=1 consisting of the
first N eigenfunctions of Lh(U) corresponding to the N largest eigenvalues {sn(U)}N

n=1
maximize the regional concentration ξU,h(V ) and

ξU,h(VN ) := Ch

N

N∑
n=1

sn(U). (5.28)

Proof. We have

ξU,h(VN ) := Ch

N

N∑
n=1

∫
U

Sα
h(vU

n )(a, b, r, x)dµα(a, b, r, x). (5.29)

Moreover, the min-max lemma for self-adjoint operators states that (see e. g. Sec.95 in
[30])

sn(U) =
∫

U
Sα

h(vU
n )(a, b, r, x)dµα(a, b, r, x)

= max
{

⟨Lh(U)(f), f⟩L2(dνα) : ∥f∥L2(dνα) = 1, f ⊥ vU
1 , ..., vU

n−1

}
.

So, the eigenvalues of Lh(U) determine the number of orthogonal functions that have a
well-concentrated scalogram in U. Thus,

ξU,h(VN ) = Ch

N

N∑
n=1

sn(U). (5.30)

The min-max characterization of the eigenvalues of compact operators implies that the
first N eigenfunctions of the time-frequency operator Lh(U) have optimal cumulative
time-frequency concentration inside U , in the sense,

N∑
n=1

〈
Lh(U)(vU

n ), vU
n

〉
L2(dνα)

= max
{ N∑

n=1
⟨Lh(U)vn, vn⟩L2(dνα) : {vn}N

n=1 orthonormal
}

.

(5.31)
Therefore any N -dimensional subset V of L2(dνα) cannot to be better concentrated in U
than VN , i.e

ξU,h(V ) ≤ ξU,h(VN ). (5.32)
The proof is complete. □
Remark 5.3. The time-frequency concentration of a subspace VN in U satisfies,

sN (U) ≤ 1
Ch

ξU,h(VN ) ≤ s1(U) ≤ 1. (5.33)

5.4. Accumulated scalogram
Let ρ(h,U) := SCALα

hVNα(h,U), the ρ(h,U) is called the accumulated scalogram, provided
that Nα(h, U) = [Mα(h, U)] is the smallest integer greater than or equal to Mα(h, U) and

VNα(h,U) = span{vU
n }Nα(h,U)

n=1 .

Observe that,

ρ(h,U)(a, b, r, x) =
Nα(h,U)∑

n=1
|Sα

h(vU
n )(a, b, r, x)|2. (5.34)
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Also,
∥ρ(h,U)∥L1

µα
(R2

+×R2
+) = ChNα(h, U) = ChMα(h, U) + O(1).

Moreover, since
Nα(h,U)∑

n=1
sn(U) ≤ tr(Lh(U)) = Mα(h, U)

then we can define the quantity

E(h, U) := 1 −

Nα(h,U)∑
n=1

sn(U)

Mα(h, U)
. (5.35)

which satisfies,
0 ≤ E(h, U) ≤ 1. (5.36)

More precisely, we have the following result.

Lemma 5.3. Let ε ∈ (0, 1). We have

0 ≤ E(h, U) ≤ 1 − (1 − ε) min(1,
n(ε, U)

Mα(h, U)
). (5.37)

Proof. Let ε ∈ (0, 1) and define lα(ε, U) = min(Nα(h, U), n(ε, U)). It follows that

sn(U) ≥ 1 − ε, 1 ≤ n ≤ lα(ε, U). (5.38)

As Nα(h, U) ≥ lα(h, U), we get
Nα(h,U)∑

n=1
sn(U) ≥

lα(ε,U)∑
n=1

sn(U) ≥ (1 − ε)lα(ε, U). (5.39)

Therefore

0 ≤ E(h, U) ≤ 1 − (1 − ε) lα(ε, U)
Mα(h, U)

. (5.40)

As Nα(ε, U) ≥ Mα(h, U), we obtain the desired result. □

Consequently when the eigenvalues {sn(U)}n(ε,U)
n=0 are close to 1, then E(h, U) → 0. More-

over, we have the following result bounding the error between ρ(h,U) and ChΘ.

Proposition 5.5. We have
1

Mα(h, U)
∥ρ(h,U) − ChΘ||L1

µα
(R2

+×R2
+) ≤ Ch

Mα(h, U)
+ 2ChE(h, U). (5.41)

Proof. From Lemma 5.1, we have, for all z = (a, b, r, x) ∈ U

ρ(h,U)(z) − ChΘ(z) =
∞∑

n=1
(tn − sn(U))|Sα

h(vU
n )(z)|2,, (5.42)

where tn = 1 if n ≤ Nα(h, U) and 0 otherwise. Now since

∥|Sα
h(vU

n )|2||L1
µα

(R2
+×R2

+) = Ch

and
∞∑

n=1
sn(U) = Mα(h, U),
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we obtain

∥ρ(h,U) − ChΘ||L1
µα

(R2
+×R2

+) ≤ Ch

∞∑
n=1

|tn − sn(U)|

= Ch

Nα(h,U)∑
n=1

(1 − sn(U)) + Ch

∑
n>Nα(h,U)

sn(U)

= ChNα(h, U) + Ch

∞∑
n=1

sn(U) − 2Ch

Nα(h,U)∑
n=1

sn(U)

= ChNα(h, U) + ChMα(h, U) − 2Ch

Nα(h,U)∑
n=1

sn(U)

= Ch

(
Nα(h, U) − Mα(h, U)

)
+ 2Ch

(
Mα(h, U) −

Nα(h,U)∑
n=1

sn(U)
)

≤ Ch + 2Ch

(
Mα(h, U) −

Nα(h,U)∑
n=1

sn(U)
)
,

and the estimate (5.41) follows. □
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