
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 52 (5) (2023), 1229 – 1238

DOI : 10.15672/hujms.1199437

Research Article

Weakly (k, n)-absorbing (primary) hyperideals of a
Krasner (m, n)-hyperring

Bijan Davvaz1
�, Gulsen Ulucak∗2

�, Unsal Tekir3
�

1Department of Mathematics, Yazd University, Yazd, Iran
2Department of Mathematics, Faculty of Science, Gebze Technical University, Kocaeli, Turkey

3Department of Mathematics, Marmara University, Istanbul, 34722, Turkey

Abstract
In this paper, we introduce new expansion classes, namely weakly (k, n)-absorbing hy-
perideals and weakly (k, n)-absorbing primary hyperideals of a Krasner (m,n)-hyperring,
including (k, n)-absorbing hyperideal and (k, n)-absorbing primary hyperideal. In sum-
mary, we give generalizations of (k, n)-absorbing hyperideal and (k, n)-absorbing primary
hyperideal. Also, we examine the relationships between classical hyperideals and the new
hyperideals and explore some ways to connect them. Additionally, some main results and
examples are given to explain the structures of these concepts. Finally, we study a version
of Nakayama’s lemma on a commutative Krasner (m,n)-hyperring.
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1. Introduction
Hyperstructures, which are an extension of classical algebraic structures, have an im-

portant role in mathematics due to its applications to other fields ranging from automata,
cryptography, coding theory, articial intelligence and probabilities. Firstly, these struc-
tures (particularly, hypergroups) were introduced by F.Marty in (1934). Afterwards, many
authors have been introduced and studied various hyperstructures, for examples, hyper-
groups, hyperrings, Krasner hyperring, multiplicative hyperring, hypermodules, i.e. (See
[7]- [11]). Basic illustrations and results of Krasner hyperrings can be seen in [8] and [9].
Recently, many authors have turned to this topic because the generalizations of various
hyperideal of Krasner (m,n)-hyperring have an important place in this theory [1–13].

Let H be an algebraic hyperstructure with m-ary hyperoperation f and n-ary hyper-
operation g. Then, (H, f, g) is defined as a Krasner (m,n)-hyperring if the following
holds: i. (H, f) is a canonical m-ary hypergroup, ii. (H, g) is an n-ary semigroup,
iii. g has distributive property with regarding to f such that g(xi−1

1 , f(ym
1 ), xn

i+1) =
f(g(xi−1

1 , y1, xn
i+1), ..., g(xi−1

1 , ym, x
n
i+1)) for each xi−1

1 , xn
i+1, y

m
1 ∈ H for i ∈ {1, ..., n}, iv. 0
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is a zero element of the n-ary hyperoperation g for each xn
2 ∈ H, g(0, xn

2 ) = g(x2, 0, xn
3 ) =

... = g(xn
2 , 0) (For more information, see [11]). The above notation xj

i will denote the
sequence of xi, xi+1, ..., xj if j ≥ i and it is the empty symbol if j < i. A Krasner (m,n)-
hyperring is called commutative if (H, g) is a commutative n-ary semigroup and also it
has a scalar identity if there is an element 1g with x = g(x, 1n−1

g ) for every x ∈ H. Let
(H, f, g) be a Krasner (m,n)-hyperring with scalar identity 1g. Let I be a non empty
subset of (H, f, g). Then I is called an i-hyperideal of (H, f, g) if the following holds:
i. I is a subhypergroup of the canonical m-ary hypergroup (H, f); that is, (I, f) is a
canonical n-ary hypergoup, ii. g(xi−1

1 , I, xn
i+1) ⊆ I for every xn

1 ∈ H. Then I is called
a hyperideal of H if it is an i-hyperideal for every i ∈ {1, ..., n}. Let A be a subset of
H. Then < A > is the hyperideal generated by elements of A. The radical of I, rad(I),
is the intersection of all n-ary prime hyperideals P containing I. By [2, Theorem 4.23],
rad(I) = {h ∈ H|g(hu, 1n−u

H ) ∈ I} for u ≤ n and rad(I) = {h ∈ H|g(l)(hu) ∈ I} for
u > n, u = l(n − 1) + 1. As a result of the definition of rad, we have that if I = 0,
then rad(0) = {h ∈ H|g(hu, 1n−u

H ) = 0} for u ≤ n and rad(0) = {h ∈ H|g(l)(hu) = 0} for
u > n, u = l(n − 1) + 1. The rad(0) is called the nil radical of H. In [2], the notions of
n-ary prime and n-ary primary hyperideals of Krasner (m,n)-hyperrings were introduced
and their basic properties were given. A hyperideal H 6= I is called an n-ary prime if
g(Un

1 ) ⊆ I for hyperideals Ui of H for each i ∈ {1, ..., n} implies U1 ⊆ I or ...or Un ⊆ I.
By [2, Lemma 4.5], it is obtained that any hyperideal H 6= I is an n-ary prime if and
only if g(xn

1 ) ∈ I for each xi ∈ H for i ∈ {1, ..., n} implies x1 ∈ I or ... or xn ∈ I. A
hyperideal H 6= I is called an n-ary primary if g(xn

