KOI-7253 Sisteminin Zonklama Doğası

Nurhan Ö. Kaya¹ ⊚ ★, Esin Sipahi¹ ⊚

¹ Ege Üniversitesi Astronomi ve Uzay Bilimleri Bölümü, 35100 Bornova İzmir

Accepted: November 15, 2022. Revised: November 9, 2022. Received: November 5, 2022.

Özet

Çift sistemlerde, iki bileşenin sahip olduğu farklı bünyesel özellikler nedeniyle ışık eğrilerindeki değişimleri modellemek zor olabilir. Böylesi ışık değişimlerine sahip yıldızlarda zonklama değişimi gösteren bileşenin doğası belirsizlikler içerebilir. Bu çalışmada, literatürde tam olarak türü belirlenemeyen KOI-7253 (KIC 9913481) çift sisteminin yüksek çözünürlüklü Kepler Uydu verileri kullanılarak ışık değişimleri incelenmiş ve zonklama gösteren bileşenin doğası yorumlanmıştır. Ayrıca, sistemin ışık eğrisi çözümlenerek salt parametreleri hesaplanmıştır. Son olarak, sistemde yörünge değişiminin varlığı araştırılarak mevcut evrim durumu tartışılmıştır.

Abstract

In binary systems, it can be difficult to model changes in light curves due to the different inherent properties of the two components. In stars with such light variations, the nature of the pulsating variation component may contain uncertainties. In this study, the light variations of KOI-7253 (KIC 9913481), whose type cannot be determined exactly in the literature, were examined using high resolution Kepler Satellite data and the nature of the pulsating component was interpreted. Moreover, the light curve of the system was analyzed, and the absolute parameters were calculated. Finally, the existence of orbital change in the system was investigated, and the current evolution status was discussed.

Anahtar Kelimeler: pulsating, KOI-7253, binary systems

1 Giriş

KOI-7253 sistemi, diğer adıyla KIC 9913481, SIMBAD veritabanında 'Değişen yıldız' olarak sınıflanmaktadır. 2MASS All-Sky Survey Catalogue'da 2MASS J19582077+4645559 olarak listelenen sistemin kızılöte parlaklıkları; J=10.^m127, H=10^m074, K=10^m027 olarak verilmiştir (Cutri ve diğ. 2003). Sistemin diğer parlaklıkları; Høg ve diğ. (2000) tarafından yapılan çalışmada B=11^m.20 ve V=10^m.82 olarak bulunmuştur. Slawson ve diğ. (2011), sistemin Kepler parlaklığını 10."862 olarak verirken, sistemin renk artığını $E(B-V)=0.^{m}$ 163 olarak hesaplamıştır. KOI-7253 sisteminin tutulma gösteren bir örten çift sistem olduğu keşfedilip sistemin dönemi ilk kez Watson ve diğ. (2006) tarafından 7.00948 gün olarak bulunmuştur. Sistemle ilgili birçok önemli ve analizlerde kullanılan parametreleri, kaynaklarıyla beraber Çizelge 1'de verilmiştir. Literatürde sistemin ışık eğrisindeki değişimlere odaklanan çok az çalışma vardır. Literatürde KOI-7253 sistemine ait bir ötegezegen olduğu ifade edilmiştir (Morton ve diğ. 2016). Bunun yanında Uytterhoeven ve diğ. (2011) ve Ibanoglu ve diğ. (2018)'a ait çalışmalarda, sistemin bir örten çift sistem olduğu ve bileşenlerinden birinin γ Dor türü zonklama gösterdiği belirtilmiştir.

Bu çalışmada, yapılan incelemeler ve sistemin özellikleri göz önünde bulundurarak, KOI-7253 sisteminin ışık eğrisi ve frekans analizi yapılarak, sistemin bileşenlerinin olası zonklama türü ve karakteristiği belirlenmeye çalışılmıştır.

2 Veri ve Analizler

Güneş sistemi dışında farklı yıldız sistemlerini bulmak ve orada ötegezegen keşfi yapmayı amaç edinen Kepler Mission'u, bununla birlikte, 150 000'e yakın yıldızı fotometrik olarak gözlemlemiştir (Koch ve diğ. 2010; Caldwell ve diğ. 2010). Bu gözlemler bugüne kadar elde edilen en yüksek duyarlılığa sahip fotometrik gözlemlerden biridir (Jenkins ve diğ. 2010a,b). Kepler Mission'nun ötegezegen keşfi amacı dışında, birçok astronom bu gözlem verilerini kullanarak birçok farklı keşifler yapmışlardır. Bunların en başında, çok fazla sayıda örten çift sistem ve yeni değişen yıldız keşifleri gelmektedir (Slawson ve diğ. 2011; Matijevič ve diğ. 2012). Yeni keşfedilen tutulma çiftlerinin birçoğu kromosferik olarak aktif bileşenlere sahipken (Balona 2015; Kaya & Dal 2019), çoğu da çoklu frekanslarda zonklama gösteren bileşenlere sahiptir (Kamil & Dal 2017).

