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Abstract

In this paper, the integral problem for linear and nonlinear wave equations are studied.The equation involves

elliptic operator L and abstract operator A in Hilbert space H. Here, assuming enough smoothness on

the initial data in terms of interpolation spaces, integral condition, the assumptions on operators A, L the

existence, uniqueness of local and global solution, and Lp-regularity properties to solutions are established.

By choosing the space H and operators L, A the regularity properties to solutions of di�erent classes of wave

equations in the �eld of physics are obtained.
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1. Introduction, De�nitions and Background

The aim here, is to study the existence, uniqueness, regularity properties to solutions of the integral

problem (IP) for the following abstract wave equat�on (WE)

utt − Lu+Au = f (u) , (x, t) ∈ Rn
T = Rn × (0, T ) , (1.1)

u (x, 0) = φ (x) +

T∫
0

η (σ)u (x, σ) dσ, (1.2)
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ut (x, 0) = ψ (x) +

T∫
0

β (σ)ut (x, σ) dσ,

where A is a linear and f(u) is a nonlinear operators in a Hilbert space H, η (σ), β (σ) are measurable

functions on (0, T ) and T ∈ (0, ∞]. Here, L denotes the elliptic operator with constant coe�cients aij
de�ned by

Lu =
n∑

i,j=1

aij
∂2u

∂xi∂xj
,

φ (x) and ψ (x) are given H-valued initial functions.

Wave type equations occur in a wide variety of physical systems, such as in the propagation of deformation

waves, hydro-dynamical process in plasma, in materials science and in the absence of mechanical stresses

(see [1-14]). Note that, the existence and uniqueness of solutions and regularity properties of a wide class

of wave equations were considered e.g. in [15-22]. Unlike to these studies here, we consider the abstract

wave equation with operator coe�cients. The abstract equations were studied e.g. in [23-32]. This paper

generalises the results obtained in [26] and [32] because the general elliptic operator is involved instead of

the Laplace operator in the leading part of the equation. The Lp well-posedness of the integral problem

(1.1)− (1.2) depends crucially on interpolation spaces that data functions belong, the presence of the linear

operators L, A and nonlinear operator f (u). We �nd the class of operators L and A such that provide the

existence, uniqueness, Lp-regularity properties to solution (1.1) − (1.2) in terms of fractional powers of A.
By choosing the space H, operators L and A in (1.1)− (1.2), we obtain the wide classes of wave equations

which occur in application. Let we put H = L2 (0, 1) and consider the operator A = A1 de�ned by

D (A1) =W [2],2 (0, 1, Lk) , A1u = b1u
[2] + b0u, (1.3)

Lku = αku
[mk] (0) + βku

[mk] (1) = 0, k = 1, 2,

where b1 (.), b0 (.) are complex-valued functions, D
[j]
y u = u[j] =

(
yκ d

dy

)j
u, mk ∈ {0, 1} , αk, βk are complex

numbers.

Here, W [2],2 (0, 1) is a weighted Sobolev space de�ned by

W [2],2 (0, 1) = {u u ∈ L2 (0, 1) , u[2] ∈ L2 (0, 1) ,

∥u∥W [2],2(0,1) = ∥u∥L2(0,1) +
∥∥∥u[2]∥∥∥

L2(0,1)
<∞.

Moreover,

W [2],2 (0, 1, Lk) =
{
u u ∈W [2],2 (0, 1) , Lku = 0

}
.

Consider the integral nonlocal mixed problem for degenerate WE

∂2u

∂t2
− Lu+

(
A2

1 + ω
)
u = f (u) , t ∈ (0, T ) , x ∈ Rn, (1.4)

u (x, y, 0) = φ (x, y) +

T∫
0

η (σ)u (x, y, σ) dσ,

ut (x, y, 0) = ψ (x, y) +

T∫
0

β (σ)ut (x, y, σ) dσ,
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αku
[mk] (x, 0, t) + βku

[mk] (x, 1, t) = 0, k = 1, 2,

where ω is a positive number. From our results, we obtain the existence, uniqueness and regularity properties

to solutions of (1.4) in Lp (Rn × (0, 1)) with terms of fractional powers of the operator A1 and interpolation

of spaces L2 (0, 1) andW [2],2 (0, 1). Let p =(2, p, p) and Lp (Rn × (0, 1)) denotes the space of all p-summable

complex-valued measurable functions f de�ned on Ω with the mixed norm

∥f∥Lp(⩽̸) =

∫
Rn

T∫
0

 1∫
0

|f (x, y, t)|p1 dy


2
p1

dxdt


1
2

<∞.

Let us put H = L2
(
Rd

)
and choose A2 as a convolution operator de�ned by

D (A2) =W 2l,p1
(
Rd

)
, Au =

∑
|α|≤2l

aα ∗Dαu, (1.5)

here, l is a positive integer, aα = aα (y) are complex-valued function and (aα ∗Dαu) (y) denote the convolu-
tion of aα and Dαu. From the our Theorem 3.1, we get the Lp

(
Rn+d

)
-well-posedeness of integral problem

for the following convolution wave equation

∂2u

∂t2
− Lu+

(
A2

2 + ω
)
u = f (u) , t ∈ (0, T ) , x ∈ Rn, (1.6)

u (x, y, 0) = φ (x, y) +

T∫
0

η (σ)u (x, y, σ) dσ,

ut (x, y, 0) = ψ (x, y) +

T∫
0

β (σ)ut (x, y, σ) dσ.

Let E be a Banach space. Lp (Ω;E) denotes the space of strongly measurable E-valued functions that

are de�ned on the measurable subset Ω ⊂ Rn with the norm

∥f∥p = ∥f∥Lp(Ω;E) =

∫
Ω

∥f (x)∥pE dx

 1
p

, 1 ≤ p <∞,

∥f∥L∞(Ω;E) = ess sup
x∈Ω

∥f (x)∥E .

