On a Rational $(P+1)$ th Order Difference Equation with Quadratic Term

Messaoud Berkal ${ }^{1 *}$ and Raafat Abo-Zeid ${ }^{2}$
${ }^{1}$ Department of Applied Mathematics, University of Alicante, Alicante, San Vicente del Raspeig, 03690, Spain
${ }^{2}$ Department of Basic Science, The Higher Institute for Engineering \& Technology, Al-Obour, Cairo, Egypt
*Corresponding author

Article Info

Keywords: Difference equations, General solution, Forbidden set, Invariant set, convergence.
2010 AMS: 39A10, 39A20.
Received: 2 November 2022
Accepted: 7 December 2022
Available online: 29 December 2022

Abstract

In this paper, we derive the forbidden set and determine the solutions of the difference equation that contains a quadratic term $$
x_{n+1}=\frac{x_{n} x_{n-p}}{a x_{n-(p-1)}+b x_{n-p}}, \quad n \in \mathbb{N}_{0}
$$ where the parameters a and b are real numbers, p is a positive integer and the initial conditions $x_{-p}, x_{-p+1}, \cdots, x_{-1}, x_{0}$ are real numbers.

1. Introduction

In [1], the authors determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of the solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-k+1}}{b x_{n-k+1}+c x_{n-k}}, \quad n \in \mathbb{N}_{0}
$$

where a, b, c are positive real numbers and the initial conditions $x_{-k}, x_{-k+1}, \cdots, x_{-1}, x_{0}$ are real numbers.
In [2], the second author studied the global behavior and introduced an explicit formula for the solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-k}}{-b x_{n}+c x_{n-k-1}}, \quad n \in \mathbb{N}_{0}
$$

where a, b, c are positive real numbers and the initial conditions $x_{-k-1}, x_{-k}, \cdots, x_{-1}, x_{0}$ are real numbers.
In [3], the author determined the forbidden set, introduced an explicit formula for the solutions and discussed the global behavior of solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-k}}{b x_{n}-c x_{n-k-1}}, \quad n \in \mathbb{N}_{0}
$$

where a, b, c are positive real numbers and the initial conditions $x_{-k-1}, x_{-k}, \cdots, x_{-1}, x_{0}$ are real numbers.
In [4], Abo-Zeid determined the forbidden set and studied the global behavior of the solutions of the difference equation

$$
x_{n+1}=\frac{a x_{n} x_{n-k}}{b x_{n}+c x_{n-k-1}}, \quad n \in \mathbb{N}_{0}
$$

where a, b, c are positive real numbers and the initial conditions $x_{-k-1}, x_{-k}, \cdots, x_{-1}, x_{0}$ are real numbers. For more on difference equations, one can see [5-28] and the references therein.

In this paper we generalize the solutions of the nonlinear rational difference equations presented in [5] and [10], which were established through a mere application of the induction principle. (R. Abo-Zeid)

2. Main Results

In this section, we investigate the solutions of the difference equation

$$
\begin{equation*}
x_{n+1}=\frac{x_{n} x_{n-p}}{a x_{n-(p-1)}+b x_{n-p}}, \quad n \in \mathbb{N}_{0} \tag{2.1}
\end{equation*}
$$

where the parameters a and b are real numbers, p is a positive integer and the initial conditions $x_{-p}, x_{-p+1}, \cdots, x_{-1}, x_{0}$ are real numbers. The transformation

$$
\begin{equation*}
u_{n}=\frac{x_{n-1}}{x_{n}}, \text { with } u_{-i}=\frac{x_{-i-1}}{x_{-i}}, \quad i=\overline{0,(p-1)} \tag{2.2}
\end{equation*}
$$

reduces equation (2.1) into the difference equation

$$
u_{n+1}=\frac{a}{u_{n-p+1}}+b, \quad n \in \mathbb{N}_{0}
$$

Suppose that

$$
u_{m}^{(j)}=u_{p m+j}, j=\overline{1, p} \text { and } m \geq-1
$$

Then, we can write

$$
\begin{equation*}
u_{m}^{(j)}=\frac{a}{u_{m-1}^{(j)}}+b, \quad m \in \mathbb{N}_{0} \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
u_{m}^{(j)}=\frac{z_{m+1}}{z_{m}}, \quad m \geq-1 \tag{2.4}
\end{equation*}
$$

Then, equation (2.3) becomes

$$
\begin{equation*}
z_{m+1}-b z_{m}-a z_{m-1}=0, \quad m \in \mathbb{N}_{0} \tag{2.5}
\end{equation*}
$$

with initial condition $z_{-1}=1, z_{0}=u_{-1}^{(j)}$.
Throughout this paper, we denote $b^{2}+4 a$ by Δ.