Çalışma kapsamında, incelenen KOI-7253 sisteminin verileri Kepler veritabanından alınmıştır (Slawson ve diğ. 2011; Matijevič ve diğ. 2012). Veritabanında KOI-7253 sistemi için yaklaşık 4 yıl süren hem long cadence hem de short cadence gözlem verisi vardır. Sisteme ait açık olarak sunulan gözlem verisinin detrended halindeki verileri kullanılmıştır. Sistemin long cadence verisinden oluşturulan ışık eğrileri, Şekil 1'de verilmiştir. Ayrıca analizler süresince, gözlem verisinde gerekli düzenlemeler yapılmış olup alt bölümler içerisinde bu düzenlemelerden bahsedilmiştir.

2.1 Işık Eğrisi Analizi

Işık eğrisi analizi, Kepler gözlem verilerinin de analizinin yapılabilmesi için düzeltme yapılan PH0EBE V.0.32 programı (Prša & Zwitter 2005) ile yapılmıştır. Bu programda, Wilson-Devinney kodunun 2014 versiyonundaki yöntem kullanılmaktadır (Wilson & Devinney 2015).

^{*} nurhanozlemk@gmail.com

Çizelge 1. KOI-7253 sisteminin literatürden alınan bazı parametreleri. Referans: (1): The Kepler Input Catalogue'dan alınmıştır, (2): Uytterhoeven ve diğ. (2011), (3): Armstrong ve diğ. (2014), (4): Henden ve diğ. (2015), (5): Frasca ve diğ. (2016), (6): Slawson ve diğ. (2011).

Parametre	Referans	KOI-7253
Diğer Adlandırma	(1)	KIC 9913481
T_0	(1)	54955.80447
P (gün)	(1)	7.00949
Sinif	(2)	$EB{+}\gamma$ Dor
log(g)	(2)	3.5
T_1 (K)	(3)	7846
T_2 (K)	(3)	7331
$B-V(^{m})$	(4)	0.305
Tayf Türü	(5)	A6m
[Fe/H]	(5)	-0.03
$\sin(i)$	(6)	0.99

Şekil 1. KOI-7253 sisteminin Kepler veritabanından alınan LC verisi üzerinden evreye göre çizdirilmiş tüm ve HJD'ye göre çizdirilmiş belirli bir zaman aralığındaki ışık eğrileri.

lşık eğrisi analizinde baş bileşenin sıcaklık değeri için literatürde birbirinden çok farklı değerler olduğu görülmüştür. Bu nedenle, baş bileşenin sıcaklığı olarak sistemin MAST veritabanında verilen sıcaklık değeri kullanılmıştır. Analizde, baş bileşenin sıcaklığı 7846 K olarak kabul edilmiştir. Sisteme ait kütle oranının belirlenebileceği bir dikine hız eğrisi olmadığı için, PH0EBE programı kullanılarak kütle oranı bulabilmek için, 0.1'lik artışlarla q=0.1 ile 1.0 arasında bir dizi sabit kütle oranı değeri için çözümler elde edilmiştir. Karşılık gelen kütle oranı değeri için karesi alınmış artıkların (Σres^2) toplamı, en düşük Σres^2 değerinin yaklaşık q = 0.74'te bulunduğu Şekil 2'de belirtilmiştir.

Kütle oranı (q)'nın belirlenmesiyle, q değeri 0.74 olarak

Çizelge 2. Sistemin PHOEBE programı ile yapılan ışık eğrisi analizi ile elde edilen parametreler.

•
•
•
•
•
•
•

0.00

Şekil 2. Kütle oranı (q) taraması sonucu elde edilen kütle oran değerleri verilmiştir.

sabit kabul edilerek ışık eğrisi analizi gerçekleştirilmiştir. MAST veritabanından alınan sıcaklık değeri, analiz sırasında sabit değer olarak alınırken; yoldaş bileşenin sıcaklığı serbest parametre olarak alınırştır. Bileşenlerin albedosu $(A_1 ve A_2)$ ile çekimsel kenar kararma katsayıları $(g_1 ve g_2)$, bileşenlerin olası tayf türleri göz önünde bulundurularak Lucy (1967) ve Ruciński (1969)'den alınmıştır. Bileşenlerin kenar kararma katsayıları $(x_1 ve x_2)$ ise van Hamme (1993)'den alınmıştır. Bileşenlerin potansiyel $(\Omega_1 ve \Omega_2)$ değerleri, baş bileşenin kesirsel ışıtması (L_1) ve sistemin yörünge eğim açısı (i), serbest parametre olarak alınmıştır. Analizler sonucunda elde edilen parametreler, Çizelge 2'de listelenmiştir. Elde edilen parametreler kullanılarak oluşturulan sentetik eğri ile sistemin ışık eğrisi, Şekil 3'te verilmiştir.

Ayrıca, ışık eğrisi analizi üç farklı modda denenmiştir, fakat Mod 4 (Baş bileşenin Roche Lobunu doldurduğu yarıayrık sistem) ve Mod 5 (Yoldaş bileşenin Roche Lobunu doldurduğu yarı-ayrık sistem)'de kabul edilebilir bir çözüm elde edilememiştir. Sadece Mod 2 (Ayrık sistem)'de astrofiziksel açıdan uygun bir çözüm elde edilebilmiştir.