Let E1 and E2 be two Banach spaces. (E1, E2)θ,p for θ ∈ (0, 1), p ∈ [1,∞] denotes the real interpolation
spaces de�ned by K-method [33, �1.3.2]. Let E1 and E2 be two Banach spaces. B (E1, E2) will denote the
space of all bounded linear operators from E1 to E2. For E1 = E2 = E it will be denoted by B (E) .

Here,

Sϕ = {λ ∈ C, λ ̸= 0, |arg λ| ≤ ϕ, 0 ≤ ϕ < π} .

A closed linear operator A is said to be ϕ-sectorial (or sectorial) in a Banach space E with bound M > 0
if D (A) and R (A) are dense on E, N (A) = {0} and∥∥∥(A+ λI)−1

∥∥∥
B(E)

≤M |λ|−1
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for any λ ∈ Sϕ, 0 ≤ ϕ < π, where I is the identity operator in E, D (A) and R (A) denote domain and range

of the operator A, respectively. It is known that (see e.g.[33, �1.15.1]) there exist fractional powers Aθ of a

sectorial operator A. Let E
(
Aθ

)
denote the space D

(
Aθ

)
with the graphical norm

∥u∥E(Aθ) =
(
∥u∥p +

∥∥∥Aθu
∥∥∥p) 1

p
, 1 ≤ p <∞, 0 < θ <∞.

A sectorial operator A (ξ) is said to be uniformly sectorial in E for ξ ∈ Rn if D (A (ξ)) is independent of ξ
and the following uniform estimate ∥∥∥(A+ λI)−1

∥∥∥
B(E)

≤M |λ|−1

holds for any λ ∈ Sϕ.
A function Ψ ∈ L∞(Rn) is called a Fourier multiplier from Lp(Rn;E) to Lq(Rn;E) if the map P :

u→ F−1Ψ(ξ)Fu is well de�ned for u ∈ S(Rn;E) and extends to a bounded linear operator

Let E be a Banach space. S = S(Rn;E) denotes E-valued Schwartz class, i.e. the space of all E-
valued rapidly decreasing smooth functions on Rn equipped with its usual topology generated by seminorms.

S(Rn;C) denoted by S. Let S′(Rn;E) denote the space of all continuous linear functions from S into

E, equipped with the bounded convergence topology. Recall S(Rn;E) is norm dense in Lp(Rn;E) when

1 ≤ p < ∞. Let m be a positive integer. Wm,p (Ω;E) denotes an E-valued Sobolev space of all functions

u ∈ Lp (Ω;E) that have the generalized derivatives ∂mu
∂xm

k
∈ Lp (Ω;E) with the norm

∥u∥Wm,p(Ω;E) = ∥u∥Lp(Ω;E) +
n∑

k=1

∥∥∥∥∂mu∂xmk

∥∥∥∥
Lp(Ω;E)

<∞.

Let W s,p (Rn;E) denotes the fractional Sobolev space of order s ∈ R, that is de�ned as:

Hs,p (E) = Hs,p (Rn;E) = {u ∈ S′(Rn;E),

∥u∥Hs,p(E) =

∥∥∥∥F−1
(
I + |ξ|2

) s
2
û

∥∥∥∥
Lp(Rn;E)

<∞

}
.

It clear that H0,p (Rn;E) = Lp (Rn;E). Let E0, E be two Banach spaces and E0 is continuously and densely

embedded into E. Here, Hs,p (Rn;E0, E) denote the Sobolev-Lions type space i.e.,

Hs,p (Rn;E0, E) = {u ∈ Hs,p (Rn;E) ∩ Lp (Rn;E0) ,

∥u∥Hs,p(Rn;E0,E) = ∥u∥Lp(Rn;E0)
+ ∥u∥Hs,p(Rn;E) <∞

}
.

In a similar way, we de�ne the following Sobolev-Lions type space:

W 2,s,p (Rn
T ;E0, E) = {u ∈ Lp (Rn

T ;E0) , ∂
2
t u ∈ Lp (Rn

T ;E) ,

F−1
x

(
I + |ξ|2

) s
2
û ∈ Lp (Rn

T ;E) , ∥u∥W 2,s,p(Rn
T ;E0,E) =

∥u∥Lp(Rn
T ;E0) +

∥∥∂2t u∥∥Lp(Rn
T ;E) +

∥∥∥∥F−1
x

(
I + |ξ|2

) s
2
û

∥∥∥∥
Lp(Rn

T ;E)
<∞

}
.

Let L∗
q (E) denote the space of all E-valued function space such that

∥u∥L∗
q(E) =

 ∞∫
0

∥u (t)∥qE
dt

t

 1
q

<∞, 1 ≤ q <∞, ∥u∥L∗
∞(E) = sup

0<t<∞
∥u (t)∥E .
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Let s > 0. Fourier-analytic representation of E-valued Besov space on Rn are de�ned as:

Bs
p,q (Rn;E) =

{
u ∈ S

′
(Rn;E) ,

∥u∥Bs
p,q(Rn;E) =

∥∥∥∥∥F−1
n∑

k=1

tκ−s
(
1 + |ξ|2

)κ
2
e−t|ξ|2Fu

∥∥∥∥∥
L∗
q(L

p(Rn;E))

,

p ∈ (1,∞) , q ∈ [1,∞] , κ > s} .

It should be note that, the norm of Besov space does not depends on κ, (see e.g. [33, � 2.3] for E = C ).