2.1. Case $\Delta>0$

In this subsection, we have that $b^{2}>-4 a$. Suppose that

$$
\phi_{j}=\frac{\lambda_{+}^{j}-\lambda_{-}^{j}}{\lambda_{+}-\lambda_{-}}, \quad j \in \mathbb{N}_{0}
$$

where λ_{+}and λ_{-}are the roots of the equation $\lambda^{2}-b \lambda-a=0$.
Let

$$
\gamma_{-i}(j)=a x_{-i} \phi_{j}+x_{-i-1} \phi_{j+1}, \quad i=\overline{0,(p-1)}
$$

Using equalities (2.2) and (2.4), we can write

$$
\begin{aligned}
x_{p m+p} & =\frac{1}{\prod_{i=1}^{p} u_{p m+i}} x_{p m}=x_{0} \prod_{i=1}^{p} \frac{\gamma_{-p+i}(0)}{\gamma_{-p+i}(m+1)} \\
& =\frac{v}{\prod_{i=1}^{p} \gamma_{-p+i}(m+1)}, m \in \mathbb{N}_{0}
\end{aligned}
$$

where $v=\prod_{i=0}^{p} x_{-i}$.
It follows that

$$
\begin{aligned}
x_{p m+t} & =\frac{1}{\prod_{i=1}^{t} u_{p m+i}} x_{p m}=\frac{v}{\prod_{i=1}^{p} \gamma_{-p+i}(m)} \cdot \frac{\prod_{i=1}^{t} \gamma_{-p+i}(m)}{\prod_{i=1}^{t} \gamma_{-p+i}(m+1)} \\
& =\frac{v}{\prod_{i=1}^{t} \gamma_{-p+i}(m+1) \prod_{i=t+1}^{p} \gamma_{-p+i}(m)}, m \in \mathbb{N}_{0}, \text { and } t=\overline{1, p}
\end{aligned}
$$

Using the above arguments, we obtain the following result:
Theorem 2.1. Let $\left\{x_{n}\right\}_{n=-p}^{\infty}$ be a well defined solution for equation (2.1). Then

$$
x_{n}= \begin{cases}\frac{v}{\gamma_{-p+1}\left(\frac{n+p-1}{p}\right) \prod_{j=2}^{p} \gamma_{-p+j}\left(\frac{n-1}{p}\right)}, & n=1, p+1, \ldots \\ \frac{v}{\prod_{i=1}^{2} \gamma_{-p+i}\left(\frac{n+p-2}{p}\right) \prod_{j=3}^{p} \gamma_{-p+j}\left(\frac{n-2}{p}\right)}, & n=2, p+2, \ldots \\ \vdots & n=p-1,2 p-1, \ldots \\ \frac{v}{\prod_{i=1}^{p-1} \gamma_{-p+i}\left(\frac{n+1}{p}\right) \gamma_{0}\left(\frac{n-p+1}{p}\right)}, & n=p, 2 p, \ldots \\ \frac{v}{\prod_{i=1}^{p} \gamma_{-p+i}\left(\frac{n}{p}\right)}, & \end{cases}
$$

where $v=\prod_{i=0}^{p} x_{-i}, \gamma_{-j}(m)=a x_{-j} \phi_{m}+x_{-j-1} \phi_{m+1}, j=\overline{0,(p-1)}$ and $m \geq-1$.

Consider the two sets

$$
\begin{aligned}
& \mathbb{D}_{1}=\left\{\left(v_{0}, v_{1}, \cdots, v_{p}\right) \in \mathbb{R}^{p+1}: \frac{v_{0}}{(-1)^{p}\left(\lambda_{+} / a\right)^{p}}=\frac{v_{1}}{(-1)^{p-1}\left(\lambda_{+} / a\right)^{(p-1)}}=\cdots=\frac{v_{p-1}}{-\lambda_{+} / a}=v_{p}\right\}, \\
& \mathbb{D}_{2}=\left\{\left(v_{0}, v_{1}, \cdots, v_{p}\right) \in \mathbb{R}^{p+1}: \frac{v_{0}}{(-1)^{p}\left(\lambda_{-} / a\right)^{p}}=\frac{v_{1}}{(-1)^{p-1}\left(\lambda_{-} / a\right)^{(p-1)}}=\cdots=\frac{v_{p-1}}{-\lambda_{-} / a}=v_{p}\right\} .
\end{aligned}
$$

Theorem 2.2. The two sets \mathbb{D}_{1} and \mathbb{D}_{2} are invariant sets for equation (2.1).
Proof. Let $\left(x_{0}, x_{-1}, \cdots, x_{-p}\right) \in \mathbb{D}_{2}$. We show that $\left(x_{n}, x_{n-1}, \cdots, x_{n-p}\right) \in \mathbb{D}_{2}$ for each $n \in \mathbb{N}$. The proof is by induction on n. The point $\left(x_{0}, x_{-1}, \cdots, x_{-p}\right) \in \mathbb{D}_{2}$ implies

$$
\frac{x_{0}}{(-1)^{p} \lambda_{-}^{p} / a^{p}}=\frac{x_{-1}}{(-1)^{p-1} \lambda_{-}^{(p-1)} / a^{(p-1)}}=\cdots=\frac{x_{-(p-1)}}{(-1) \lambda_{-} / a}=x_{-p} .
$$