1 ) ∈ I for each xi ∈ H for i ∈ {1, ..., n}
implies xi ∈ I or g(xi−1

1 , 1H , x
n
i+1) ∈ rad(I) for i ∈ {1, ..., n}. A commutative Krasner

(m,n)-hyperring H is defined as n-ary hyperdomain if g(xn
1 ) = 0 implies x1 = 0 or ... or

xn = 0 for each xn
1 ∈ H. In [9], the authors introduced the concepts of (k, n)-absorbing

hyperideals and (k, n)-absorbing primary hyperideals of a Krasner (m,n)-hyperring. A
proper hyperideal P of (H, f, g) is called an (k, n)-absorbing hyperideal if g(xkn−k+1

1 ) ∈ P

for each xkn−k+1
1 ∈ H implies that there exist (k − 1)n− k + 2 of xi’s whose g-product is

an element of P . A proper hyperideal P of (H, f, g) is defined as (k, n)-absorbing primary
if g(xkn−k+1

1 ) ∈ P for each xkn−k+1
1 ∈ H implies that g(x1, ..., x(k−1)n−k+2) ∈ P or a

g-product of (k − 1)n− k + 2 of xi’s (other than g(x1, ..., x(k−1)n−k+2)) is in rad(P ).
In this paper, we introduce the concepts of weakly (k, n)-absorbing hyperideals and

weakly (k, n)-absorbing primary hyperideals of a Krasner (m,n)-hyperring. Among many
results in this paper, we show that every (k, n)-absorbing hyperideal of a Krasner (m,n)-
hyperring is a weakly (k, n)-absorbing hyperideal but the converse need not to be hold in
Example 2.2. We obtain that if P is a weakly (k, n)-absorbing hyperideal of H, rad(P )
may not be weakly (k, n)-absorbing by Example 2.3. It is shown that if P is a weakly
n-ary primary hyperideal of H and rad(P ) = P , then P is a weakly (k, n)-absorbing in
Proposition 3.5. We conclude that if rad(P ) is a weakly (k+1, n)-absorbing primary, then
P is a weakly (k + 1, n)-absorbing primary for all k ≥ 2 in Theorem 3.6. In Theorem
4.4, we give a version of Nakayama’s Lemma for a commutative Krasner (k, n)-hyperring.
Then, in Theorem 4.10, we give another version of Nakayama’s Lemma for strongly weakly
(k, n)-absorbing primary hyperideal of a commutative Krasner (k, n)-hyperring. Finally,
we give some characterizations of these concepts on cartesian product of commutative
Krasner (m,n)-hyperrings with scalar identities in Theorem 5.1-Theorem 5.2.

Throughout this paper, H denotes commutative Krasner (m,n)-hyperring with scalar
identity element.
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2. On weakly (k, n)-absorbing hyperideals
Definition 2.1. Let k ∈ Z+. A proper hyperideal P of H is called weakly (k, n)-absorbing
if 0 6= g(xkn−k+1

1 ) ∈ P for each xkn−k+1
1 ∈ H implies that there exist (k − 1)n − k + 2 of

xi’s whose g-product is an element of P .

Note that if k = 1, then P is called weakly n-ary prime hyperideal of H and if n = 2
and k = 1, then P is defined as weakly prime hyperideal of a Krasner hyperring.
In the next examples, we give the relationship between weakly (k, n)-absorbing hyperideal
and (k, n)-absorbing hyperideal of a Krasner (m,n)-hyperring.

Example 2.2. Every (k, n)-absorbing hyperideal of a Krasner (m,n)-hyperring is a weakly
(k, n)-absorbing hyperideal. But the converse of the explanation may not be generally
true. Consider the set H = {0, 1, 2, 3}. In [2, Example 4.7], it is verified that H is a
Krasner (2, 4)-hyperring with the addition hyperoperation f , determined by [2] and the
hyperoperation g, defined as g(x1, x2, x3, x4) = 2 if one of x4

1 ∈ {2, 3} or 0 if otherwise.
Then it is easily seen that I =< 0 > is a weakly (1, 4)-absorbing hyperideal of H. However,
since g(1, 1, 2, 3) ∈ I but g(1) /∈ I, g(2) /∈ I and g(3) /∈ I then I is not a (1, 4)-absorbing
hyperideal of R.

By [9, Theorem 3.4], it is given that rad(P ) is a (k, n)-absorbing hyperideal of H when
P is a (k, n)-absorbing hyperideal of H. But if P is a weakly (k, n)-absorbing hyperideal,
rad(P ) may not be a weakly (k, n)-absorbing hyperideal.

Example 2.3. Let R = Z3[X,Y ] and I =< X3Y 3 >. Note that H = R/I is a (m,n)-
Krasner hyperring with ordinary addition and ordinary multiplication. Let k = 1 and
n = 2. It is clear that I/I = 0H is a weakly (1, 2)-absorbing hyperideal of H. But rad(0H)
is not weakly (1, 2)-absorbing hyperideal of H since 0 6= 2XY + I = (2X + I)(Y + I) ∈
rad(0H) but 2X + I /∈ rad(0H) and Y + I /∈ rad(0H).

Theorem 2.4. If P is a weakly (k, n)-absorbing hyperideal of H, then P is a weakly
(u, n)-absorbing hyperideal for every u ≥ k.