Let A be a sectorial operator in Hilbert space H. Here,

Xp = Lp (Rn;H) , Xp (A
γ) = Lp (Rn;H (Aγ)) , 1 ≤ p, q ≤ ∞,

Y s,p = Y s,p (H) = Hs,p (Rn;H) , Y s,p
q (H) = Y s,p (H) ∩Xq,

∥u∥Y s,p
q

= ∥u∥Hs,p(Rn;H) + ∥u∥Xq
<∞,

Hs,p (Aγ) = Hs,p (Rn;H (Aγ)) , 0 < γ ≤ 1,

Y s,p = Y s,p (A,H) = Hs,p (Rn;H (A) , H) , Y 2,s,p = Y 2,s,p (A,H) =

W 2,s,p (Rn
T ;H (A) , H) , Y s,p

q (A;H) = Y s,p (H) ∩Xq (A) ,

∥u∥Y s,p
q (A,H) = ∥u∥Y s,p(H) + ∥u∥Xq(A) <∞,

H0p = (Y s,p (A,H) , Xp) 1
2p

,p , H1p = (Y s,p (A,H) , Xp) 1+p
2p

,p ,

where (Y s,p, Xp)θ,p denotes the real interpolation space between Y s,p and Xp for θ ∈ (0, 1), p ∈ [1,∞] (see
e.g. [33, �1.3]).

Remark 1.1. By Fubini's theorem we get

Lp (Rn
T ;H) = Lp (0, T ;Xp) for Xp = L,p (Rn;H) .

Then by de�nition of spaces Y 2,s,p, Y s,p = Hs,p (Rn;H (A) , H) and Xp we have

Y 2,s,p =
{
u: u ∈W 2,p (0, T ;Y s,p, Xp) , ∥u∥W 2,p(0,T ;Y s,p,Xp)

=

∥u∥Lp(0,T ;Y s,p) +
∥∥∥u(2)∥∥∥

Lp(0,T ;Xp)

}
.

By J. lions-J. Peetre result (see e.g. [33, �1.8.2]) the trace operator u→ ∂iu
∂ti

(., t0) is bounded from Y 2,s,p

into

(Y s,p, Xp)θj ,p , θj =
1 + jp

2p
, j = 0, 1.

Moreover, if u (x, .) ∈ (Y s,p, Xp)θj ,p, then under some assumptions that will be stated in Section 3,

f (u) ∈ H for all x, t ∈ Rn
T and the map u → f (u) is bounded from (Y s,p, Xp, ) 1

2p
,p into H. Hence, the

nonlinear equation (1.1) is satis�ed in the H�lbert space H. Here, H (A) denotes a domain of A �n H
equipped with graphical norm.

Sometimes we use one and the same symbol C without distinction in order to denote positive constants

which may di�er from each other even in a single context. When we want to specify the dependence of such

a constant on a parameter, say α, we write Cα. Moreover, for u, υ > 0 the relations u ≲ υ, u ≈ υ means

that there exist positive constants C, C1, C2 independent on u and υ such that, respectively

u ≤ Cυ, C1υ ≤ u ≤ C2υ.
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The paper is organized as follows: In Section 1, some de�nitions and background are given. In Section

2, we obtain the existence of unique solution and a priory estimates for solution of the linearized problem

(1.1)− (1.2). In Section 3, we show the existence and uniqueness of local and global strong solution of the

problem (1.1)− (1.2). In the Section 4, we show some applications of our general results in abstract spaces

Lp (Rn;H) .
Sometimes we use one and the same symbol C without distinction in order to denote positive constants

which may di�er from each other even in a single context. When we want to specify the dependence of such

a constant on a parameter, say h, we write Ch.

2. Estimates for linearized equation

In this section, we make the necessary estimates to solutions of the integral problem for linear WE

utt − Lu+Au = g (x, t) , x ∈ Rn, t ∈ (0, T ) , T ∈ (0, ∞] , (2.1)

u (x, 0) = φ (x) +

T∫
0

η (σ)u (x, σ) dσ, (2.2)

ut (x, 0) = ψ (x) +

T∫
0

β (σ)ut (x, σ) dσ,

where A is a linear operator in a Hilbert space H and η (s), β (s) are measurable functions on (0, T ).
Condition 2.0. Let aij ∈ C. Suppose

L (ξ) =
n∑

i,j=1

aijξiξj ̸= 0,

L (ξ) ∈ S (ϕ1) for ϕ1 ∈ [0, π ), ξ ∈ Rn and

|L (ξ)| ≥ C |ξ|2

for a positive constant C.
Remark 2.1. By properties of real interpolation of Banach spaces and interpolation of the intersection

of the spaces (see e.g. [33, �1.3]) we obtain

H0p = (Y s,p (A,H) ∩Xp, Xp) 1
2p

,p =

(Y s,p (H) , Xp) 1
2p

,p ∩ (Xp (A) , Xp) 1
2p

,p =

H
s
(
1− 1

2p

)
,p
(Rn;H) ∩ Lp

(
Rn; (H (A) , H) 1

2p
,p

)
=

H
s
(
1− 1

2p

)
,p
(
Rn; (H (A) , H) 1

2p
,p , H

)
.

In a similar way, we have

H1p = (Y s,p (A,H) ∩Xp, Xp) 1+p
2p

,p = H
s(p−1)

2p
,p
(
Rn; (H (A) , H) 1+p

2p
,p , H

)
.

Remark 2.2. Let A be a sectorial operator in a Banach space E. In view of interpolation of sectorial

operators (see e.g.[33, �1.8.2]) we have the following relation

E
(
A1−θ+ε

)
⊂ (E (A) , E)θ,p ⊂ E

(
A1−θ−ε

)
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for 0 < θ < 1 and 0 < ε < 1− θ.
We assume that A is a sectorial operator in a Hilbert space H. Let A be a generator of a strongly

continuous cosine operator function in a Banach space H de�ned by formula

C (t) = CA (t) =
1

2

(
eitA

1
2 + e−itA

1
2

)
(see e.g. [23, �11] or [24, � 3]). Then, from the de�nition of sine operator-function S (t) we have

S (t) = SA (t) =

t∫
0

C (σ) dσ, i.e. S (t) =
1

2i
A− 1

2

(
eitA

1
2 − e−itA

1
2

)
.