Sistemin mevcut bir radyal hız eğrisi olmamasına rağmen, bileşenlerin salt parametreleri tahmin edilmeye çalışılmıştır. Sistemin literatürde verilen tayfsal türü (Frasca ve diğ. 2016) göz önüne alındığında, Tokunaga (2000)'da yer alan kalibrasyonlar kullanılarak, baş bileşenin kütlesi yaklaşık 2.00 M_{\odot} olarak belirlenmiştir ve yoldaş bileşenin kütlesi,

Çizelge 3. Sistemin bileşenlerine ait hesaplanan salt parametreler.

Parametre	KOI-7253
$\overline{M_1}$ (M $_{\odot}$)	2.00
M_2 (M $_\odot$)	1.48
R_1 (R_\odot)	3.10
R_2 (R_\odot)	1.50
L_1 (L $_{\odot}$)	32.65
L_2 (L $_{\odot}$)	5.32
a R $_{\odot}$	23.35
$\log(g_1) \; (cm \; s^{-2})$	3.8
$\log(g_2) \ ({ m cm} \ { m s}^{-2})$	4.3

sistemin tahmini kütle oran değerinden gidilerek hesaplanmıştır. Kepler'in üçüncü yasası kullanılarak, yarı büyük eksen uzunluğu (*a*), ayrıca bileşenlerin yarıçapları ve ışıtmaları hesaplanmıştır. Tüm hesaplamalardan elde edilen bileşenlere ait tahmini salt parametreler Çizelge 3'te verilmiştir. Şunu da belirtmek isteriz ki; sisteme ilişkin tayf verisi olmadığı için, salt parametrelerin hesabında kütle değerleri bileşenlerin sıcaklıkları temel alınarak Tokunaga (2000)'daki çizelgelerden alınmıştır. Ayrıca baş bileşenin çözümlerde kabul edilen sıcaklığı için de MAST veritabanında hata değeri bulunmamaktadır. Bu nedenler ile salt parametrelerin hesabında hata değerleri verilememiştir.

lşık eğrisi analizinden elde edilen parametreler ve bunlara bağlı olarak hesaplanan çift sistemin bileşenlerine ait salt parametreler kullanılarak, Hertzsprung-Russell Diyagramı üzerinde noktalanmıştır. Şekil 4'te verilen H-R diyagramında, baş bileşen daha sıcak olup mavi ile gösterilirken, yoldaş bileşen diğerine göre biraz daha soğuk olup kırmızı ile belirtilmiştir.

2.2 O-C Analizi

KOI-7253 sisteminin Kepler veritabanında (Slawson ve diğ. 2011; Matijevič ve diğ. 2012) açık olarak sunulan long cadence verisinin arındırılmış formunda hiçbir düzeltme yapılmadan minimum zamanları okunmuştur. Minimum zamanları, Kwee & van Woerden (1956) yöntemine dayanan bir script ile hesaplanmıştır. Elde edilen minimum zamanları için (*O-C*)I sapmaları belirlenmiş, çok büyük hataya sahip bazı minimum zamanları için ışık eğrisi incelenmiş ve veriden çıkarılmıştır. Toplamda 124 minimum zamanı elde edilmiştir. Elde edilen bu değerlere aşağıdaki lineer düzeltme yapılmıştır:

$$HJD = 2454955.80447(1) + 7^d.00949(1) \times E$$
 (1)

Yapılan lineer düzeltme sonrasında

$$T_0 = 2454955.86908 \pm 0.01216$$
$$P = 7.009363 \pm 0.000103$$

değerleri elde edilmiştir.

Elde edilen minimum zamanları, (O-C)I ve (O-C)II artıkları Çizelge 4'de listelenmiştir. Çizelgede sırasıyla minimum zamanları, çevrim sayısı, minimum türü, (O-C)I ve (O-C)II artıkları listelenmiştir. Artıkların zaman değişimi Şekil 5'te verilmiştir.

2.3 Frekans Analizi

KOI-7253 sistemindeki tutulmalar dışındaki değişimin nedeninin belirlenmesi için, Kepler veritabanından alınan long cadence gözlem verisine dönem analizi yapılmıştır. Bunun içinde, ışık eğrisi analizinden elde edilen sentetik eğri gözlem

Şekil 3. KOI-7253 sisteminin PH0EBE programı ile Mod 2 (ayrık çiftler)'de yapılan ışık eğrisi analiz sonucu verilmiştir. Siyah noktalar, gözlem verisini temsil ederken, kırmızı düz çizgi ise analiz sonucu elde edilen sentetik ışık eğrisidir.

Şekil 4. KOI-7253 sisteminin bileşenlerine ait salt parametreleri hesaplanmış ve H-R diyagramı üzerinde noktalanmıştır. Mavi yıldız ile belirtilen baş bileşeni, kırmızı yıldız ile belirtilen ise yoldaş bileşeni göstermektedir.

