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Abstract

In this paper, we derive the forbidden set and determine the solutions of the difference
equation that contains a quadratic term

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0,

where the parameters a and b are real numbers, p is a positive integer and the initial
conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.

1. Introduction

In [1], the authors determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of the
solutions of the difference equation

xn+1 =
axnxn−k+1

bxn−k+1 + cxn−k
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k,x−k+1, · · · ,x−1,x0 are real numbers.
In [2], the second author studied the global behavior and introduced an explicit formula for the solutions of the difference equation

xn+1 =
axnxn−k

−bxn + cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.
In [3], the author determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of solutions
of the difference equation

xn+1 =
axnxn−k

bxn− cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.
In [4], Abo-Zeid determined the forbidden set and studied the global behavior of the solutions of the difference equation

xn+1 =
axnxn−k

bxn + cxn−k−1
, n ∈ N0,

where a,b,c are positive real numbers and the initial conditions x−k−1,x−k, · · · ,x−1,x0 are real numbers.
For more on difference equations, one can see [5–28] and the references therein.

In this paper we generalize the solutions of the nonlinear rational difference equations presented in [5] and [10], which were established
through a mere application of the induction principle.
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2. Main Results

In this section, we investigate the solutions of the difference equation

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0, (2.1)

where the parameters a and b are real numbers, p is a positive integer and the initial conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.
The transformation

un =
xn−1

xn
, with u−i =

x−i−1

x−i
, i = 0,(p−1), (2.2)

reduces equation (2.1) into the difference equation

un+1 =
a

un−p+1
+b, n ∈ N0.

Suppose that

u( j)
m = upm+ j , j = 1, p and m≥−1.

Then, we can write

u( j)
m =

a

u( j)
m−1

+b, m ∈ N0. (2.3)

Let

u( j)
m =

zm+1

zm
, m≥−1. (2.4)

Then, equation (2.3) becomes

zm+1−bzm−azm−1 = 0, m ∈ N0. (2.5)

with initial condition z−1 = 1, z0 = u( j)
−1.

Throughout this paper, we denote b2 +4a by ∆.

2.1. Case ∆ > 0

In this subsection, we have that b2 >−4a. Suppose that

φ j =
λ

j
+−λ

j
−

λ+−λ−
, j ∈ N0,

where λ+ and λ− are the roots of the equation λ 2−bλ −a = 0.
Let

γ−i( j) = ax−iφ j + x−i−1φ j+1, i = 0,(p−1).

Using equalities (2.2) and (2.4), we can write

xpm+p =
1

∏
p
i=1 upm+i

xpm = x0

p

∏
i=1

γ−p+i(0)
γ−p+i(m+1)

=
ν

∏
p
i=1 γ−p+i(m+1)

, m ∈ N0,

where ν = ∏
p
i=0 x−i.

It follows that

xpm+t =
1

∏
t
i=1 upm+i

xpm =
ν

∏
p
i=1 γ−p+i(m)

.
∏

t
i=1 γ−p+i(m)

∏
t
i=1 γ−p+i(m+1)

=
ν

∏
t
i=1 γ−p+i(m+1)∏

p
i=t+1 γ−p+i(m)

, m ∈ N0, and t = 1, p.

Using the above arguments, we obtain the following result:

Theorem 2.1. Let {xn}∞
n=−p be a well defined solution for equation (2.1). Then

xn =



ν

γ−p+1(
n+p−1

p )∏
p
j=2 γ−p+ j(

n−1
p )

, n = 1, p+1, ...,
ν

∏
2
i=1 γ−p+i(

n+p−2
p )∏

p
j=3 γ−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

ν

∏
p−1
i=1 γ−p+i(

n+1
p )γ0(

n−p+1
p )

, n = p−1,2p−1, ...,
ν

∏
p
i=1 γ−p+i(

n
p )
, n = p,2p, ...,

where ν = ∏
p
i=0 x−i, γ− j(m) = ax− jφm + x− j−1φm+1, j = 0,(p−1) and m≥−1.
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Consider the two sets

D1 =

{
(v0,v1, · · · ,vp) ∈ Rp+1 :

v0

(−1)p(λ+/a)p =
v1

(−1)p−1(λ+/a)(p−1)
= · · · =

vp−1

−λ+/a
= vp

}
,

D2 =

{
(v0,v1, · · · ,vp) ∈ Rp+1 :

v0

(−1)p(λ−/a)p =
v1

(−1)p−1(λ−/a)(p−1)
= · · ·=

vp−1

−λ−/a
= vp

}
.