Condition 2.1. Assume:(1)∣∣∣∣∣∣1 +
T∫
0

η (σ)β (σ) dσ

∣∣∣∣∣∣ >
T∫
0

(|η (σ)|+ |β (σ)|) dσ; (2.3)

(2) A is a ϕ-sectorial operator in the Hilbert space H for 0 ≤ ϕ < π and A is a generator of a cosine function;

(3) ∥Aνu∥ ≲
∥∥Aθu

∥∥ for 0 ≤ ν ≤ θ and u ∈ D
(
Aθ

)
; (4) Condition 2.0 holds; (5) φ ∈ H0p and ψ ∈ H1p.

De�nition 1.1. Let T > 0, φ ∈ H0p and ψ ∈ H1p. The function u ∈ C ([0, T ] ;Y s,p
1 (A)) satis�es of the

problem (1.1)− (1.2) is called the continuous solution or the strong solution of (1.1)− (1.2). If T <∞, then

u (x, t) is called the local strong solution of (1.1)− (1.2). If T = ∞, then u (x, t) is called the global strong

solution of (1.1)− (1.2).
First we need the following lemmas:

Lemma 2.1. Let the Condition 2.1 holds. Then, problem (2.1)− (2.2) has a solution.

Proof. By using of the Fourier transform, we get from (2.1)− (2.2):

ûtt (ξ, t) +ALû (ξ, t) = ĝ (ξ, t) , (2.4)

û (ξ, 0) = φ̂ (ξ) +

T∫
0

η (σ) û (ξ, σ) dσ, (2.5)

ût (ξ, 0) = ψ̂ (ξ) +

T∫
0

β (σ) ût (ξ, σ) dσ,

where û (ξ, t) is a Fourier transform of u (x, t) in x, φ̂ (ξ), ψ̂ (ξ) are Fourier transform of φ and ψ, respectively
and

AL = AL (ξ) = [A+ L (ξ)]
1
2 , ξ ∈ Rn.

Consider �rst, the Cauchy problem

ûtt (ξ, t) +A2
Lû (ξ, t) = ĝ (ξ, t) , (2.6)

û (ξ, 0) = u0 (ξ) , ût (ξ, 0) = u1 (ξ) , ξ ∈ Rn, t ∈ [0, T ] ,

where u0 (ξ), u1 (ξ) ∈ D (A) for ξ ∈ Rn.

By Condition 2.0, in view of the assumptions (2), (3) and by [27, Lemma 2.3], we get the following

estimate ∥∥∥[A+ L ((ξ)) + λ]−1
∥∥∥
B(H)

≲ |L (ξ) + λ|−1 ≲
(
|ξ|2 + |λ|

)−1
≲ |λ|−1 ,
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uniformly in ξ ∈ Rn for λ ∈ S (ϕ2) and ξ ∈ Rn with 0 < ϕ1 + ϕ2 ≤ ϕ < π for ϕ2 >
π
2 , i.e. A + L (ξ) is

uniform sectorial operator. Hence, in view [33, �1.15] the operator AL (ξ) is sectorial in H. Then, by virtue

of [23, �11.2, 11.4] from here, we obtain that AL is a generator of a strongly continuous cosine operator

function and the Cauchy problem (2.6) has a unique solution for all ξ ∈ Rn. Moreover, the solution of (2.6)
can be expressed as

û (ξ, t) = C (t)u0 (ξ) + S (t)u1 (ξ) +

t∫
0

S (ξ, t− τ,A) ĝ (ξ, τ) dτ , t ∈ (0, T ) , (2.7)

where C (t) is a cosine and S (t) is a sine operator-functions generated by AL, i.e.

C (t) = C (ξ, t, A) =
1

2

(
eitAL + e−itAL

)
,

S (t) = S (ξ, t, A) =
1

2i
A−1

L

(
eitAL − e−itAL

)
.

Using the formula (2.7) and the �rst integral condition in (2.5), we have

u0 (ξ) = φ̂ (ξ) +

T∫
0

η (σ) [C (σ)u0 (ξ) + S (σ)u1 (ξ)] dσ+

T∫
0

T∫
0

η (σ)S (ξ, σ − τ,A) ĝ (ξ, σ) dτdσ, τ ∈ (0, T ) ,

i.e. we obtain the �rst equation with respect to u0 (ξ), u1 (ξ):

b10 (ξ)u0 (ξ) + b11 (ξ)u1 (ξ) = g10 (ξ) , (2.8)

where

b10 (ξ) =

1− T∫
0

η (σ)C (σ) dσ

 , b11 (ξ) =

T∫
0

η (σ)S (σ) dσ,

g10 (ξ) = φ̂ (ξ) +

T∫
0

T∫
0

η (σ)S (ξ, σ − τ,A) ĝ (σ, ξ) dτdσ.

Di�erentiating both sides of formula (2.7) and using the seconf integral condition (2.5), we have

u1 (ξ) = ψ̂ (ξ)−
T∫
0

β (σ)
[
A2

LS (σ)u0 (ξ) + C (σ)u1 (ξ)
]
+

T∫
0

T∫
0

β (σ)C (ξ, σ − τ,A) ĝ (ξ, σ) dτdσ,

i.e. we get the second equation with respect to u0 (ξ), u1 (ξ):

b20 (ξ)u0 (ξ) + b21 (ξ)u1 (ξ) = g20 (ξ) , (2.9)
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where

b20 (ξ) = −
T∫
0

β (σ)A2
LS (σ) dσ, b21 (ξ) =

T∫
0

β (σ) [1− C (σ)] dσ,

g20 (ξ) = ψ̂ (ξ) +

T∫
0

T∫
0

β (σ)C (ξ, σ − τ,A) ĝ (ξ, σ) dτdσ.