Şekil 5. Minimum zamanlarına lineer düzeltme yapıldıktan sonra elde edilen artıkların (O-C)II zamana göre değişimi verilmektedir. Üst panelde, düz çizgi doğrusal uyumu gösterirken, doldurulmuş noktalar her iki panelde de (O-C) artıklarını temsil etmektedir.

Çizelge 4.	KOI-7253	sisteminin	Kepler	veritabanında	n alınar	LC	gözlem	verisinden	belirlenen	baş	ve y	an	minimum	zamanları.	Tüm	HJD
değerlerine	+24 0000	00 eklenme	lidir. Tü	ım $(O-C)$ değ	erleri gü	n bir	imindend	dir.								

		Tür	(0, C)	(O, C)		E	Tür	(O, C)	(O, C)
	E	Tur	(0-0)	(0-0)11	ПЈО	E	Tur	(0-0)	(0-0)11
54955.708922	0.0	I	-0.095543	-0.160160	55674.451999	102.5	П	0.175280	0.123219
54969.908707	2.0	I	0.085271	0.020899	55684.772474	104.0	I	-0.018473	-0.070350
54976.877683	3.0	I	0.044762	-0.019488	0.019488 55695.482048 105.5 II 0.176873		0.125180		
54983.880401	4.0	I	0.037994	-0.026132	-0.026132 55705.792152 107.0 I -0.027251		-0.078761		
54990.887578	5.0	I	0.035686	-0.028318 55716.504644 108.5 II 0.171013		0.119687			
54997.892788	6.0	I	0.031411	-0.032471	55726.825644	110.0	I	-0.022215	-0.073357
55008.399556	7.5	II	0.023950	-0.039748	55737.300000	111.5	II	-0.062087	-0.113046
55018.942490	9.0	1	0.052656	-0.010858	55747.861234	113.0	1	-0.015081	-0.065856
55025.937299	10.0		0.037980	-0.025412	55758.319131	114.5		-0.071412	-0.122003
55036.551841	11.5		0.138294	0.075086	55768.904350	116.0	1	-0.000421	-0.050829
55046.918666	13.0		-0.009109	-0.072134	55779.359311	117.5		-0.059688	-0.109912
55057.569971	14.5		0.127968	0.065127	55789.920001	119.0		-0.007227	-0.057267
55068.027819	10.0		0.071588	0.008931	55800.554127	120.5		0.106671	0.050815
55075.008850	17.0		0.043139	-0.019395	55811.078484	122.0 122.5		0.110800	0.067128
55082.014120	18.0		0.038918	-0.023494	55821.509558	123.5		0.093646	0.044157
55090.009305	20.0		0.015192	-0.040975	55832.110228	125.0		0.120088	0.070783
55105.057925	21.0		0.034207	-0.021110	55957.150207	140.0		0.005760	-0.041062
55110.005525	22.0 22.5	i.	-0.009621	-0.071743	55944.101050	141.0		0.019732	-0.027015
55120.095559	23.5		0.107907	0.100229	55951.044030	142.0		-0.100554	-0.155770
55151.017000	25.0	i.	-0.023912	-0.065400	55901.055205	145.5		0.107565	0.120340
55141.464727	20.5		-0.071101	-0.132472	55972.101200	145.0		-0.016500	-0.005415
55162 604852	20.0	i.	-0.002000	-0.005255	55086 238571	140.0	÷	0.010170	-0.030333
55173 113070	29.5	1	0.110300	-0.049304	55003 270221	147.0	÷	0.059752	0.015429
55180 183020	32.0	÷	0.015407	0.014325	56000 064303	140.0	÷	-0 153487	-0 100852
55187 068376	33.0	i	-0.049107	-0 109682	56010 812448	150.5	II	0.080430	0.034249
55197 561266	34.5	i.	-0 070445	-0 130836	56021 288019	152.0	ï	0.041773	-0.004224
55208 143664	36.0		-0.002275	-0.062482	56028 294630	153.0	i	0.038899	-0.006976
55218.768200	37.5	ii	0.108033	0.048009	56035.305619	154.0	i	0.040402	-0.005350
55229.249371	39.0	1	0.074975	0.015136	56042.308661	155.0	1	0.033959	-0.011671
55239.669719	40.5	Ш	-0.018905	-0.078560	56049.241869	156.0	I	-0.042318	-0.087826
55250.309688	42.0	I	0.106836	0.047364	56059.973402	157.5	П	0.174987	0.129663
55260.814089	43.5	Ш	0.097009	0.037721	56070.289611	159.0	I	-0.023033	-0.068173
55271.344657	45.0	I.	0.113349	0.054244	56077.490521	160.0	I.	0.168392	0.123374
55281.815587	46.5	П	0.070051	0.011130	56084.399435	161.0	I.	0.067821	0.022925
55292.382600	48.0	I	0.122836	0.064099	56091.387413	162.0	I	0.046313	0.001541
55302.864301	49.5	П	0.090309	0.031755	56098.318214	163.0	1	-0.032371	-0.077021
55313.388507	51.0	I	0.100287	0.041917	56109.000874	164.5	П	0.136061	0.091594
55323.901381	52.5	Ш	0.098933	0.040747	56119.389765	166.0	I.	0.010724	-0.033559
55334.447500	54.0	I	0.130823	0.072821	56133.409413	168.0	I	0.011401	-0.032637
55344.927420	55.5	Ш	0.096515	0.038697	56140.457238	169.0	I	0.049740	0.005825
55355.464213	57.0	I	0.119080	0.061446	56147.453376	170.0	I	0.036393	-0.007400
55366.004322	58.5	Ш	0.144961	0.087510	56154.454641	171.0	I	0.028173	-0.015498
55376.489505	60.0	I	0.115916	0.058649	56161.467807	172.0	I	0.031853	-0.011694
55387.030961	61.5		0.143144	0.086061	56168.462718	173.0	1	0.017279	-0.026146
55397.540774	63.0	1	0.138729	0.081829	56175.483022	174.0	1	0.028097	-0.015205
55408.075384	64.5		0.159111	0.102395	56182.494352	175.0		0.029942	-0.013238
55418.576632	66.0		0.146131	0.089598	56189.505999	176.0		0.032104	-0.010954
55429.114393	67.5		0.169664	0.113315	56196.510603	177.0		0.027222	-0.015/13
55439.000018	69.0 70.5		0.141660	0.085496	56203.517308	1/8.0		0.024442	-0.018371
55450.138082	70.5		0.164896	0.108915	50322.051840	195.0 106 г		-0.002272	-0.043002
55400.033248	72.0		0.145834	0.090037	50333.330704	190.5		0.108358	0.127811
55572.029299	00.0		-0.009661	-0.003716	50545.002150	190.U		-0.020424	-0.000767
55586 660006	09.0	1	0.000220	-0.04/494	50554.370021	199.5 201.0	1	0.113019	0.133040
55507 174450	90.0 01 ⊑	т П	0.009943	-0.043047 _0.051330	50304.700304	201.0	1	0.011214	0.031210
55607 849207	03 U 91'2	1	0.002071	-0.031336	56370 702001	202.0	1	0.020191	0.010324
5561/ 770507	93.0 04.0	1	0.101000	0.100313	56385 722071	203.0	1	0.033000	0.014129
55621 762522	94.0 05.0	1	0.003414	0.030312	56302 676615	204.0	1	-0 072257	-0 111262
55632 302061	90.0 96 5	1 	0.003003	0.010025	56403 /10160	205.0	і 	0.072357	0.111002
55642 755112	90.5 08 N	1	0.003133	-0 031520	56413 786025	200.5 208.0	1	0.140909	-0 0305/1
55653 403158	99.5	II	0.154896	0.102467	56420 725514	200.0	i	-0.061400	-0.100415
55663 748672	101 0		-0.013818	-0.066063		_00.0	•		
		•							