Theorem 2.2. The two sets D1 and D2 are invariant sets for equation (2.1).

Proof. Let (x0,x−1, · · · ,x−p) ∈ D2. We show that (xn,xn−1, · · · ,xn−p) ∈ D2 for each n ∈ N. The proof is by induction on n. The point
(x0,x−1, · · · ,x−p) ∈ D2 implies

x0

(−1)pλ
p
−/ap =

x−1

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
x−(p−1)

(−1)λ−/a
= x−p.

Now for n = 1, we have

x1 =
x0x−p

ax−(p−1)+bx−p
=

((−1)p−1λ
p−1
− /ap−1)x−(p−1)(−a/λ−)x−(p−1)

ax−(p−1)+b(−a/λ−)x−(p−1)

=
(−1)p

ap−1

λ
p−2
− x−(p−1)

1− b
λ−

=
(−1)pλ

p
−

ap x−(p−1).

Then we have

x1

(−1)pλ
p
−/ap =

x0

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
x−(p−2)

(−1)λ−/a
= x−(p−1).

This implies that (x1,x0, · · · ,x−p+1) ∈ D2. Suppose now that (xn,xn−1, · · · ,xn−p) ∈ D2. That is

xn

(−1)pλ
p
−/ap =

xn−1

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
xn−(p−1)

(−1)λ−/a
= xn−p.

Then

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
=

((−1)p−1λ
p−1
− /ap−1)xn−(p−1)(−a/λ−)xn−(p−1)

axn−(p−1)+b(−a/λ−)xn−(p−1)

=
(−1)p

ap−1

λ
p−2
− xn−(p−1)

1− b
λ−

=
(−1)pλ

p
−

ap xn−(p−1).

This implies that

xn+1

(−1)pλ
p
−/ap =

xn

(−1)p−1λ
(p−1)
− /a(p−1)

= · · ·=
xn−(p−2)

(−1)λ−/a
= xn−(p−1).

That is (xn+1,xn, · · · ,xn−p+1) ∈ D2. Then (xn,xn−1, · · · ,xn−p) ∈ D2 for each n ∈ N. Therefore, D2 is an invariant set for equation (2.1).
By similar way, we can show that D1 is an invariant set for equation (2.1). This completes the proof.

Theorem 2.3. Assume that {xn}∞
n=−p is a well defined solution of equation (2.1). Then the following statements are true:

1. If a+b > 1, then the solution {xn}∞
n=−p converges to zero.

2. If a+b < 1, then the solution {xn}∞
n=−p is unbounded.

Proof. We can write φ j = λ
j
+

(1−( λ−
λ+

) j)
√

b2+4a
.

1. If a+b > 1, then λ+ > 1. That is φm→ ∞ as m→ ∞. Then | γ− j(m)|= |ax− jφ j + x− j−1φm+1 |→ ∞ as m→ ∞, j = 0,(p−1). This
implies that for each t = 1, p, we have

| xpm+t |=|
ν

∏
t
i=1 γ−p+i(m+1)∏

p
i=t+1 γ−p+i(m)

|→ 0 as m→ ∞.

Therefore, the solution {xn}∞
n=−p converges to zero. For (2), it is enough to note that λ+ < 1 when a+b < 1.

This completes the proof.

Theorem 2.4. Assume that a+b = 1, then every well defined solution {xn}∞
n=−p of equation (2.1) converges to a finite limit.
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Proof. When a+b = 1, we have λ+ = 1. Then

γ−p+i(m) = ax−p+ jφm + x−p+ j−1φm+1→
ax−p+ j + x−p+ j−1

1+a
as m→ ∞, j = 0,(p−1).

This implies that for each t = 1, p, we have

xpm+t =
ν

∏
t
i=1 γ−p+i(m+1)∏

p
j=t+1 γ−p+ j(m)

→ (1+a)pν

∏
p
j=1(ax−p+ j + x−p+ j−1)

as m→ ∞.

Therefore, the solution {xn}∞
n=−p of equation (2.1) converges to

(1+a)pν

∏
p
j=1(ax−p+ j + x−p+ j−1)

as m→ ∞.

This completes the proof.