Now, we consider the system of equations (2.8)-(2.9) in u0 (ξ) and u1 (ξ). By assumption (2.3) and due to

uniformly boundedness of A−1
L , we get that the operator function

D (ξ) =

∣∣∣∣ b10 (ξ) b11 (ξ)
b20 (ξ) b21 (ξ)

∣∣∣∣ =
I − T∫

0

η (σ)C (σ) dσ

 T∫
0

β (σ) [1− C (σ)] dσ

−

 T∫
0

η (σ)S (σ) dσ

− T∫
0

β (σ)A2
LS (σ) dσ


has a bounded inverse D−1 (ξ) for all ξ ∈ Rn. By solving the system (2.8)-(2.9), we have

u0 (ξ) = D1 (ξ)D
−1 (ξ) , u1 (ξ) = D2 (ξ)D

−1 (ξ) , (2.10)

D1 (ξ) = b21 (ξ) g10 (ξ)− b11 (ξ) g20 (ξ) ,

D2 (ξ) = b10 (ξ) g20 (ξ)− b20 (ξ) g10 (ξ) .

By substituting the values u0 (ξ) and u1 (ξ) in (2.7), we obtain

û (ξ, t) = C (ξ, t)D1 (ξ)D
−1 (ξ) + S (ξ, t)D2 (ξ)D

−1 (ξ) +

t∫
0

S (ξ, t− τ) ĝ (ξ, τ) dτ, (2.11)

i.e. problem (2.1)− (2.2) has a solution

u (x, t) = C1 (t)φ+ S1 (t)ψ +Qg, (2.12)

where C1 (t), S1 (t), Q are linear operator functions de�ned by

C1 (t)φ = F−1
[
C (ξ, t)D1 (ξ)D

−1 (ξ)
]
φ̂ (ξ) ,

S1 (t)ψ = F−1
[
S (ξ, t)D2 (ξ)D

−1 (ξ)
]
ψ̂ (ξ) ,

Qg = F−1Q̃ (ξ, t) , Q̃ (ξ, t) =

t∫
0

F−1 [S (ξ, t− τ) ĝ (ξ, τ)] dτ.

Theorem 2.1. Assume the Condition 2.1 holds and

s >
2pn

(2p− 1) q
(2.13)

for p ∈ [1,∞] and for a q ∈ [1, 2]. Let 0 ≤ α < 1− 1
2p . Then for φ ∈ H0p ∩X1 (A

α), ψ ∈ H1p ∩X1

(
Aα− 1

2

)
,

g (., t) ∈ Y s,p
1 and g (x, .) ∈ L1 (0, T ;Y s,p

1 ) for x ∈ Rn with t ∈ [0, T ] problem (2.1) − (2.2) has a unique

solution u(x, t) ∈ C ([0, T ] ;X∞ (A)) and the following estimate holds

∥Aαu∥X∞
≤ C0

[
∥φ∥H0p

+ ∥Aαφ∥X1
+ (2.14.1)
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∥ψ∥H1p
+
∥∥∥Aα− 1

2ψ
∥∥∥
X1

+

t∫
0

(
∥g (., τ)∥Y s,p

1
+ ∥g (., τ)∥X1

)
dτ

 ,
uniformly in t ∈ [0, T ], where the constant C0 > 0 depends only on A, the space H and initial data.

Moreover, for φ ∈ H0p∩X1

(
Aα+ 1

2

)
, ψ ∈H1p∩X1 (A

α), g (., t) ∈ Y s,p
1

(
A

1
2

)
and g (x, .) ∈ L1

(
0, T ;Y s,p

1

(
A

1
2

))
for x ∈ Rn the following estimate holds

∥Aαut∥X∞
≤ C0

[
∥φ∥H0p

+
∥∥∥Aα+ 1

2φ
∥∥∥
X1

+ (2.14.2)

∥ψ∥H1p
+ ∥Aαψ∥X1

+

t∫
0

(∥∥∥A 1
2 g (., τ)

∥∥∥
Y s,p
1

+
∥∥∥A 1

2 g (., τ)
∥∥∥
X1

)
dτ

 .
Proof. By Lemma 2.1, the problem (2.1)− (2.2) has a solution for φ ∈ H0p, ψ ∈ H1p and g (., t) ∈ Y s,p

1 .

Let N ∈ N and

ΠN = {ξ : ξ ∈ Rn, |ξ| ≤ N} , Π′
N = {ξ : ξ ∈ Rn, |ξ| ≥ N} .

From (2.12) we deduced that

∥Aαu∥X∞
≲

∥∥F−1C (ξ, t)AαD1 (ξ)D
−1 (ξ) φ̂ (ξ)

∥∥
L∞(ΠN )

+ (2.15)∥∥∥F−1S (ξ, t)AαD2 (ξ)D
−1 (ξ) ψ̂ (ξ)

∥∥∥
L∞(ΠN )

+
∥∥F−1C (ξ, t)AαD1 (ξ)D

−1 (ξ) φ̂ (ξ)
∥∥
L∞(Π′

N)
+

∥∥∥F−1S (ξ, t)AαD2 (ξ)D
−1 (ξ) ψ̂ (ξ)

∥∥∥
L∞(Π′

N)
+

∥∥∥∥∥∥F−1Aα

t∫
0

Q̃ (ξ, t) ĝ (ξ, τ) dτ

∥∥∥∥∥∥
L∞(ΠN )

+

∥∥∥∥∥∥F−1Aα

t∫
0

Q̃ (ξ, t) ĝ (ξ, τ) dτ

∥∥∥∥∥∥
L∞(Π′

N)

.