Now for $n=1$, we have

$$
\begin{aligned}
x_{1} & =\frac{x_{0} x_{-p}}{a x_{-(p-1)}+b x_{-p}}=\frac{\left((-1)^{p-1} \lambda_{-}^{p-1} / a^{p-1}\right) x_{-(p-1)}\left(-a / \lambda_{-}\right) x_{-(p-1)}}{a x_{-(p-1)}+b\left(-a / \lambda_{-}\right) x_{-(p-1)}} \\
& =\frac{(-1)^{p}}{a^{p-1}} \frac{\lambda_{-}^{p-2} x_{-(p-1)}}{1-\frac{b}{\lambda_{-}}}=\frac{(-1)^{p} \lambda_{-}^{p}}{a^{p}} x_{-(p-1)} .
\end{aligned}
$$

Then we have

$$
\frac{x_{1}}{(-1)^{p} \lambda_{-}^{p} / a^{p}}=\frac{x_{0}}{(-1)^{p-1} \lambda_{-}^{(p-1)} / a^{(p-1)}}=\cdots=\frac{x_{-(p-2)}}{(-1) \lambda_{-} / a}=x_{-(p-1)} .
$$

This implies that $\left(x_{1}, x_{0}, \cdots, x_{-p+1}\right) \in \mathbb{D}_{2}$. Suppose now that $\left(x_{n}, x_{n-1}, \cdots, x_{n-p}\right) \in \mathbb{D}_{2}$. That is

$$
\frac{x_{n}}{(-1)^{p} \lambda_{-}^{p} / a^{p}}=\frac{x_{n-1}}{(-1)^{p-1} \lambda_{-}^{(p-1)} / a^{(p-1)}}=\cdots=\frac{x_{n-(p-1)}}{(-1) \lambda_{-} / a}=x_{n-p} .
$$

Then

$$
\begin{aligned}
x_{n+1} & =\frac{x_{n} x_{n-p}}{a x_{n-(p-1)}+b x_{n-p}}=\frac{\left((-1)^{p-1} \lambda_{-}^{p-1} / a^{p-1}\right) x_{n-(p-1)}\left(-a / \lambda_{-}\right) x_{n-(p-1)}}{a x_{n-(p-1)}+b\left(-a / \lambda_{-}\right) x_{n-(p-1)}} \\
& =\frac{(-1)^{p}}{a^{p-1}} \frac{\lambda_{-}^{p-2} x_{n-(p-1)}}{1-\frac{b}{\lambda_{-}}}=\frac{(-1)^{p} \lambda_{-}^{p}}{a^{p}} x_{n-(p-1)} .
\end{aligned}
$$

This implies that

$$
\frac{x_{n+1}}{(-1)^{p} \lambda_{-}^{p} / a^{p}}=\frac{x_{n}}{(-1)^{p-1} \lambda_{-}^{(p-1)} / a^{(p-1)}}=\cdots=\frac{x_{n-(p-2)}}{(-1) \lambda_{-} / a}=x_{n-(p-1)} .
$$

That is $\left(x_{n+1}, x_{n}, \cdots, x_{n-p+1}\right) \in \mathbb{D}_{2}$. Then $\left(x_{n}, x_{n-1}, \cdots, x_{n-p}\right) \in \mathbb{D}_{2}$ for each $n \in \mathbb{N}$. Therefore, \mathbb{D}_{2} is an invariant set for equation (2.1). By similar way, we can show that \mathbb{D}_{1} is an invariant set for equation (2.1). This completes the proof.

Theorem 2.3. Assume that $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is a well defined solution of equation (2.1). Then the following statements are true:

1. If $a+b>1$, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ converges to zero.
2. If $a+b<1$, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is unbounded.

Proof. We can write $\phi_{j}=\lambda_{+}^{j} \frac{\left(1-\left(\frac{\lambda_{-}}{\lambda_{+}}\right)^{j}\right)}{\sqrt{b^{2}+4 a}}$.

1. If $a+b>1$, then $\lambda_{+}>1$. That is $\phi_{m} \rightarrow \infty$ as $m \rightarrow \infty$. Then $\left|\gamma_{-j}(m)\right|=\left|a x_{-j} \phi_{j}+x_{-j-1} \phi_{m+1}\right| \rightarrow \infty$ as $m \rightarrow \infty, j=\overline{0,(p-1)}$. This implies that for each $t=\overline{1, p}$, we have

$$
\left|x_{p m+t}\right|=\left|\frac{v}{\prod_{i=1}^{t} \gamma_{-p+i}(m+1) \prod_{i=t+1}^{p} \gamma_{-p+i}(m)}\right| \rightarrow 0 \text { as } m \rightarrow \infty
$$

Therefore, the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ converges to zero. For (2), it is enough to note that $\lambda_{+}<1$ when $a+b<1$.
This completes the proof.
Theorem 2.4. Assume that $a+b=1$, then every well defined solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ of equation (2.1) converges to a finite limit.