Cizelge 5. Sistemin tutulmalar dışındaki gözlem verisinin PERIOD04 programı ile yapılan analizlerinde tespit edilen frekansların listesi.

No	Frekans (d^{-1})	Genlik (Yeğinlik)	Fourier Evresi	SNR
F1	0.142676 ± 0.000001	0.000478 ± 0.000001	0.965939 ± 0.000450	42.13081
F2	0.022034 ± 0.000005	0.000099 ± 0.000001	0.937088 ± 0.002196	8.63708
F3	0.027576 ± 0.000005	0.000108 ± 0.000001	0.471592 ± 0.002156	9.49016
F4	0.030501 ± 0.000004	0.000114 ± 0.000001	0.997362 ± 0.001636	9.95798
F5	0.029957 ± 0.000004	0.000083 ± 0.000001	0.637750 ± 0.001841	7.29067
F6	0.002448 ± 0.000007	0.000065 ± 0.000001	0.811682 ± 0.003099	5.73027
F7	0.034989 ± 0.000006	0.000081 ± 0.000001	0.665921 ± 0.002653	7.11291
F8	0.062225 ± 0.000009	0.000056 ± 0.000001	0.889376 ± 0.003711	4.94020
F9	0.022816 ± 0.000007	0.000073 ± 0.000001	0.122602 ± 0.003020	6.37500
F13	0.029106 ± 0.000007	0.000062 ± 0.000001	0.333943 ± 0.003038	5.44271
F14	0.033459 ± 0.000008	0.000062 ± 0.000001	0.450943 ± 0.003332	5.45304
F15	0.071304 ± 0.000009	0.000056 ± 0.000001	0.363710 ± 0.003764	4.87971
F16	0.040497 ± 0.000012	0.000047 ± 0.000001	0.726258 ± 0.004929	4.12428
F17	0.021286 ± 0.000009	0.000053 ± 0.000001	0.784724 ± 0.003767	4.66040
F18	0.019212 ± 0.000008	0.000060 ± 0.000001	0.816287 ± 0.003404	5.29140
F19	0.025638 ± 0.000009	0.000063 ± 0.000001	0.206682 ± 0.003700	5.56255
F20	0.054643 ± 0.000009	0.000054 ± 0.000001	0.129561 ± 0.004030	4.72176
F22	0.013261 ± 0.000010	0.000048 ± 0.000001	0.862006 ± 0.004137	4.17611
F23	0.074636 ± 0.000010	0.000049 ± 0.000001	0.112431 ± 0.004320	4.26130
F24	0.005406 ± 0.000011	0.000047 ± 0.000001	0.926551 ± 0.004588	4.15405
F25	0.049644 ± 0.000010	0.000049 ± 0.000001	0.753550 ± 0.004378	4.32090
F27	0.027032 ± 0.000006	0.000057 ± 0.000001	0.967252 ± 0.002474	5.02417
F29	0.083851 ± 0.000010	0.000048 ± 0.000001	0.004860 ± 0.004292	4.21237