By virtue of Remakes 2.1, 2.2 and the properties of sectorial operators, we have∥∥∥F−1AαQ̃ (ξ, t) ĝ (ξ, τ)
∥∥∥
L∞(ΠN )

≤ C ∥g∥X1
.

Hence, due to uniform boundedness of operator functions C (ξ, t), S (ξ, t) by (2.3), in view of (2.8)−(2.10)
and by Minkowski's inequality for integrals, we get the following uniform estimate∥∥F−1C (ξ, t)AαD1 (ξ)D

−1 (ξ) φ̂ (ξ)
∥∥
L∞(ΠN )

+
∥∥∥F−1S (ξ, t)AαD2 (ξ)D

−1 (ξ) ψ̂ (ξ)
∥∥∥
L∞(ΠN )

≲

[
∥Aαφ∥X1

+ ∥Aαψ∥X1
+ ∥g∥X1

]
. (2.16)

Let

Φ0 (ξ) =

[
A

1− 1
2p

+ε0 +
(
1 + |ξ|2

) s
2

(
1− 1

2p

)]−1

, 0 < ε0 <
1

2p
, (2.17)

Φ1 (ξ) =

[
A

1
2
− 1

2p
+ε1 +

(
1 + |ξ|2

) s
2

(
1
2
− 1

2p

)]−1

, 0 < ε1 <
1

2
+

1

2p
.
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By using the resolvent properties of sectorial operators, for for 0 ≤ α < 1− 1
2p and in view of the assumption

(3), we have

∥AαC (ξ, t) Φ0 (ξ)∥B(H) ≲

∥∥∥∥AαA
−
(
1− 1

2p

)
A

1− 1
2pΦ0 (ξ)

∥∥∥∥
B(E)

≲ (2.18)∥∥∥∥A(
1− 1

2p

)
Φ0 (ξ)

∥∥∥∥
B(H)

≤ C for 0 ≤ α < 1− 1

2p
,

∥AαS (ξ, t) Φ1 (ξ)∥B(H) ≲
∥∥∥A1− 1

2pΦ1 (ξ)
∥∥∥
B(E)

≤ C.

Let L∞ = L∞ (Ω;H) and

l =
s

2

(
1− 1

2p

)
.

In view of (2.17) it is clear that∥∥F−1C (ξ, t)AαD1 (ξ)D
−1 (ξ) φ̂ (ξ)

∥∥
Π′

N
+
∥∥∥F−1S (ξ, t)AαD2 (ξ)D

−1 (ξ) ψ̂ (ξ)
∥∥∥
Π′

N

+

∥∥∥F−1S (ξ, t)AαQ̃ (ξ, t) ĝ (ξ, τ)
∥∥∥
Π′

N

≲∥∥∥∥F−1
(
1 + |ξ|2

)− l
2
C (ξ, t)AαΦ0φ̂ (ξ)

∥∥∥∥
L∞

+ (2.19)∥∥∥∥F−1
(
1 + |ξ|2

)− l
2
S (ξ, t)AαΦ1ψ̂ (ξ)

∥∥∥∥
L∞

+∥∥∥∥F−1
(
1 + |ξ|2

)− l
2
S (ξ, t)

(
1 + |ξ|2

) l
2
AαQ̃ (ξ, t) ĝ (ξ, τ)

∥∥∥∥
L∞

.

Then by calculating ∂
∂ξk

Φ0 (ξ),
∂

∂ξk
Φ1 (ξ), we obtain

Aα ∂

∂ξk
Φ0 (ξ) ∈ B (H) , Aα ∂

∂ξk
Φ1 (ξ) ∈ B (H) .

Let we show that Gi (., t), Φi ∈ B
n
(

1
q
+ 1

p

)
q,1 (Rn;B (H)) for some q ∈ [1, 2] and for all t ∈ [0, T ], where

Gi (ξ, t) =
(
1 + |ξ|2

)− l
2
C (ξ, t)D1 (ξ)D

−1 (ξ) Φi (ξ) ,

Πi (ξ, t) =
(
1 + |ξ|2

)− l
2
S (ξ, t)D1 (ξ)D

−1 (ξ) Φi (ξ) , i = 0, 1.

By embedding properties of Sobolev and Besov spaces it su�cient to derive that Gi ∈ W σ,q (Rn;B (H))

for an integer σ with σ ≥ n
(
1
q +

1
p

)
. Indeed by by Condition 2.1 and by (2.18), (2.19) we get, Gi, Πi ∈

Lq (Rn;B (H)). For deriving the embedd�ng relat�ons Gi, Πi ∈W σ,q (Rn;B (H)), it su�cient to show

Dν
ξGi (., t) , D

ν
ξΠi (., t) ∈ Lσ (Rn;B (H)) for ν = (ν1, ν2, ..., νn) with |ν| ≤ σ, t ∈ [0, T ] .

Indeed, by Condition 2.1 and by (2.18), (2.19) we have the following uniform estimates∥∥∥∥ ∂

∂ξk
Gi (., t)

∥∥∥∥ ≲ ξk

(
1 + |ξ|2

)− l
2
−1

∥C (ξ, t) Φi (ξ)∥+
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(
1 + |ξ|2

)− l
2

[∥∥∥∥ALC (t) Φi (ξ)
∂

∂ξk
L (ξ)

∥∥∥∥ +

∥∥∥∥C (ξ, t)
∂

∂ξk
Φi (ξ)

∥∥∥∥] ≤ C.

Then by again di�erentiating Gi (., t) and by using (2.18), (2.19), we get

Gi (., t) ∈W σ,q (Rn;B (H)) for some q ∈ [1, 2] , i = 0, 1.

In a similar way, we obtain

Πi (., t) ∈W σ,q (Rn;B (H)) for some q ∈ [1, 2] .