2.2. Case ∆ = 0

During this subsection, we assume that b2 =−4a. When b2 =−4a, the solution of equation (2.5) is

zm =
1
2

(
b
2

)m
(2z0 (1+m)−bm) , m≥−1.

It follows that

upm+ j =
b
2
(m+1)b−2u−p+ j(2+m)

mb−2u−p+ j(1+m)

=
b
2
(m+1)bx−p+ j−2x−p+ j−1(2+m)

mbx−p+ j−2x−p+ j−1(1+m)
, 1≤ j ≤ p.

If we set β−p+ j(m) = mbx−p+ j−2x−p+ j−1(1+m), then we can write

upm+ j =
b
2

β−p+ j(m+1)
β−p+ j(m)

, 1≤ j ≤ p. (2.6)

Using equalities (2.2) and (2.6), we obtain the following result:

Theorem 2.5. Let {xn}∞
n=−p be a well defined solution of equation (2.1). If b2 +4a = 0, then

xn =



(−2)p( 2
b )

n ν

β−p+1(
n+p−1

p )∏
p
j=2 β−p+ j(

n−1
p )

, n = 1, p+1, ...,

(−2)p( 2
b )

n ν

∏
2
i=1 β−p+i(

n+p−2
p )∏

p
j=3 β−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

(−2)p( 2
b )

n ν

∏
p−1
i=1 β−p+i(

n+1
p )β0(

n−p+1
p )

, n = p−1,2p−1, ...,

(−2)p( 2
b )

n ν

∏
p
i=1 β−p+i(

n
p )
, n = p,2p, ...,

(2.7)

where ν = ∏
p
i=0 x−i, β− j(m) = mbx− j−2x− j−1(1+m), j = 0,(p−1) and m≥−1.

Theorem 2.6. Assume that {xn}∞
n=−p is a well defined solution of equation (2.1). The following statements are true:

1. If b≥ 2 then the solution {xn}∞
n=−p converges to zero.

2. If b < 2 then the solution {xn}∞
n=−p is unbounded.

Proof. The solution formula (2.7) can be written in the form

xpm+t = (−2)p
(

2
b

)pm+t
ν

∏
t
i=1 β−p+i(m+1)∏

p
j=t+1 β−p+ j(m)

, t = 1, p. (2.8)

Clear that β−p+i(m) are unbounded, i = 1, p.

1. If b≥ 2, then 2
b ≤ 1 and the result follows.

2. If b < 2, then ( 2
b )

pm+t → ∞ as m→ ∞ for all t = 1, p.
Using formula (2.8), we can write for t = 1

| xpm+1 |=| (−2)p(
2
b
)pm+1 ν

β−p+1(m+1)∏
p
j=2 β−p+ j(m)

|

=| (−2)p |
( 2

b )
pm+1

mp(1+ 1
m )
× | ν

(bx−p+1−2x−p
2+m
1+m )∏

p
j=2 (bx−p+ j−2x−p+ j−1

1+m
m )
| .
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Using L’Hospital’s rule we can show that

( 2
b )

pm+1

mp(1+ 1
m )
→ ∞ as m→ ∞.

This implies that | xpm+1 |→ ∞ as m→ ∞. Similarly, | xpm+t |→ ∞ as m→ ∞, 2 ≤ t ≤ p. Therefore, the solution {xn}∞
n=−p is

unbounded.

This completes the proof.

2.3. Case ∆ < 0

During this subsection, we assume that b2 <−4a. When b2 <−4a, the solution of equation (2.5) is

zm =
(−a)

m
2

sinθ

(
z0 sin(m+1)θ −

√
−asinmθ

)
, m≥−1.

It follows that

upm+ j =
√
−a

α−p+ j(m+1)
α−p+ j(m)

, j = 1, p, (2.9)

where θ = arctan
(√
−b2−4a

b

)
, sinθ =

√
−b2−4a
2
√
−a and α−p+ j(m) = x−p+ j

√
−asinmθ − x−p+ j−1 sin(m+1)θ , j = 1, p, and m≥−1. Using

equalities (2.2) and (2.9), we obtain the following result:

Theorem 2.7. Let {xn}∞
n=−p be a well defined solution of equation (2.1). If b2 +4a < 0, then

xn =



(−1)p sinp θ

(
√
−a)n

ν

α−p+1(
n+p−1

p )∏
p
j=2 α−p+ j(

n−1
p )

, n = 1, p+1, ...,

(−1)p sinp θ

(
√
−a)n

ν

∏
2
i=1 α−p+i(

n+p−2
p )∏

p
j=3 α−p+ j(

n−2
p )

, n = 2, p+2, ...,

...
...