Şekil 6. KOI-7258'in Kepler verisine uygulanan analiz sonucu Fourier genlik tayfı görülmektedir. Frekans 0.0 d^{-1} 'den 1.0 d^{-1} 'e kadar olan tayf, daha net görünmesi için üst düzlemde tekrar oluşturulmuştur.

verisinden çıkarılarak, tutulmalar dışı değişim belirlenmiştir. Elde edilen bu değişime ayrıntılı bakıldığında, her çevrimin belirli bir sinüzoidal değişim gösterdiği keşfedilmiştir. Bunun nedeninin sistemdeki bileşenlerden birinin zonklama göstermesi kaynaklı olabileceği düşünülmüştür. Literatüre bakıldığında, Uytterhoeven ve diğ. (2011) ve İbanoglu ve diğ. (2018)'a ait çalışmalarda bu sistemin bileşenlerinden birinin γ Dor türü zonklama gösterdiği belirtilmiştir. Buradan yola çıkarak, tutulmalar dışı değişim PERIOD04 programı Lenz & Breger (2005) kullanılarak Fourier tekniğine dayanan DFT (Discrete Fourier Transform, Scargle 1982) yöntemi uygulanarak frekans analizi gerçekleştirilmiştir.

Frekans analizi sonucunda, KOI-7253 sistemi için gerek hata (σ) gerekse de gürültü düzeyi (S/N oranı) göz önüne alınarak, S/N oranı 4'ün üzerinde olan 23 adet frekans tespit edilmiştir. Elde edilen frekanslara ait sırasıyla frekans, genlik, evre ve SNR değerleri Çizelge 5'te sunulmuş, genlik tayfı ise Şekil 6'da verilmiştir.

Eşitlik 2'de Morris (1985) tarafından tanımlanan bağıntı

Şekil 7. Tutulmalar dışı değişim ve bu değişimin PERIOD04 programı ile yapılan frekans analizinden elde edilen frekanslarla türetilmiş olan sentetik eğri verilmiştir. Siyah noktalar yeğinlik farkını, kırmızı düz çizgi ise sentetik eğriyi temsil etmektedir.

yardımıyla, elde edilen frekans değerleri kullanılarak tutulmalar dışı değişime ait sentetik eğri modellenmiştir.

$$L(\theta) = A_0 + \sum_{j=1}^{N} A_j \cos(j\theta) + \sum_{j=1}^{N} B_j \sin(j\theta)$$
 (2)

Eşitlikte verilen A_0 sıfır noktası, θ evre, A_j ve B_j genlik parametreleridir.

Şekil 7'de KOI-7253 sisteminin tutulmalar dışı değişimine ait gözlem verisi ve frekans değerlerinden elde edilen sentetik eğri gösterilmektedir. Şekilden de görüldüğü üzere, analizde elde edilen frekanslar, tutulmalar dışı gözlem verisini çok iyi temsil etmektedir. Şekildeki siyah dolu daireler gözlemlerin artıklarını, düz kırmızı çizgi ise frekanslardan türetilmiş sentetik eğriyi temsil etmektedir.

Şekil 8. KOI-7253 sistemindeki zonklama gösteren baş (mavi) ve yoldaş (kırmızı) bileşenlerinin H-R diyagramındaki konumları gösterilmiştir. Ek olarak, sıcak (HB) ve soğuk (CB) sınırlar arasında kalan δ Scuti yıldızları karşılaştırma amaçlı verilmiştir. Girardi ve diğ. (2000) tarafından verilen teorik anakol (ZAMS ve TAMS) değerleri ile Rolland ve diğ. (2002) tarafından verilen kararsızlık kuşağı sınırları belirtilmiştir. $T_{\rm eff}-L/L_{\odot}$ için log düzleminde Soydugan ve diğ. (2006) tarafından listelenen δ Scuti türü yıldızların dağılımı verilmiştir.

3 Sonuçlar ve Tartışma

SIMBAD veritabanında 'değişen yıldız' olarak sınıflanan KOl-7253 sisteminin Kepler veritabanından alınan long cadence gözlem verisinin analizi ile sistemin zonklama doğası ortaya çıkarılmaya çalışılmıştır.

lşık eğrisi analizi, PHOEBE programı kullanılarak Mod2 (ayrık çift) modunda yapılmıştır. Elde edilen parametreler ve bunlara bağlı hesaplanan bileşenlere ait salt parametreler Çizelge 3'te verilmiştir. H-R diyagramında noktalanan bileşenleri Şekil 4'te incelediğimizde, mavi yıldız ile belirtilen baş yıldızın evriminin ileri safhasında TAMS'ı geçmişken, kırmızı yıldız ile belirtilen yoldaş bileşenin ise ZAMS'a daha yakın bir konumda anakol evrimine devam etmekte olduğu görülmektedir.