Proof. When $a+b=1$, we have $\lambda_{+}=1$. Then

$$
\gamma_{-p+i}(m)=a x_{-p+j} \phi_{m}+x_{-p+j-1} \phi_{m+1} \rightarrow \frac{a x_{-p+j}+x_{-p+j-1}}{1+a} \text { as } m \rightarrow \infty, j=\overline{0,(p-1)} .
$$

This implies that for each $t=\overline{1, p}$, we have

$$
x_{p m+t}=\frac{v}{\prod_{i=1}^{t} \gamma_{-p+i}(m+1) \prod_{j=t+1}^{p} \gamma_{-p+j}(m)} \rightarrow \frac{(1+a)^{p} v}{\prod_{j=1}^{p}\left(a x_{-p+j}+x_{-p+j-1}\right)} \text { as } m \rightarrow \infty .
$$

Therefore, the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ of equation (2.1) converges to

$$
\frac{(1+a)^{p} v}{\prod_{j=1}^{p}\left(a x_{-p+j}+x_{-p+j-1}\right)} \text { as } m \rightarrow \infty .
$$

This completes the proof.

2.2. Case $\Delta=0$

During this subsection, we assume that $b^{2}=-4 a$. When $b^{2}=-4 a$, the solution of equation (2.5) is

$$
z_{m}=\frac{1}{2}\left(\frac{b}{2}\right)^{m}\left(2 z_{0}(1+m)-b m\right), m \geq-1
$$

It follows that

$$
\begin{aligned}
u_{p m+j} & =\frac{b}{2} \frac{(m+1) b-2 u_{-p+j}(2+m)}{m b-2 u_{-p+j}(1+m)} \\
& =\frac{b}{2} \frac{(m+1) b x_{-p+j}-2 x_{-p+j-1}(2+m)}{m b x_{-p+j}-2 x_{-p+j-1}(1+m)}, \quad 1 \leq j \leq p .
\end{aligned}
$$

If we set $\beta_{-p+j}(m)=m b x_{-p+j}-2 x_{-p+j-1}(1+m)$, then we can write

$$
\begin{equation*}
u_{p m+j}=\frac{b}{2} \frac{\beta_{-p+j}(m+1)}{\beta_{-p+j}(m)}, \quad 1 \leq j \leq p . \tag{2.6}
\end{equation*}
$$

Using equalities (2.2) and (2.6), we obtain the following result:
Theorem 2.5. Let $\left\{x_{n}\right\}_{n=-p}^{\infty}$ be a well defined solution of equation (2.1). If $b^{2}+4 a=0$, then

$$
x_{n}= \begin{cases}(-2)^{p}\left(\frac{2}{b}\right)^{n} \frac{v}{\beta_{-p+1}\left(\frac{n+p-1}{p}\right) \prod_{j=2}^{p} \beta_{-p+j}\left(\frac{n-1}{p}\right)}, & n=1, p+1, \ldots \tag{2.7}\\ (-2)^{p}\left(\frac{2}{b}\right)^{n} \frac{v}{\prod_{i=1}^{2} \beta_{-p+i}\left(\frac{n+p-2}{p}\right) \prod_{j=3}^{p} \beta_{-p+j}\left(\frac{n-2}{p}\right)}, & n=2, p+2, \ldots, \\ \vdots & \vdots \\ (-2)^{p}\left(\frac{2}{b}\right)^{n} \frac{v}{\prod_{i=1}^{p-1} \beta_{-p+i}\left(\frac{n+1}{p}\right) \beta_{0}\left(\frac{n-p+1}{p}\right)}, & n=p-1,2 p-1, \ldots \\ (-2)^{p}\left(\frac{2}{b}\right)^{n} \frac{v}{\prod_{i=1}^{p} \beta_{-p+i\left(\frac{n}{p}\right)}^{p}}, & n=p, 2 p, \ldots\end{cases}
$$

where $v=\prod_{i=0}^{p} x_{-i}, \beta_{-j}(m)=m b x_{-j}-2 x_{-j-1}(1+m), j=\overline{0,(p-1)}$ and $m \geq-1$.
Theorem 2.6. Assume that $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is a well defined solution of equation (2.1). The following statements are true:

1. If $b \geq 2$ then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ converges to zero.
2. If $b<2$ then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is unbounded.

Proof. The solution formula (2.7) can be written in the form

$$
\begin{equation*}
x_{p m+t}=(-2)^{p}\left(\frac{2}{b}\right)^{p m+t} \frac{v}{\prod_{i=1}^{t} \beta_{-p+i}(m+1) \prod_{j=t+1}^{p} \beta_{-p+j}(m)}, \quad t=\overline{1, p} . \tag{2.8}
\end{equation*}
$$

Clear that $\beta_{-p+i}(m)$ are unbounded, $i=\overline{1, p}$.