Proof. It can be easily seen that the idea is true in a similar manner to the proof of
[9, Theorem 3.7]. �

Let I be a hyperideal of a commutative Krasner (m,n)-hyperring H. Recall from [2]
that the set H/I = {f(xi−1

1 , I, xm
i+1)|xi−1

1 , xm
i+1 ∈ H} is a commutative Krasner (m,n)-

hyperring withm-ary hyperoperation f and n-hyperoperation g. Let (H, f, g) and (H ′, f ′, g′)
be two Krasner (m,n)-hyperrings. Then a map ψ : H → H ′ is said to be a homomorphism
if ψ(f(xm

1 )) = f ′(ψ(x1), ..., ψ(xm)), ψ(g(yn
1 )) = g′(ψ(y1), ..., ψ(yn)) for all xm

1 , y
n
1 ∈ H and

ψ(0H) = 0′
H (For more information, see [11]). Note that the map π : H → H/I, is given

with π(x) = f(x, I, 0m−2), is a homomorphism in [11].

Theorem 2.5. Let (H, f, g) and (H ′, f ′, g′) be two commutative Krasner (m,n)-hyperrings
with scalar identities and ψ : H → H ′ be a homomorphism. The following holds:

(1) If Q is a weakly (k, n)-absorbing hyperideal of H ′, then ψ−1(Q) is a weakly (k, n)-
absorbing hyperideal of H.

(2) Let ψ : H → H ′ be an epimorphism and P a weakly (k, n)-absorbing hyperideal of
H with kerf(ψ) ⊆ P . Then ψ(P ) is a weakly (k, n)-absorbing hyperideal of H ′.

Proof. (1) Let 0 6= g(xkn−k+1
1 ) ∈ ψ−1(Q) for any xkn−k+1

1 ∈ H. Then 0 6= ψ(g(xkn−k+1
1 )) =

g′(ψ(x1), ..., ψ(xkn−k+1)) ∈ Q. By the assumption, we get that there exist (k− 1)n−k+ 2
of ψ(xi)’s whose g′-product is in Q. By the homomorphism ψ, we have that the image ψ
of (k − 1)n− k + 2 of xi’s whose g′-product is an element of Q and therefore, there exist
(k − 1)n− k + 2 of xi’s whose g-product is an element of ψ−1(Q).
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(2) Let 0 6= g′(ykn−k+1
1 ) ∈ ψ(P ) for any ykn−k+1

1 ∈ H ′. Then there are xi ∈ H
for each i ∈ {1, 2, ..., kn − k + 1} with ψ(xi) = yi since ψ is an epimorphism. We get
0 6= g′(ykn−k+1

1 ) = g′(ψ(x1), ..., ψ(xkn−k+1)) = ψ(g(xkn−k+1
1 )) ∈ ψ(P ) by the assumption.

We obtain 0 6= g(xkn−k+1
1 ) ∈ P as P contains kerf(ψ). Thus, there exist (k − 1)n −

k + 2 of xi’s whose g-product is an element of P . The proof is completed since ψ is a
homomorphism. �

Let us give the following theorem without proof as a result of Theorem 2.5.
Theorem 2.6. Let P and Q be two proper hyperideals of H such that Q ⊆ P . If P is
a weakly (k, n)-absorbing hyperideal, then P/Q is a weakly (k, n)-absorbing hyperideal of
H/Q.

3. On weakly (k, n)-absorbing primary hyperideals
Definition 3.1. Let k ∈ Z+. A proper hyperideal P of H is called a weakly (k, n)-
absorbing primary if 0 6= g(xkn−k+1

1 ) ∈ P for each xkn−k+1
1 ∈ H implies g(x(k−1)n−k+2

1 ) ∈
P or a g-product of (k − 1)n− k + 2 of xi’s, other than g(x(k−1)n−k+2

1 ), is in rad(P ).
Let k = 1. Then P is called weakly n-ary primary hyperideal of H and also, if n = 2

and k = 1, then P is defined as weakly primary hyperideal of H.

n-ary prime

w. n-ary prime

w. n-ary primary

n-ary primary

w. (k, n)-abs.

w. (k, n)-abs. primary

(k, n)-abs.primary

Figure 1. Relationships between n-ary prime (primary) hyperideal and other
classical hyperideals of a commutative Krasner (m,n)-hyperring for k ≥ 2

In the above figure, "weakly" is denoted by "w." and "absorbing" is denoted by "abs.",
shortly. Actually, we obtain the above diagram which gives the relationships between n-
ary prime (primary), weakly n-ary prime (primary) and weakly (k, n)-absorbing (primary)
hyperideals of a commutative Krasner (m,n)-hyperring.
In the figure, it is shown that every weakly (k, n)-absorbing hyperideals is a weakly (k, n)-
absorbing primary hyperideal. But the converse of the expression may not be true. Note
that (R,+, ·) is a Krasner (m,n)-hyperring with f(xm

1 ) =
∑m

i=1 xi and g(yn
1 ) =

∏n
i=1 yi for

each xm
i , y

n
i ∈ R in [11]. Consider H = Z23 . Clearly, (Z23 ,+, ·) is a commutative Krasner

(m,n)-hyperring with scalar identity element from the above explanation. Let k = 2 and
n = 2. Note that < 0 > is a weakly (2, 2)-absorbing primary hyperideal of a Krasner
(m, 2)-hyperring but not a (2, 2)-absorbing primary hyperideal.