(−1)p sinp θ

(
√
−a)n

ν

∏
p−1
i=1 α−p+i(

n+1
p )α0(

n−p+1
p )

, n = p−1,2p−1, ...,

(−1)p sinp θ

(
√
−a)n

ν

∏
p
i=1 α−p+i(

n
p )
, n = p,2p, ...,

(2.10)

where ν = ∏
p
i=0 x−i, α− j(m) = x− j

√
−asinmθ − x− j−1 sin(m+1)θ , j = 0,(p−1) and m≥−1.

Theorem 2.8. Assume that (xn)
∞
n=−p is a well defined solution of equation (2.1). The following statements are true:

1. Let a =−1 and if θ = l
M π is a rational multiple of π (with 0 < l < M

2 ), then {xn}∞
n=−p is periodic with prime period pM (if l p is

even) or prime period 2pM (if l p is odd).
2. If −1 < a < 0, then the solution {xn}∞

n=−p is unbounded.
3. If a <−1, then the solution {xn}∞

n=−p converges to zero.

Proof. We can write the solution (2.10) as

xpm+t =
(−1)p sinp

θ

(
√
−a)pm+t

ν

∏
t
i=1 α−p+i(m+1)∏

p
j=t+1 α−p+ j(m)

, (2.11)

where t = 1, p and m≥−1.

1. Suppose that a =−1 and let θ = l
M π be a rational multiple of π (with 0 < l < M

2 ). Then for each i = 1, p, we have

α−i(m+M) = x−i sin(m+M)θ − x−i−1 sin(m+M+1)θ ,

= x−i sin(mθ +Mθ)− x−i−1 sin((m+1)θ +Mθ) ,

= x−i sin(mθ + lπ)− x−i−1 sin((m+1)θ + lπ) ,

= (−1)l
α−i(m).

Then for each t = 1, p, we have

xpm+pM+t = (−1)p sinp
θ

ν

∏
t
i=1 α−p+i(m+M+1)∏

p
j=t+1 α−p+ j(m+M)

= (−1)plxpm+t .

Therefore, if l p is even, then the solution {xn}∞
n=−p is periodic with prime period pM and if l p is odd, then the solution {xn}∞

n=−p is
periodic with prime period 2pM. (2) and (3) are directly obtained using (2.11).

This completes the proof.
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2.4. The forbidden sets

In this subsection, we introduce the forbidden sets of equation (2.1).

Theorem 2.9. The following statements are true:

1. If b2 +4a > 0, then the forbidden set of equation (2.1) can be written as

F1 =
p⋃

i=0

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−i = 0

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+1 =−

1
a

φm+1

φm
u−p

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+2 =−

1
a

φm+1

φm
u−p+1

}
∪

...
∞⋃

m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u0 =−

1
a

φm+1

φm
u−1

}
.

2. If b2 +4a = 0, then the forbidden set of equation (2.1) can be written as

F2 =
p⋃

i=0

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−i = 0

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+1 =

2(1+m)

mb
u−p

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+2 =

2(1+m)

mb
u−p+1

}
∪

...
∞⋃

m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u0 =

2(1+m)

mb
u−1

}
.

3. If b2 +4a < 0, then the forbidden set of equation (2.1) can be written as

F3 =
p⋃

i=0

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−i = 0

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+1 =

sin(m+1)θ√
−asinmθ

u−p

}
∪

∞⋃
m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u−p+2 =

sin(m+1)θ√
−asinmθ

u−p+1

}
∪

...
∞⋃

m=1

{
(u0,u−1, ...,u−p) ∈ Rp+1 : u0 =

sin(m+1)θ√
−asinmθ

u−1

}
.

3. Illustrative Examples

Example 3.1. Figure 3.1 shows that, if p = 7, a = 0.2 and b = 1(∆ > 0and a+b > 1), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−4,x−6 =−5,x−5 =−3, x−4 =−8.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−7 converges to zero.