1. If $b \geq 2$, then $\frac{2}{b} \leq 1$ and the result follows.
2. If $b<2$, then $\left(\frac{2}{b}\right)^{p m+t} \rightarrow \infty$ as $m \rightarrow \infty$ for all $t=\overline{1, p}$.

Using formula (2.8), we can write for $t=1$

$$
\begin{aligned}
\left|x_{p m+1}\right| & =\left|(-2)^{p}\left(\frac{2}{b}\right)^{p m+1} \frac{v}{\beta_{-p+1}(m+1) \prod_{j=2}^{p} \beta_{-p+j}(m)}\right| \\
& =\left|(-2)^{p}\right| \frac{\left(\frac{2}{b}\right)^{p m+1}}{m^{p}\left(1+\frac{1}{m}\right)} \times\left|\frac{v}{\left(b x_{-p+1}-2 x_{-p} \frac{2+m}{1+m}\right) \prod_{j=2}^{p}\left(b x_{-p+j}-2 x_{-p+j-1} \frac{1+m}{m}\right)}\right| .
\end{aligned}
$$

Using L'Hospital's rule we can show that

$$
\frac{\left(\frac{2}{b}\right)^{p m+1}}{m^{p}\left(1+\frac{1}{m}\right)} \rightarrow \infty \text { as } m \rightarrow \infty .
$$

This implies that $\left|x_{p m+1}\right| \rightarrow \infty$ as $m \rightarrow \infty$. Similarly, $\left|x_{p m+t}\right| \rightarrow \infty$ as $m \rightarrow \infty, 2 \leq t \leq p$. Therefore, the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is unbounded.

This completes the proof.
2.3. Case $\Delta<0$

During this subsection, we assume that $b^{2}<-4 a$. When $b^{2}<-4 a$, the solution of equation (2.5) is

$$
z_{m}=\frac{(-a)^{\frac{m}{2}}}{\sin \theta}\left(z_{0} \sin (m+1) \theta-\sqrt{-a} \sin m \theta\right), \quad m \geq-1 .
$$

It follows that

$$
\begin{equation*}
u_{p m+j}=\sqrt{-a} \frac{\alpha_{-p+j}(m+1)}{\alpha_{-p+j}(m)}, \quad j=\overline{1, p}, \tag{2.9}
\end{equation*}
$$

where $\theta=\arctan \left(\frac{\sqrt{-b^{2}-4 a}}{b}\right), \sin \theta=\frac{\sqrt{-b^{2}-4 a}}{2 \sqrt{-a}}$ and $\alpha_{-p+j}(m)=x_{-p+j} \sqrt{-a} \sin m \theta-x_{-p+j-1} \sin (m+1) \theta, j=\overline{1, p}$, and $m \geq-1$. Using equalities (2.2) and (2.9), we obtain the following result:

Theorem 2.7. Let $\left\{x_{n}\right\}_{n=-p}^{\infty}$ be a well defined solution of equation (2.1). If $b^{2}+4 a<0$, then

$$
x_{n}= \begin{cases}\frac{(-1)^{p} \sin ^{p} \theta}{(\sqrt{-a})^{n}} \frac{v}{\alpha_{-p+1}\left(\frac{n+p-1}{p}\right) \prod_{j=2}^{p} \alpha_{-p+j}\left(\frac{n-1}{p}\right)}, & n=1, p+1, \ldots \tag{2.10}\\ \frac{(-1)^{p} \sin ^{p} \theta}{(\sqrt{-a})^{n}} \frac{v}{\prod_{i=1}^{2} \alpha_{-p+i}\left(\frac{n+p-2}{p}\right) \prod_{j=3}^{p} \alpha_{-p+j}\left(\frac{n-2}{p}\right)}, & n=2, p+2, \ldots \\ \vdots & \vdots \\ \frac{(-1)^{p} \sin ^{p} \theta}{(\sqrt{-a})^{n}} \frac{v}{\prod_{i=1}^{p-1} \alpha_{-p+i}\left(\frac{n+1}{p}\right) \alpha_{0}\left(\frac{n-p+1}{p}\right)}, & n=p-1,2 p-1, \ldots \\ \frac{(-1)^{p} \sin ^{p} \theta}{(\sqrt{-a})^{n}} \frac{v}{\prod_{i=1}^{p} \alpha_{-p+i}\left(\frac{n}{p}\right)}, & n=p, 2 p, \ldots,\end{cases}
$$

where $v=\prod_{i=0}^{p} x_{-i}, \alpha_{-j}(m)=x_{-j} \sqrt{-a} \sin m \theta-x_{-j-1} \sin (m+1) \theta, j=\overline{0,(p-1)}$ and $m \geq-1$.
Theorem 2.8. Assume that $\left(x_{n}\right)_{n=-p}^{\infty}$ is a well defined solution of equation (2.1). The following statements are true:

1. Let $a=-1$ and if $\theta=\frac{l}{M} \pi$ is a rational multiple of π (with $0<l<\frac{M}{2}$), then $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is periodic with prime period $p M$ (if lp is even) or prime period $2 p M$ (if lp is odd).
2. If $-1<a<0$, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is unbounded.
3. If $a<-1$, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ converges to zero.