In [9], authors explained that if an hyperideal I is a (k, n)-absorbing primary hyperideal
of a Krasner (m,n)-hyperring H, then rad(I) is a (k, n)-absorbing hyperideal of H. But
the proposition is not valid for the notion of weakly (k, n)-absorbing primary hyperideal.
For instance, see the Example 2.3.
Theorem 3.2. Let P be a weakly n-ary primary hyperideal of H. Then P is a weakly
(2, n)-absorbing primary hyperideal.
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Proof. It is seen to be true in a similar manner to [9, Theorem 4.3]. �

Theorem 3.3. If P is a weakly (k, n)-absorbing primary hyperideal of H, then P is a
weakly (u, n)-absorbing primary hyperideal for all u ≥ k.

Proof. It can be easily seen that the claim is true in a similar manner to the proof of
[9, Theorem 4.4]. �

As a result of the previous two theorems, we give the following corollary.

Corollary 3.4. If P is a weakly n-ary primary hyperideal of H, then P is a weakly
(k, n)-absorbing primary hyperideal for all k ≥ 2.

Proposition 3.5. If P is a weakly n-ary primary hyperideal of H and g(rad(P )(k−1)n−k+2)
⊆ P , then P is weakly (k, n)-absorbing hyperideal.

Proof. Let 0 6= g(xkn−k+1
1 ) ∈ P for some xkn−k+1

1 ∈ H. Obviously, 0 6= g(g(x(k−1)n−k+2
1 ),

xkn−k+1
(k−1)n−k+3) ∈ P . Since P is a weakly n-ary primary hyperideal, then g(x(k−1)n−k+2

1 ) ∈ P

or g(xk−k+1
(k−1)n−k+3, 1

2
H) ∈ rad(P ). If g(x(k−1)n−k+2

1 ) ∈ P , then the proof is completed.
Assume that g(x(k−1)n−k+2

1 ) /∈ P and g(xkn−k+1
(k−1)n−k+3, 1

2
H) ∈ rad(P ). Then, there exists

t ∈ Z+ such that g((g(xkn−k+1
(k−1)n−k+3, 1

2
H))t, 1(n−t)

H ) ∈ P ⇒ xi ∈ rad(P ). It can be seen
that g(x(k−1)n−k+2+i

i ) ∈ g(rad(P )(k−1)n−k+2) ⊆ P . Hence P is weakly (k, n)-absorbing
hyperideal. �

x1, ..., x̂i, ..., x̂j , ..., xkn−k+1 indicates that xi and xj are omitted from the sequence
x1, ..., xkn−k+1.

Theorem 3.6. Let P be a hyperideal of H. If rad(P ) is weakly (k + 1, n)-absorbing
hyperideal, then P is weakly (k + 1, n)-absorbing primary hyperideal for all k ≥ 2.

Proof. Let 0 6= g(x(k+1)n−(k+1)+1
1 ) ∈ P and g(xkn−k+1

1 ) /∈ P for some x(k+1)n−(k+1)+1
1 ∈

H. Then 0 6= g(xkn−k
1 , g(xkn−k+1, ..., x(k+1)n−(k+1)+1)) ∈ P ⊆ rad(P ), where xj =

g(xkn−k+1, ..., x(k+1)n−(k+1)+1) for some i ∈ {1, 2, ..., kn − k, j}. By our assumption,
g(x1, ..., x̂i, ..., xkn−k, xj) ∈ rad(P ) if i ∈ {1, 2, ..., kn−k} or g(xkn−k+1, ..., x(k+1)n−(k+1)+1)
∈ rad(P ) if i = j. Since rad(P ) is a hyperideal, then g(x1, ..., xkn−k, x(k+1)n−(k+1)+1) ∈
rad(P ). Hence, P is weakly (k + 1, n)-absorbing primary. �

Theorem 3.7. Let (H, f, g) and (H ′, f ′, g′) be two commutative Krasner (m,n)-hyperrings
with scalar identities and ψ : H → H ′ be a homomorphism. The following holds:

(1) If Q is a weakly (k, n)-absorbing primary hyperideal of H ′, then ψ−1(Q) is a weakly
(k, n)-absorbing primary hyperideal of H.

(2) Let ψ : H → H ′ be an epimorphism and P a weakly (k, n)-absorbing primary hy-
perideal of H with kerf(ψ) ⊆ P . Then ψ(P ) is a weakly (k, n)-absorbing primary
hyperideal of H ′.

Proof. It is proved in a similar way to Theorem 2.5 by ψ−1(rad(Q)) = rad(ψ−1(Q)) and
ψ(rad(P )) ⊆ rad(ψ(P )). �

We give the following theorem as a result of Theorem 3.7.

Theorem 3.8. Let P and Q be two proper hyperideals of H such that Q ⊆ P . If P is
a weakly (k, n)-absorbing primary hyperideal of H, then P/Q is a weakly (k, n)-absorbing
primary hyperideal of H/Q.
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4. On Nakayama’s lemma for H

We give a version of Nakayama’s lemma for a commutative Krasner (m,n)-hyperring.
Before that, we give the definition of (m,n)-hypermodule over a Krasner (m,n) hyperring.