KOI-7253 sisteminin literatürde verilen T_0 ve dönem değerlerini güncellemek ve sistemde bir dönem değişiminin olup olmadığını araştırmak için, (*O*-*C*) diyagramı oluşturulmuştur. (*O*-*C*)I değerlerine yapılan lineer düzeltmenin ardından, (*O*-*C*)II artıkları elde edilmiştir. Elde edilen (*O*-*C*)II artıklarının zamana göre değişiminde belirli bir dönem değişimi şu an için tespit edilememiştir.

KOI-7253 sisteminin yörünge dönemi 7.00949 gündür. Kepler Mission'u tarafından yaklaşık 4 yıllık gözlem süresi boyunca sisteme ait birçok ışık eğrisi elde edilmiştir (Koch ve diğ. 2010; Caldwell ve diğ. 2010). Işık eğrileri incelendiğinde, sistemin tutulmalar dışında sinüzoidal bir değişim gösterdiği bulunmuştur. Sistemin literatürdeki tayf türü, log(g), dönem ve sıcaklık değerleri göz önüne alındığında, ayrıca gözlem süresince olası flare aktivitesi gibi bir olguyla karşılaşılmadığı için; sinüzoidal değişimin leke aktivitesi değil, zonklama kaynaklı olabileceği düşünülüp analizlerde bunun üzerine durulmuştur. Bununla birlikte, Uytterhoeven ve diğ. (2011) ve Ibanoglu ve diğ. (2018) çalışmalarında, sistemin bir örten çift olduğunu ve bileşenlerinden birinin γ Dor türü zonklama gösterdiğini ifade etmişlerdir. Bu nedenlerle tutulmalar dışı değişimin kaynağını ve doğasını belirlemek amacıyla, bu değişimin frekans analizi yapılmıştır. PERIODO4 programı ile analizlerde S/N oranının 4

ve altında kaldığına emin oluncaya kadar iterasyonlara devam edilmiştir. Analizler 40 iterasyondan sonra bırakılmıştır ve bunun sonucunda, S/N oranı 4.0'dan büyük olan 23 adet frekans tespit edilmiştir. Çizelge 5'te verilen frekans değerleri incelendiğinde, F1 frekansı doğrudan sistemin yörünge dönemi olan yaklaşık 7 güne karşılık gelmektedir. Bu dönemin katları olan F15 gibi frekanslar, toplamdaki 23 frekansın belirli bir kısmı, yörünge döneminin harmonikleridir. Dönem analizinden bulunan bu frekanslar ile elde edilen sentetik eğrinin, Şekil 7'de de görüldüğü gibi tutulmalar dışı değişimi iyi bir şekilde temsil ettiği görülmektedir. Ayrıca yapılan analiz sonucunda, 30 ile 90 gün arası gibi bir aralıkta sisteme ait zonklama dönemleri hesaplanmıştır.

Hem tutulmalar dışındaki değişimin şekli hem de elde edilen zonklama dönemlerine bakıldığında, sistemin zonklama gösteren baş bileşeninin bir RV Tau zonklayan türüne ait olabileceği düşünülmüştür. Bunun için, ışık eğrisi analizinden elde edilen ve buna bağlı olarak hesaplanan salt parametreler kullanılarak, baş bileşenin kararsızlık kuşağındaki yerinin belirlenmesi için, Girardi ve diğ. (2000) tarafından verilen teorik anakol (ZAMS ve TAMS) değerleri ile Rolland ve diğ. (2002) tarafından verilen kararsızlık kusağı sınırlarına göre, $T_{\rm eff} - L/L_{\odot}$ için log düzleminde Soydugan ve diğ. (2006) tarafından listelenen δ Scuti türü yıldızların dağılımı Şekil 8'de verilmiştir. KOI-7253 sisteminin baş ve yoldaş bileşenleri bu düzlem üzerinde noktalanmıştır. Mavi yıldız ile belirtilen baş bileşen, kararsızlık kuşağında tahmin edilen RV Tau türü zonklayan yıldızların olduğu bölümde yer almamaktadır. Daha çok Soydugan ve diğ. (2006) tarafından listelenen δ Scuti türü yıldızlarının olduğu bölüme denk gelmektedir. Bu durumda yoldaş bileşenin kararsızlık kuşağındaki konumuna bakılmıştır. Sekil üzerinde kırmızı yıldız olarak belirtilen yoldas bilesen ise, γ Dor türü yıldızlarının olduğu bölüme denk gelmektedir. Elde ettiğimiz sonuçlar ile bileşenlerin H-R diyagramındaki konumları çelişkilidir. Çünkü, frekans analizinden elde ettiğimiz zonklama dönemlerinde herhangi bir δ Scuti veya γ Dor türü zonklama dönem değeri tespit edilememiştir. Tutulmalar dışı değişime bakıldığında da bu iki türe ait bir ışık değişimi bulunamamıştır.