Hence, by Fourier multiplier theorems (see e.g. [34, Theorem 4.3]), we found that the functions Gi (ξ, t)
and Πi (ξ, t) are Fourier multipliers from Lp (Rn;H) to L∞ (Rn;H). Then by Minkowski's inequality for

integrals, from (2.3), (2.16)− (2.19) and by Remake 2.3, we have∥∥F−1C (ξ, t)Aαφ̂ (ξ)
∥∥
L∞ +

∥∥∥F−1S (ξ, t)Aαψ̂ (ξ)
∥∥∥
L∞

≲

∥∥F−1C (ξ, t) η−2φ̂
∥∥
L∞ +

∥∥∥F−1S (ξ, t) η−1ψ̂
∥∥∥
L∞

≲

[
∥φ∥H0p

+ ∥ψ∥H1p
+ ∥g∥W s,p

]
. (2.20)

Moreover, by virtue of Remakes 2.1-2.3 and by reasoning as the above, we get the following estimate

∥∥∥F−1AαQ̃ (ξ, t)
∥∥∥
X∞

≤ C

t∫
0

(
∥g (., τ)∥W s,p + ∥g (., τ)∥X1

)
dτ (2.21)

uniformly in t ∈ [0, T ]. Thus, from (2.12), (2.20) and (2.21), we obtain the estimate (2.14.1).
By di�erentiating (2.12) in a similar way, we get the estimate (2.14.2).
Then from (2.22) and (2.23) in view of Remarks 2.1, 2.2 we obtain the estimate (2.14).
Let now, we show that problem (2.1) has a unique solution u ∈ Y (T ). Let's admit it is the opposite. So

let's assume that the problem (2.1) has two solutions u1, u2 ∈ Y (T ). Then by linearity of (2.1), we get that
υ = u1 − u2 is also a solution of the corresponding homogenous equation

utt − Lu+Au = 0, υ (x, 0) = 0, υt (x, 0) = 0, x ∈ Rn, t ∈ (0, T ) .

Moreover, by (2.7) we have the following estimate

∥Aαυ∥X∞
≤ 0.

Since N (A) = {0}, the above estmate implies that υ = 0, i.e. u1 = u2.
Theorem 2.2. Assume the Condition 2.1 and (2.13) are satis�ed. Let 0 ≤ α < 1 − 1

2p . Then φ ∈

Y s,p (Aα), ψ ∈ Y s,p
(
Aα− 1

2

)
, g (., t) ∈ Y s,p for t ∈ [0, T ] and g (x, .) ∈ L1 (0, T ;Y s,p) for x ∈ Rn, we get the

following estimate

∥Aαu∥Y s,p ≤ (2.22.1)

C0

∥Aαφ∥Y s,p +
∥∥∥Aα− 1

2ψ
∥∥∥
Y s,p

+

t∫
0

∥g (., τ)∥Y s,p dτ


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uniformly in t ∈ [0, T ].

Moreover, for φ ∈ Y s,p
(
Aα+ 1

2

)
, ψ ∈ Y s,p (Aα) , g (., t) ∈ Y s,p

(
A

1
2

)
for t ∈ [0, T ] and g (x, .) ∈

L1
(
0, T ;Y s,p

(
A

1
2

))
for x ∈ Rn problem (2.1) − (2.2) has a unique solution u ∈ C ([0, T ] ;Y s,p (A)) and

the following uniform estimate holds

∥Aαut∥Y s,p ≤ (2.22.2)

C0

∥∥∥Aα+ 1
2φ

∥∥∥
Y s,p

+ ∥Aαψ∥Y s,p +

t∫
0

∥∥∥A 1
2 g (., τ)

∥∥∥
Y s,p

dτ

 .
Proof. In view of (2.11) and (2.12), for proving (2.22.1) it is su�cient to show the following uniform

estimate ∥∥∥∥F−1
(
1 + |ξ|2

) s
2
Aαû

∥∥∥∥
Xp

+

∥∥∥∥F−1
(
1 + |ξ|2

) s
2
Aαût

∥∥∥∥
Xp

≤ (2.23)

C0

[∥∥∥∥F−1
(
1 + |ξ|2

) s
2
C (ξ, t)Aαφ̂

∥∥∥∥
Xp

+

∥∥∥∥F−1
(
1 + |ξ|2

) s
2
AαS (ξ, t) ψ̂

∥∥∥∥
Xp

+

t∫
0

∥∥∥∥(1 + |ξ|2
) s

2
AαQ̃ (ξ, t) ĝ (ξ, τ)

∥∥∥∥
Xp

dτ

 .
By using the Fourier multiplier theorem [34, Theorem 4.3] and by reasoning as in Theorem 2.1 we get

that the operator functions(
1 + |ξ|2

)− s
2
C (ξ, t) ,

(
1 + |ξ|2

)− s
2
S (ξ, t) ,

(
1 + |ξ|2

)− s
2
AαS (ξ, t)

are Fourier multipliers in Lp (Rn;H) uniformly with respect to t ∈ [0, T ]. Hence, for φ ∈ Y s,p (Aα),

ψ ∈ Y s,p
(
Aα− 1

2

)
, g (., t) ∈ Y s,p from (2.23) we get the estimate (2.22.1) .

Then by di�erentiating (2.12) in a similar way, for φ ∈ Y s,p
(
Aα+ 1

2

)
, ψ ∈ Y s,p (Aα) , g (., t) ∈ Y s,p

(
A

1
2

)
,

we get the estimate (2.22.2) .
The uniqueness of problem is derived in a similar way as in Therem 2.1.

3. Local well posedness of IVP for nonlinear WE

In this section, we will show the local existence and uniqueness of solution of the nonlinear problem

(1.1)− (1.2).
For this aim we need the following lemmas. By reasoning as in [11, 20, 35], we show the following lemmas

concerning the behaviour of the nonlinear term in H-valued space Y s,p.