Let M be a nonempty set. Then (M,h, k) is called an (m,n)-hypermodule over a
Krasner (m,n) hyperring (H, f, g) if (M,h) is an m-ary hypergroup and the map

k : H × · · · ×H︸ ︷︷ ︸
n−1

×M −→ P∗(M)

holds the following:
(i) k

(
rn−1

1 , h (xm
1 )

)
= h

(
k

(
rn−1

1 , x1
)
, . . . , k

(
rn−1

1 , xm

))
(ii) k

(
ri−1

1 , f (sm
1 ) , rn−1

i+1 , x
)

= h
(
k

(
ri−1

1 , s1, r
n−1
i+1 , x

)
, . . . , k

(
ri−1

1 , sm, r
n−1
i+1 , x

))
(iii) k

(
ri−1

1 , g
(
ri+n−1

i

)
, rn+m−2

i+m , x
)

= k
(
rn−1

1 , k
(
rn+m−2

m , x
))

(iv) 0 = k
(
ri−1

1 , 0, rn−1
i+1 , x

)
.

It can be seen that an (m,n)-ary hypermodule M is a hypermodule when m = n = 2.
See [3] and [8] for more information.

Definition 4.1. A proper hyperideal P of H is called strongly weakly (k, n)-absorbing if
0 6= g(Ikn−k+1

1 ) ⊆ P for each hyperideals Ikn−k+1
1 of H implies that there exist (k− 1)n−

k + 2 of Ii’s whose g-product is contained by P for k ∈ Z+.

By the definition, it is concluded that every strongly weakly (k, n)-absorbing hyperideal
is a weakly (k, n)-absorbing hyperideal.

Definition 4.2. Let P be a weakly (k, n)-absorbing hyperideal ofH. Then (a1, ..., ak(n−1)+1)
is called a (k, n)-zero of P if g(a1, ..., ak(n−1)+1) = 0 and none of g-product of the terms
(k − 1)n− k + 2 of ai’s is in P .

Theorem 4.3. Let P be a strongly weakly (k, n)-absorbing hyperideal of H and
(a1, ..., ak(n−1)+1) a (k, n)-zero of P . Then g(a1, ..., âi1 , ..., âi2 , ..., âit , ...ak(n−1)+1, P

t) = 0
for each i1, ..., it ∈ {1, ..., k(n− 1) + 1} and t ∈ {1, ..., (k − 1)n− k + 2}.

Proof. We prove this claim with induction on t. Let t = 1. Then we will show that
g(a1, ..., âi1 , ..., ak(n−1)+1, P ) = 0. Assume that g(a1, ..., âi1 , ..., ak(n−1)+1, P ) 6= 0. Without
loss of generality, we omit a1, that is, g(a2, ..., ak(n−1)+1, P ) 6= 0. Then there is x ∈ P such
that 0 6= g(a2, ..., ak(n−1)+1, x) ∈ P . We investigate g(a2, ..., ak(n−1)+1, f(a1, x, 0m−2)). It
can be seen that 0 6= g(a2, ..., ak(n−1)+1, f(a1, x, 0m−2)) ⊆ P since g(a2, ..., ak(n−1)+1,

f(a1, x, 0m−2)) = f(g(a2, ..., ak(n−1)+1, a1), g(a2, ..., ak(n−1)+1, x), 0m−2) ⊆ P and thus a g-
product containing x, of the terms (k−1)n−k+2 of ai is a subset of P by the assumption.
Without loss of generality, assume that g(a3, ..., ak(n−1)+1, f(a1, x, 0m−2)) ⊆ P , that is,
f(g(a3, ..., ak(n−1)+1, a1), ..., g(a3, ..., ak(n−1)+1, x), 0m−2) ⊆ P . We conclude that
g(a3, ..., ak(n−1)+1, a1) ∈ f(−g(a3, ..., ak(n−1)+1, x), ..., 0m−2) ⊆ P , which is a contradiction.
Thus, g(a1, ..., âi1 , ..., ak(n−1)+1, P ) = 0. Now, we assume that the claim holds for all posi-
tive integers which are less than t > 1. Let g(a1, ..., âi1 , ..., âi2 , ..., âit , ..., ak(n−1)+1, P

t) 6= 0.
Without loss of generality, we eliminate a1, a2, ..., at, that is, g(at+1, ..., ak(n−1)+1, P

t) 6= 0.
Then, there are xt

1 ∈ P such that 0 6= g(at+1, ..., ak(n−1)+1, x
t
1) ∈ P . By induction hypoth-

esis, it can be seen that 0 6= g(at+1, ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., f(at, xt, 0m−2)) ⊆ P .
Again, by the hypothesis, g(at+1, ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., ̂f(a1, x1, 0m−2)i1 ,

̂f(a2, x2, 0m−2)i2 , ...,
̂f(an−1, xn−1, 0m−2)in−1 , ..., f(at, xt, 0m−2)) ⊆ P or g(at+1, ..., âit+1 ,

âit+2 , ..., ̂ait+(n−1) , ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., f(at, xt, 0m−2)) ⊆ P or g(at+1, ..., âit+1 ,
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..., âit+2 , ...âit+k
, ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., ̂f(a1, x1, 0m−2)it+(k+1) , ...,

̂f(an−1−k, xn−1−k, 0m−2)it+(n−1−k) , ..., f(at, xt, 0m−2)) ⊆ P for some 1 ≤ i ≤ t. Note that
in all probability, the g-product containing xi is a subset of P by the assumption. Thus,
g(at+1, ..., ak(n−1)+1, ..., an, ..., at) ∈ P or g(at+n, ..., ak(n−1)+1, ..., a1, ..., at) ∈ P , a contra-
diction. Hence, g(a1, ..., âi1 , ..., âi2 , ..., âit , ...ak(n−1)+1, P

t) = 0. �

In the following theorem, Nakayamas lemma is considered for a strongly weakly (k, n)-
absorbing hyperideal.