Proof. We can write the solution (2.10) as

$$
\begin{equation*}
x_{p m+t}=\frac{(-1)^{p} \sin ^{p} \theta}{(\sqrt{-a})^{p m+t}} \frac{v}{\prod_{i=1}^{t} \alpha_{-p+i}(m+1) \prod_{j=t+1}^{p} \alpha_{-p+j}(m)}, \tag{2.11}
\end{equation*}
$$

where $t=\overline{1, p}$ and $m \geq-1$.

1. Suppose that $a=-1$ and let $\theta=\frac{l}{M} \pi$ be a rational multiple of π (with $0<l<\frac{M}{2}$). Then for each $i=\overline{1, p}$, we have

$$
\begin{aligned}
\alpha_{-i}(m+M) & =x_{-i} \sin (m+M) \theta-x_{-i-1} \sin (m+M+1) \theta, \\
& =x_{-i} \sin (m \theta+M \theta)-x_{-i-1} \sin ((m+1) \theta+M \theta), \\
& =x_{-i} \sin (m \theta+l \pi)-x_{-i-1} \sin ((m+1) \theta+l \pi), \\
& =(-1)^{l} \alpha_{-i}(m) .
\end{aligned}
$$

Then for each $t=\overline{1, p}$, we have

$$
\begin{aligned}
x_{p m+p M+t} & =(-1)^{p} \sin ^{p} \theta \frac{v}{\prod_{i=1}^{t} \alpha_{-p+i}(m+M+1) \prod_{j=t+1}^{p} \alpha_{-p+j}(m+M)} \\
& =(-1)^{p l} x_{p m+t} .
\end{aligned}
$$

Therefore, if $l p$ is even, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is periodic with prime period $p M$ and if $l p$ is odd, then the solution $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is periodic with prime period $2 p M$. (2) and (3) are directly obtained using (2.11).
This completes the proof.

2.4. The forbidden sets

In this subsection, we introduce the forbidden sets of equation (2.1).
Theorem 2.9. The following statements are true:

1. If $b^{2}+4 a>0$, then the forbidden set of equation (2.1) can be written as

$$
\begin{aligned}
F_{1}= & \bigcup_{i=0}^{p}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-i}=0\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+1}=-\frac{1}{a} \frac{\phi_{m+1}}{\phi_{m}} u_{-p}\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+2}=-\frac{1}{a} \frac{\phi_{m+1}}{\phi_{m}} u_{-p+1}\right\} \cup \\
& \vdots \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{0}=-\frac{1}{a} \frac{\phi_{m+1}}{\phi_{m}} u_{-1}\right\} .
\end{aligned}
$$

2. If $b^{2}+4 a=0$, then the forbidden set of equation (2.1) can be written as

$$
\begin{aligned}
F_{2}= & \bigcup_{i=0}^{p}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-i}=0\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+1}=\frac{2(1+m)}{m b} u_{-p}\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+2}=\frac{2(1+m)}{m b} u_{-p+1}\right\} \cup \\
& \vdots \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{0}=\frac{2(1+m)}{m b} u_{-1}\right\} .
\end{aligned}
$$

3. If $b^{2}+4 a<0$, then the forbidden set of equation (2.1) can be written as

$$
\begin{aligned}
F_{3}= & \bigcup_{i=0}^{p}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-i}=0\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+1}=\frac{\sin (m+1) \theta}{\sqrt{-a} \sin m \theta} u_{-p}\right\} \cup \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{-p+2}=\frac{\sin (m+1) \theta}{\sqrt{-a} \sin m \theta} u_{-p+1}\right\} \cup \\
& \vdots \\
& \bigcup_{m=1}^{\infty}\left\{\left(u_{0}, u_{-1}, \ldots, u_{-p}\right) \in \mathbb{R}^{p+1}: u_{0}=\frac{\sin (m+1) \theta}{\sqrt{-a} \sin m \theta} u_{-1}\right\}
\end{aligned}
$$

3. Illustrative Examples

Example 3.1. Figure 3.1 shows that, if $p=7, a=0.2$ and $b=1(\Delta>0$ and $a+b>1)$, then a solution $\left\{x_{n}\right\}_{n=-7}^{\infty}$ of equation (2.1) with $x_{-7}=-4, x_{-6}=-5, x_{-5}=-3, x_{-4}=-8.2, x_{-3}=5, x_{-2}=3, x_{-1}=6.2$ and $x_{0}=-7$ converges to zero.
Example 3.2. Figure 3.2 shows that, if $p=4, a=0.1$ and $b=0.7(\Delta>0$ and $a+b<1)$, then a solution $\left\{x_{n}\right\}_{n=-4}^{\infty}$ of equation (2.1) with $x_{-4}=-1, x_{-3}=-3, x_{-2}=-5.9, x_{-1}=-3$ and $x_{0}=-12.2$ is unbounded.