Example 3.2. Figure 3.2 shows that, if p = 4, a = 0.1 and b = 0.7(∆ > 0and a+b < 1), then a solution {xn}∞
n=−4 of equation (2.1) with

x−4 =−1,x−3 =−3,x−2 =−5.9,x−1 =−3 and x0 =−12.2 is unbounded.

Example 3.3. Figure 3.3 shows that, if p = 7, a = −1 and b = 2(∆ = 0), then a solution {xn}∞
n=−7 of equation (2.1) with x−7 = −2,

x−6 =−5, x−5 =−3, x−4 =−12.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−5 converges to zero.

Example 3.4. Figure 3.4 shows that, if p = 7, a = −1/4 and b = 1(∆ = 0and b < 2), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−4, x−6 =−5.3, x−5 =−1.3, x−4 =−9.2, x−3 = 6, x−2 = 13, x−1 = 6.2 and x0 =−5 is unbounded.
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Figure 3.1: Equation xn+1 =
xnxn−7

0.2xn−6+xn−7
. Figure 3.2: Equation xn+1 =

xnxn−4
0.1xn−3+0.7xn−4

.

Figure 3.3: Equation xn+1 =
xnxn−7

−xn−6+2xn−7
. Figure 3.4: Equation xn+1 =

xnxn−7
−0.25xn−6+xn−7

.

Example 3.5. Figure 3.5 shows that, if p = 4, a =−1 and b =
√

3(∆ < 0and l p iseven), then a solution {xn}∞
n=−4 of equation (2.1) with

x−4 =−2, x−3 =−5, x−2 = 3, x−1 = 2.2 and x0 = 5 is periodic with prime period 24.

Example 3.6. Figure 3.6 shows that, if p = 7, a = −1 and b = 1(∆ < 0and l p isodd), then a solution {xn}∞
n=−7 of equation (2.1) with

x−7 =−1, x−6 =−7, x−5 =−4, x−4 =−12.2, x−3 = 5, x−2 = 3, x−1 = 6.2 and x0 =−5 is periodic with prime period 42.

Figure 3.5: Equation xn+1 =
xnxn−4

−xn−3+
√

3xn−4
. Figure 3.6: Equation xn+1 =

xnxn−7
−xn−6+xn−7

.

Example 3.7. Figure 3.7 shows that, if p = 3, a = 0.3 and b = 0.7(∆ > 0and a+b = 1), then a solution {xn}∞
n=−3 of equation (2.1) with

initial conditions x−3 = 1, x−2 =−2, x−1 = 1 and x0 = 0.7 converges to

(1.3)3((1)(−2)(1)(0.7))

∏
3
j=1(0.3x−3+ j + x−4+ j)

' 3.738.

Example 3.8. Figure 3.8 shows that, if p = 5, a = 0.2 and b = 0.8(∆ > 0and a+b = 1), then a solution {xn}∞
n=−5 of equation (2.1) with

initial conditions x−5 =−2, x−4 =−1, x−3 = 0.5, x−2 = 0.8, x−1 = 0.7 and x0 =−0.8 converges to

(1.2)5((−2)(−1)(0.5)(0.8)(0.7)(−0.8))

∏
5
j=1(0.2x−5+ j + x−6+ j)

'−1.681.
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Figure 3.7: Equation xn+1 =
xnxn−3

0.3xn−2+0.7xn−3
. Figure 3.8: Equation xn+1 =

xnxn−7
0.2xn−6+0.8xn−7

.

Conclusion

In this study, we mainly obtained the solutions and introduced the forbidden sets of the difference equation that contains a quadratic term

xn+1 =
xnxn−p

axn−(p−1)+bxn−p
, n ∈ N0,

where the parameters a and b are real numbers, p is a positive integer and the initial conditions x−p, x−p+1, · · · , x−1, x0 are real numbers.
Also, we showed that the behavior of the solutions depends on the relation between a and b. That is if {xn}∞

n=−p is a solution of that equation,
it may be converge to finite limit, unbounded or periodic with a certain period that depends on p. The mentioned difference equation may be
generalized to a more complicated one that may has a complicated behavior.
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[28] S. Stević, M. A. Alghamdi, A. Alotaibi, E. M. Elsayed, On a class of solvable higher-order difference equations, Filomat, 31 (2017), 461-477.


	Introduction
	Main Results
	Case >0
	Case =0
	Case <0
	The forbidden sets

	Illustrative Examples