Theorem 4.4. Let P be a strongly weakly (k, n)-absorbing hyperideal of H but is not
(k, n)-absorbing hyperideal. Then, the following holds:

(1) g(P k(n−1)+1) = 0.
(2) If (M,h, k) is an (m,n)-hypermodule over a Krasner (m,n) hyperring (H, f, g) and

M = k(P,M), then M = {0}.

Proof. By the assumption, P has a (k, n)-zero. Let (a1, ..., ak(n−1)+1) be a (k, n)-zero of
P .

(1) Assume that g(P k(n−1)+1) 6= 0. Then, there are x
k(n−1)+1
1 ∈ P such that 0 6=

g(xk(n−1)+1
1 ) ∈ P . By Theorem 4.3, we can conclude that 0 6= g(f(a1, x1, 0m−2),

f(a2, x2, 0m−2), ..., f(ak(n−1)+1, xk(n−1)+1, 0m−2)) ⊆ P . As P is a strongly weakly
(k, n)-absorbing hyperideal, then there exist (k − 1)n − k + 2 of f(ai, xi, 0m−2)’s
whose g-product is contained by P . Without loss of generality, assume that
g(f(a1, x1, 0m−2), f(a2, x2, 0m−2), ..., f(a(k−1)n−k+2, x(k−1)n−k+2, 0m−2)) ⊆ P . Then,
f(g(a(k−1)n−k+2

1 ), g(ad
1, x

l
1), g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t

, 0m−t) ⊆ P where d+l = (k−1)n−k+2.

We obtain that g(a(k−1)n−k+2
1 ) ∈ f(−g(ad

1, x
l
1),−g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t−1

, 0m−t+1) ⊆ P ,

that is, g(a(k−1)n−k+2
1 ) ∈ P , a contradiction. Thus, g(P k(n−1)+1) = 0.

(2) Note that k(g(P k(n−1)+1),M) = {0}. We can write k(g(P k(n−1)+1),M)
= k(g(P k(n−1)), k(P,M)) = k(g(P k(n−1)),M) = · · · = k(P, k(P,M)) = k(P,M) =
M by our assumption. Therefore, M = {0}.

�

A proper hyperideal P of a commutative Krasner (m,n)-hyperring may not be weakly
(k, n)-absorbing when it holds g(P k(n−1)+1) = 0. For this situation, see the following
example.

Example 4.5. Notice that Z33n is a commutative Krasner (2, 2)-hyperring with usual
addition and multiplication where n > 2 is a positive integer. Consider the hyperideal
P =< 3n >. Then, clearly P · P · P = 0 but 3 · 3 · 3n−2 ∈ P and 3 · 3, 3 · 3n−2 /∈ P , that
is, P is not a weakly (2, 2)-absorbing hyperideal but P 3 = 0.

Corollary 4.6. Let P be a strongly weakly (k, n)-absorbing hyperideal of H but is not
(k, n)-absorbing hyperideal. Then rad(P ) = rad(0).

Definition 4.7. A proper hyperideal P of H is called a strongly weakly (k, n)-absorbing
primary if 0 6= g(Ikn−k+1

1 ) ⊆ P for each hyperideal Ikn−k+1
1 ofH implies that g(I(k−1)n−k+2)

1 )
⊆ P or a g-product of (k − 1)n − k + 2 of Ii’s, other than g(I(k−1)n−k+2)

1 ), is a subset of
rad(P ) for k ∈ Z+.

Note that every strongly weakly (k, n)-absorbing primary hyperideal of H is a weakly
(k, n)-absorbing primary hyperideal.
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Definition 4.8. Let P be a weakly (k, n)-absorbing primary hyperideal of H. Then
(a1, ..., ak(n−1)+1) is called a (k, n)-zero primary element of P if g(a1, ..., ak(n−1)+1) =
0, g(a(k−1)n−k+2

1 ) /∈ P and none of g-product of (k − 1)n − k + 2 of ai’s, other than
g(a(k−1)n−k+2

1 ), is in rad(P )

Theorem 4.9. Let P be a strongly weakly (k, n)-absorbing primary hyperideal of H and
(a1, ..., ak(n−1)+1) a (k, n)-zero primary of P . Then g(a1, ..., âi1 , ..., âi2 , ..., âit

, ...ak(n−1)+1, P
t)

= 0 for each i1, ..., it ∈ {1, ..., k(n− 1) + 1} and t ∈ {1, ..., (k − 1)n− k + 2}.