Example 3.3. Figure 3.3 shows that, if $p=7, a=-1$ and $b=2(\Delta=0)$, then a solution $\left\{x_{n}\right\}_{n=-7}^{\infty}$ of equation (2.1) with $x_{-7}=-2$, $x_{-6}=-5, x_{-5}=-3, x_{-4}=-12.2, x_{-3}=5, x_{-2}=3, x_{-1}=6.2$ and $x_{0}=-5$ converges to zero.
Example 3.4. Figure 3.4 shows that, if $p=7, a=-1 / 4$ and $b=1(\Delta=0$ and $b<2)$, then a solution $\left\{x_{n}\right\}_{n=-7}^{\infty}$ of equation (2.1) with $x_{-7}=-4, x_{-6}=-5.3, x_{-5}=-1.3, x_{-4}=-9.2, x_{-3}=6, x_{-2}=13, x_{-1}=6.2$ and $x_{0}=-5$ is unbounded.

Figure 3.1: Equation $x_{n+1}=\frac{x_{n} x_{n-7}}{0.2 x_{n-6}+x_{n-7}}$.

Figure 3.3: Equation $x_{n+1}=\frac{x_{n} x_{n-7}}{-x_{n-6}+2 x_{n-7}}$.

Figure 3.2: Equation $x_{n+1}=\frac{x_{n} x_{n-4}}{0.1 x_{n-3}+0.7 x_{n-4}}$.

Figure 3.4: Equation $x_{n+1}=\frac{x_{n} x_{n-7}}{-0.25 x_{n-6}+x_{n-7}}$.

Example 3.5. Figure 3.5 shows that, if $p=4, a=-1$ and $b=\sqrt{3}$ ($\Delta<0$ andlpiseven), then a solution $\left\{x_{n}\right\}_{n=-4}^{\infty}$ of equation (2.1) with $x_{-4}=-2, x_{-3}=-5, x_{-2}=3, x_{-1}=2.2$ and $x_{0}=5$ is periodic with prime period 24 .
Example 3.6. Figure 3.6 shows that, if $p=7, a=-1$ and $b=1\left(\Delta<0\right.$ and lpisodd), then a solution $\left\{x_{n}\right\}_{n=-7}^{\infty}$ of equation (2.1) with $x_{-7}=-1, x_{-6}=-7, x_{-5}=-4, x_{-4}=-12.2, x_{-3}=5, x_{-2}=3, x_{-1}=6.2$ and $x_{0}=-5$ is periodic with prime period 42.

Figure 3.5: Equation $x_{n+1}=\frac{x_{n} x_{n-4}}{-x_{n-3}+\sqrt{3} x_{n-4}}$.

Figure 3.6: Equation $x_{n+1}=\frac{x_{n} x_{n-7}}{-x_{n-6}+x_{n-7}}$.

Example 3.7. Figure 3.7 shows that, if $p=3, a=0.3$ and $b=0.7(\Delta>0$ and $a+b=1)$, then a solution $\left\{x_{n}\right\}_{n=-3}^{\infty}$ of equation (2.1) with initial conditions $x_{-3}=1, x_{-2}=-2, x_{-1}=1$ and $x_{0}=0.7$ converges to

$$
\frac{(1.3)^{3}((1)(-2)(1)(0.7))}{\prod_{j=1}^{3}\left(0.3 x_{-3+j}+x_{-4+j}\right)} \simeq 3.738
$$

Example 3.8. Figure 3.8 shows that, if $p=5, a=0.2$ and $b=0.8(\Delta>0$ and $a+b=1)$, then a solution $\left\{x_{n}\right\}_{n=-5}^{\infty}$ of equation (2.1) with initial conditions $x_{-5}=-2, x_{-4}=-1, x_{-3}=0.5, x_{-2}=0.8, x_{-1}=0.7$ and $x_{0}=-0.8$ converges to

$$
\frac{(1.2)^{5}((-2)(-1)(0.5)(0.8)(0.7)(-0.8))}{\prod_{j=1}^{5}\left(0.2 x_{-5+j}+x_{-6+j}\right)} \simeq-1.681
$$

Conclusion

In this study, we mainly obtained the solutions and introduced the forbidden sets of the difference equation that contains a quadratic term

$$
x_{n+1}=\frac{x_{n} x_{n-p}}{a x_{n-(p-1)}+b x_{n-p}}, \quad n \in \mathbb{N}_{0}
$$

where the parameters a and b are real numbers, p is a positive integer and the initial conditions $x_{-p}, x_{-p+1}, \cdots, x_{-1}, x_{0}$ are real numbers. Also, we showed that the behavior of the solutions depends on the relation between a and b. That is if $\left\{x_{n}\right\}_{n=-p}^{\infty}$ is a solution of that equation, it may be converge to finite limit, unbounded or periodic with a certain period that depends on p. The mentioned difference equation may be generalized to a more complicated one that may has a complicated behavior.