KOI-7253 sistemi için literatürde tek bir bileşenin γ Dor türü zonklama gösterdiği belirtilmiştir (Uytterhoeven ve diğ. 2011; Ibanoglu ve diğ. 2018). Yaptığımız analizler sonucunda her iki bileşeninde zonklama gösterdiği tespit edilmiştir. Her iki bileşeninde zonklama göstermesiyle ışık eğrisinde beklenmedik ışık değişimleri olabileceği düşünülmektedir. Uytterhoeven ve diğ. (2011) çalışmasında, bu sistemin bir örten çift olduğunu ve bileşenlerinden birinin γ Dor türü zonklama gösterdiğini belirterek, sistemin ışık eğrisinin bu iki durumdan kaynaklı kirlendiğini belirtmiştir. Dolayısıyla, her iki zonklama türüne ait ışık değişiminin, sistemin ışık eğrisinin biçimini etkileyeceği düşünülmektedir.

Bunun yanında, çalışma kapsamında yapılan analizlerde, Kepler veritabanı ve LAMOST (Frasca ve diğ. 2016)'un verdiği sıcaklıklar kullanılarak ilerlenmiştir. Sıcaklık değerindeki olası bir fark, tüm analiz sonuçlarını değiştirebilmektedir. Dolayısıyla, çalışma sonucunda tam bir sonuca varılamamıştır. Sistem üzerinde çalışmalarımız hala devam etmektedir. Elde edilen sonuçlar göz önünde bulundurularak, sistemin bileşenlerine ait sıcaklıkların tam olarak belirlenmesiyle, sonuca ulaşılması hedeflenmektedir.

Kaynaklar

Armstrong D. J., Gómez Maqueo Chew Y., Faedi F., Pollacco D.,

- 2014, MNRAS, 437, 3473
- Balona L. A., 2015, MNRAS, 447, 2714
- Caldwell D. A., ve diğ., 2010, ApJ, 713, L92
- Cutri R. M., ve diğ., 2003, VizieR Online Data Catalog, p. II/246, $${\rm ADS}$$
- Frasca A., ve diğ., 2016, A&A, 594, A39
- Girardi L., Bressan A., Bertelli G., Chiosi C., 2000, A&AS, 141, 371
- Henden A. A., Levine S., Terrell D., Welch D. L., 2015, in American Astronomical Society Meeting Abstracts #225. p. 336.16
- Høg E., ve diğ., 2000, A&A, 355, L27, ADS
- Ibanoglu C., Çakırlı Ö., Sipahi E., 2018, New Astron., 62, 70
- Jenkins J. M., ve diğ., 2010a, ApJ, 713, L87
- Jenkins J. M., ve diğ., 2010b, in Software and Cyberinfrastructure for Astronomy. p. 77400D, doi:10.1117/12.856764
- Kamil C., Dal H. A., 2017, Publ. Astron. Soc. Australia, 34, e029
- Kaya N. Ö., Dal H. A., 2019, Astronomische Nachrichten, 340, 539
- Koch D. G., ve diğ., 2010, ApJ, 713, L79
- Kwee K. K., van Woerden H., 1956, Bull. Astron. Inst. Netherlands, 12, 327, ADS
- Lenz P., Breger M., 2005, Communications in Asteroseismology, 146, 53
- Lucy L. B., 1967, Z. Astrophys., 65, 89, ADS
- Matijevič G., Prša A., Orosz J. A., Welsh W. F., Bloemen S., Barclay T., 2012, AJ, 143, 123
- Morris S. L., 1985, ApJ, 295, 143
- Morton T. D., Bryson S. T., Coughlin J. L., Rowe J. F., Ravichandran G., Petigura E. A., Haas M. R., Batalha N. M., 2016, ApJ, 822, 86
- Prša A., Zwitter T., 2005, ApJ, 628, 426
- Rolland A., Costa V., Rodriguez E., Amado P. J., Garcia-Pelayo J. M., Lopez de Coca P., Olivares I., 2002, Communications in Asteroseismology, 142, 57, ADS
- Ruciński S. M., 1969, Acta Astron., 19, 245, ADS
- Scargle J. D., 1982, ApJ, 263, 835
- Slawson R. W., ve diğ., 2011, AJ, 142, 160
- Soydugan E., Soydugan F., Demircan O., İbanoğlu C., 2006, MNRAS, 370, 2013
- Tokunaga A. T., 2000, in Cox A. N., ed., , Allen's Astrophysical Quantities. Springer, p. 143
- Uytterhoeven K., ve diğ., 2011, A&A, 534, A125
- Watson C. L., Henden A. A., Price A., 2006, Society for Astronomical Sciences Annual Symposium, 25, 47, ADS
- Wilson R. E., Devinney E. J. J., 2015, ApJ, 807, 80
- van Hamme W., 1993, <mark>AJ</mark>, 106, 2096

Access:

M23-0328: Turkish J.A&A — Vol.4, Issue 3.