Proof. We prove this claim with induction on t. Let t = 1. Then we will show that
g(a1, ..., âi1 , ..., ak(n−1)+1, P ) = 0. Assume that g(a1, ..., âi1 , ..., ak(n−1)+1, P ) 6= 0. Without
loss of generality, we omit a1, that is, g(a2, ..., ak(n−1)+1, P ) 6= 0. Then there is x ∈ P such
that 0 6= g(a2, ..., ak(n−1)+1, x) ∈ P . Note that f(g(a2, ..., ak(n−1)+1, a1), g(a2, ..., ak(n−1)+1, x),
0m−2) ⊆ P , namely, 0 6= g(a(k−1)n−k+1

2 , f(a1, x, 0m−2)) ⊆ P . By the hypothesis, a g-
product containing x of the terms (k − 1)n − k + 2 of a′

is is a subset of rad(P ). With-
out loss of generality, assume that g(a3, ..., ak(n−1)+1, f(a1, x, 0m−2)) ⊆ rad(P ), that is,
f(g(a3, ..., ak(n−1)+1, a1), ..., g(a3, ..., ak(n−1)+1, x), 0m−2) ⊆ rad(P ).
Thus, g(a3, ..., ak(n−1)+1, a1) ∈ f(−g(a3, ..., ak(n−1)+1, x), ..., 0m−2) ⊆ rad(P ), which is a
contradiction. Hence, g(a1, ..., âi1 , ..., ak(n−1)+1, P ) = 0. Now, we assume that the claim
holds for all positive integers which are less than t > 1.
Let g(a1, ..., âi1 , ..., âi2 , ..., âit , ..., ak(n−1)+1, P

t) 6= 0. Without loss of generality, we elim-
inate a1, a1, ..., at, that is, g(at+1, ..., ak(n−1)+1, P

t) 6= 0. Then, there are xt
1 ∈ P such

that 0 6= g(at+1, ..., ak(n−1)+1, x
t
1) ∈ P . By induction hypothesis, it can be seen that 0 6=

g(at+1, ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., f(at, xt, 0m−2)) ⊆ P . Again, by the hypothesis, we
get that g(at+1, ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., ̂f(a1, x1, 0m−2)i1 , ...,

̂f(a2, x2, 0m−2)i2 ,

..., ̂f(an−1, xn−1, 0m−2)in−1 , ..., f(at, xt, 0m−2)) ⊆ rad(P ) or g(at+1, ..., âit+1 , ..., âit+2 , ...,

̂ait+(n−1) , ..., ak(n−1)+1, f(a1, x1, 0m−2), ..., f(at, xt, 0m−2)) ⊆ rad(P ) for some 1 ≤ i ≤ t.
Thus, g(at+1, ..., ak(n−1)+1, ..., an, ..., at) ∈ rad(P ) or g(at+n, ..., ak(n−1)+1, ..., a1, ..., at) ∈
rad(P ) or g(at+1, ..., âit+1 , ..., âit+2 , ...âit+k

, ..., ak(n−1)+1, f(a1, x1, 0m−2), ...,
̂f(a1, x1, 0m−2)it+(k+1) , ...,

̂f(an−1−k, xn−1−k, 0m−2)it+(n−1−k) , ..., f(at, xt, 0m−2)) ⊆ rad(P )
for some 1 ≤ i ≤ t. But it contradicts the fact that (a1, ..., ak(n−1)+1) is a (k, n)-zero
primary of P . Hence, g(a1, ..., âi1 , ..., âi2 , ..., âit , ...ak(n−1)+1, P

t) = 0. �

Theorem 4.10. Let P be a strongly weakly (k, n)-absorbing primary hyperideal of H but
is not (k, n)-absorbing primary hyperideal. Then;

(1) g(P k(n−1)+1) = 0.
(2) If (M,h, k) is an (m,n)-hypermodule over a Krasner (m,n) hyperring (H, f, g) and

M = k(P,M), then M = {0}.

Proof. By the assumption, P has a (k, n)-zero. Let (a1, ..., ak(n−1)+1) be a (k, n)-zero of
P .

(1) Assume that g(P k(n−1)+1) 6= 0. Then, there are x
k(n−1)+1
1 ∈ P such that 0 6=

g(xk(n−1)+1
1 ) ∈ P . By Theorem 4.9, we can conclude that 0 6= g(f(a1, x1, 0m−2),

f(a2, x2, 0m−2), ..., f(ak(n−1)+1, xk(n−1)+1, 0m−2)) ⊆ P . As P is a strongly weakly
(k, n)-absorbing primary hyperideal, then g(f(a1, x1, 0m−2)(k−1)n−k+2)) ⊆ P or a
g-product of (k−1)n−k+2 of f(ai, xi, 0m−2)’s, other than g(f(a1, x1, 0m−2)(k−1)n−k+2),
is a subset of rad(P ). If g(f(a1, x1, 0m−2)(k−1)n−k+2)) = g(f(a1, x1, 0m−2),
f(a2, x2, 0m−2), ..., f(a(k−1)n−k+2, x(k−1)n−k+2, 0m−2)) ⊆ P . Then,
f(g(a(k−1)n−k+2

1 ), g(ad
1, x

l
1), g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t

, 0m−t) ⊆ P where d+l = (k−1)n−k+2.
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We obtain that g(a(k−1)n−k+2
1 ) ∈ f(−g(ad

1, x
l
1),−g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t−1

, 0m−t+1) ⊆ P ,

that is, g(a(k−1)n−k+2
1 ) ∈ P , a contradiction. Now, assume that a g-product of (k−