Acknowledgements

Authors are grateful to the Editor-In-Chief of the journal and the anonymous reviewers for their constructive comments which improved the quality and the presentation of the paper.

Funding

There is no funding for this work.

Availability of data and materials

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author's contributions

All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

References

[1] M. Gümüş, R. Abo-Zeid, An explicit formula and forbidden set for a higher order difference equation, J. Appl. Math. Comput., 63 (2020), 133-142.
[2] R. Abo-Zeid, Forbidden set and solutions of a higher order difference equation, Dyn. Contin. Discrete Impuls. Syst. Ser. B Appl. Algorithms, 25 (2018), 75-84.
[3] R. Abo-Zeid, On the solutions of a higher order difference equation, Georgian Math. J., 27(2) (2020), 165-175.
[4] R. Abo-Zeid, Solutions of a higher order difference equation, Math. Pannon., 26(2) (2017-2018), 107-118.
[5] R. Abo-Zeid, H. Kamal, Global behavior of a third order difference equation with quadratic term, Bol. Soc. Mat. Mex., 27(1) (2021), Article: 23, 15 pages.
[6] R. Abo-Zeid, On the solutions of a higher order recursive sequence, Malaya J. Mat., 8 (2020), 695-701.
[7] R. Abo-Zeid, Behavior of solutions of a rational third order difference equation, J. Appl. Math. Inform., 38 (1-2) (2020), 1-12.
[8] R. Abo-Zeid, Global Behavior of a fourth order difference equation with quadratic term, Bol. Soc. Mat. Mex., 25(1) (2019), 187-194.
[9] R. Abo-Zeid, Global behavior of two third order rational difference equations with quadratic terms, Math. Slovaca, 69 (2019), 147-158.
[10] R. Abo-Zeid, H. Kamal, Global behavior of two rational third order difference equations, Univers. J. Math. Appl., 2(4) (2019), 212-217.
[11] R. Abo-Zeid, On a third order difference equation, Acta Univ. Apulensis, 8 (2018), 89-103.
[12] R. Abo-Zeid, Global behavior of a higher order rational difference equation, Filomat, 30(12) (2016), 3265-3276.
[13] R. Abo-Zeid, On the solutions of two third order recursive sequences, Armen. J. Math., 6(2) (2014), 64-66.
[14] Y. Akrour, N. Touafek, Y. Halim, On systems of difference equations of second order solved in closed-form, Miskolc Math. Notes, 20 (2019), $701-717$.
[15] M. B. Almatrafi, M. M. Alzubaidi, Analysis of the qualitative behaviour of an eighth-order fractional difference equation, Open J. Discrete Math., 2 (2019), 41-47.
[16] M. Berkal, K. Berehal, N. Rezaiki, Representation of solutions of a system of five-order nonlinear difference equations, J. Appl. Math. Inform., 40(3-4) (2022), 409-431.
[17] E. M. Elsayed, M. M. El-Dessoky, Dynamics and global behavior for a fourth-order rational difference equation, Hacet. J. Math. Stat., 42 (2013), 479-494.
[18] N. Haddad, J. F. T. Rabago, Dynamics of a system of k-difference equations, Elect. J. Math. Anal. Appl., 5 (2017), 242-249.
[19] Y. Halim, N. Touafek, Y. Yazlik, Dynamic behavior of a second-order nonlinear rational difference equation, Turkish J. Math., 39 (2015), $1004-1018$.
[20] Y. Halim, M. Berkal, A. Khelifa, On a three-dimensional solvable system of difference equations, Turkish J. Math., 44 (2020), 1263-1288.
[21] Y. Halim, A. Khelifa, M. Berkal, Representation of solutions of a two-dimensional system of difference equations, Miskolc Math. Notes, 21 (2020), 203-218.
[22] T. F. İbrahim, Periodicity and global attractivity of difference equation of higher order, J. Comput. Anal. Appl., 16 (2014), 552-564.
[23] M. Kara, Y. Yazlı, D. T. Tollu, Solvability of a system of higher order nonlinear difference equations, Hacet. J. Math. Stat., 49(5) (2020), $1566-1593$.
[24] A. Khelifa, Y. Halim, M. Berkal, Solutions of a system of two higher-order difference equations in terms of Lucas sequence, Univers. J. Math. Appl., 2 (2019), 202-211.
[25] A. Khelifa, Y. Halim, A. Bouchair, M. Berkal, On a system of three difference equations of higher order solved in terms of Lucas and Fibonacci numbers, Math. Slovaca, 70 (2020), 641-656.
[26] A. S. Kurbanlı, C. Çınar, I. Yalçınkaya, On the behavior of positive solutions of the system of rational difference equations, Math. Comput. Model., 53 (2011), 1261-1267.
[27] S. Stević, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., 67 (2014), 1-15.
[28] S. Stević, M. A. Alghamdi, A. Alotaibi, E. M. Elsayed, On a class of solvable higher-order difference equations, Filomat, 31 (2017), 461-477.