1)n−k+2 of f(ai, xi, 0m−2)’s, other than g(f(a1, x1, 0m−2)(k−1)n−k+2)), is a subset
of rad(P ). Without loss of generality, consider g(f(a2, x2, 0m−2), f(a3, x3, 0m−2),
..., f(a(k−1)n−k+3, x(k−1)n−k+3, 0m−2)) ⊆ rad(P ). Then,
f(g(a(k−1)n−k+3

2 ), g(ad
2, x

l
1), g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t

, 0m−t) ⊆ rad(P ) where d + l = (k −

1)n−k+2. We obtain that g(a(k−1)n−k+3
2 ) ∈ f(−g(ad

2, x
l
1),−g(x(k−1)n−k+2

1 )︸ ︷︷ ︸
t−1

, 0m−t+1)

⊆ rad(P ), that is, g(a(k−1)n−k+3
2 ) ∈ rad(P ), a contradiction. Thus, g(P k(n−1)+1) =

0.
(2) The proof can be easily obtained in a similar manner to Theorem 4.4.

�

A proper hyperideal P of H has the property g(P k(n−1)+1) = 0 but it does not need to
be a weakly (k, n)-absorbing primary hyperideal. For an instance, see Example 4.5.

Corollary 4.11. Let P be a strongly weakly (k, n)-absorbing primary hyperideal of H but
is not (k, n)-absorbing primary hyperideal. Then rad(P ) = rad(0).

5. On cartesian product of commutative Krasner (m, n)-hyperrings
Let (H1, f1, g1) and (H2, f2, g2) be two commutative Krasner (m,n)-hyperrings with

scalar identities. In [7], we have that the cartesian product of H = H1 ×H2 is a Krasner
(m,n)-hyperring and for xi ∈ H1 and yi ∈ H2:
f = (f1 × f2)((x1, y1), ..., (xm, ym) = {(a, b)|a ∈ f1(xm

1 ), b ∈ f2(ym
1 )},

g = (g1 × g2)((x1, y1), ..., (xn, yn) = (g1(xn
1 ), g2(yn

1 )).

Theorem 5.1. Let H = H1 × ... × Hkn−k+1 where each Hi is a commutative Krasner
(m,n)-hyperring for i ∈ {1, ..., kn − k + 1} with m, n-hyperoperations fi, gi, respectively
and P = P1 × ...×Pkn−k+1 be a hyperideal of H where Pi is a proper hyperideal of Hi. If P
is a weakly (k+ 1, n)-absorbing hyperideal, then Pi is a weakly (k, n)-absorbing hyperideal
of Hi for each i ∈ {1, ..., kn− k + 1}.

Proof. Let P be a weakly (k + 1, n)-absorbing hyperideal of H. Assume that Pi is not a
weakly (k, n)-absorbing hyperideal of Hi and 0 6= gi(xkn−k+1

i ) ∈ Pi for some xkn−k+1
1 ∈ Hi.

Let y1 = (1g1 , ..., 1gi−1 , x1, 1gi+1 , ..., 1gkn−k+1), y2 = (1g1 , ..., 1gi−1 , x2, 1gi+1 , ..., 1gkn−k+1) ,
..., ykn−k+1 = (1g1 , ..., 1gi−1 , xkn−k+1, 1gi+1 , ..., 1gkn−k+1), ykn−k = (1g1 , ...1gkn−k+1),...,
y(k+1)n−(k+1)+1 = (0, ..., 0, 1gi , 0, ..., 0).
It is clear that 0 6= g(y1, ..., y(k+1)n−(k+1)+1) ∈ P . Notice that every g-product that does
not contain y(k+1)n−(k+1)+1 is not in P because 1gi /∈ Pi for every i ∈ {1, 2, ..., kn− k+ 1}.
Then, one of other g-products, containing the element y(k+1)n−(k+1)+1, must be in P due to
the hypothesis that P is weakly (k + 1, n)-absorbing hyperideal. Thus, gi(x(k−1)n−k+2

i ) ∈
Pi, a contradiction because of the assumption. Therefore, Pi must be a weakly (k, n)-
absorbing hyperideal of Hi for every i ∈ {1, ..., kn− k + 1}. �

Theorem 5.2. Let H = H1 × ... × Hkn−k+1 where each Hi is a commutative Krasner
(m,n)-hyperring for i ∈ {1, ..., kn − k + 1} with m, n-hyperoperations fi, gi, respectively
and P = P1 × ...× Pkn−k+1 be a hyperideal of H where Pi is a proper hyperideal of Hi. If
P is a weakly (k+ 1, n)-absorbing primary hyperideal, then Pi is a weakly (k, n)-absorbing
primary hyperideal of Hi for each i ∈ {1, ..., kn− k + 1}.



1238 B. Davvaz, G. Ulucak, U. Tekir

Proof. It can be seen similarly to Theorem 5.1. �

Future Work In this paper, the concept of strongly weakly (k, n)-absorbing (primary)
hyperideal is defined and the Nakayama’s Lemma is applied to Krasner (m,n)-hyperring
with this concept. If that each weakly (k, n)-absorbing (primary) hyperideal is strongly
weakly (k, n)-absorbing (primary) hyperideal is proved, then these ideas are proved for
weakly (k, n)-absorbing (primary) hyperideal.
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