Here, we assume that Φ ⊂ W s,p (Ω;H) ∩ L∞ (Ω;H) such that f (u) ∈ H for u ∈ Φ and x ∈ Ω.
Lemma 3.1. Let s ≥ 0, f ∈ C [s]+1 (R;H) with f(0) = 0. Then for any u ∈ Y s,p ∩ L∞, we have

f(u) ∈ Y s,p ∩X∞. Moreover, there is some constant A(M) depending on M such that for all u ∈ Y s,p ∩L∞

with ∥u∥X∞
≤M,

∥f(u)∥Y s,p ≤ C (M) ∥u)∥Y s,p . (3.1)

Proof. For s = 0 in view of f(0) = 0, we get

f (u) =

1∫
0

f (1) (σu) dσ.
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It follows that

∥f (u)∥Xp
≤ C (M) ∥u∥Xp

.

If s is a positive integer, we have

∥f(u)∥Y s,p ≤ C

[
∥f(u)∥Xp

+

n∑
k=1

∥∥∥∥ ∂s

∂xk
f(u)

∥∥∥∥
Xp

]
. (3.2)

By calculation of derivative and applying Holder inequality, we get∥∥∥∥ ∂s∂xi f(u)
∥∥∥∥
Xp

≤
s∑

l=1

∑
α

∥∥∥∥f (l)(u)∂β1u

∂xi

∂β2u

∂xi
...
∂βlu

∂xi

∥∥∥∥
Xp

≤

s∑
l=1

∑
α

∥∥∥f (l)(u)∥∥∥
X∞

l∏
k=1

∥∥∥∥∂βku

∂xi

∥∥∥∥
Xpk

, i = 1, 2, ..., n, (3.3)

where

β = (β1, β2, , , , .βl) , βk ≥ 1, β1 + β2 + ...+ βl = l, pk =
pl

βk
.

Applying Gagliardo-Nirenberg's inequality in E-valued Xp spaces, we have

∥∥∥∥∂βku

∂xi

∥∥∥∥
Xpk

≤ C ∥u∥1−
βk
l

X∞

∥∥∥∥∂su∂xsi

∥∥∥∥
βk
l

Xp

. (3.4)

Hence, from (3.3) and (3.4) we get∥∥∥∥ ∂s∂xi f(u)
∥∥∥∥
Xp

≤ C (M)

∥∥∥∥∂su∂xsi

∥∥∥∥
Xp

. (3.5)

Then combining (3.2), (3.3) and (3.5) we obtain (3.1).
Let s is not integer number and m = [s]. From the above proof, we have

∥f(u)∥Y m,p ≤ C (M) ∥u)∥Y m,p , ∥f(u)∥Y m+1,p ≤ C (M) ∥u)∥Y m+1,p .

Then using interpolation between Wm+1,p and Wm,p yields (3.1) for all s ≥ 0.
By using Lemma 3.1 and properties of convolution operators we obtain

Corollary 3.1. Let s ≥ 0, f ∈ C [s]+1 (R;H) with f(0) = 0. Moreover, assume Φ ∈ L∞ (Rn;B (H)).
Then for any u ∈ Y s,p ∩L∞ we have, f(u) ∈ Y s,p ∩X∞. Moreover, there is some constant A(M) depending
on M such that for all u ∈ Y s,p ∩ L∞ with ∥u∥X∞

≤M,

∥Φ ∗ f(u)∥Y s,p ≤ C (M) ∥u)∥Y s,p .

Lemma 3.2. Let s ≥ 0, f ∈ C [s]+1 (R;H). Then for any M there is some constant K(M) depending on
M such that for all u, υ ∈ Y s,p ∩X∞ with ∥u∥X∞

≤M , ∥υ∥X∞
≤M , ∥u∥Y s,p ≤M , ∥υ∥Y s,p ≤M,

∥f(u)− f(υ∥Y s,p ≤ K (M) ∥u− υ∥Y s,p , ∥f(u)− f(υ∥X∞
≤ K (M) ∥u− υ∥X∞

.

Corollary 3.2. Let s > n
2 , f ∈ C [s]+1 (R;H). Then for any positive M there is a constant K(M)

depending on M such that for all u, υ ∈ Y s,p with ∥u∥Y s,p ≤M , ∥υ∥Y s,p ≤M,

∥f(u)− f(υ∥Y s,p ≤ K (M) ∥u− υ∥Y s,p .
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Lemma 3.3. If s > 0, then Y s,p
∞ is an algebra. Moreover, for f , g ∈ Y s,p

∞ ,

∥fg∥Y s,p ≤ C
[
∥f∥X∞

+ ∥g∥Y s,p + ∥f∥Y s,p + ∥g∥X∞

]
.

By using, the Corollary 3.1 and Lemma 3.3 we obta�n

Lemma 3.4. Let s ≥ 0, f ∈ C [s]+1 (R;H) and f (u) = O
(
|u|γ+1

)
for u→ 0, γ ≥ 1 be a positive integer.

If u ∈ Y s,p
∞ and ∥u∥X∞

≤M , then

∥f(u)∥Y s,p ≤ C (M)
[
∥u∥Y s,p ∥u∥γX∞

]
,

∥f(u)∥X1
≤ C (M) ∥u∥pXp

∥u∥γ−1
X∞

.

Lemma 3.5. Let s ≥ 0, f ∈ C [s]+1 (R;H) and f (u) = O
(
|u|γ+1

)
for u → 0. Moreover, let γ ≥ 0 be a

positive integer. If u, υ ∈ Y s,p
∞ , ∥u∥Y s,p ≤M , ∥υ∥Y s,p ≤M and ∥u∥X∞

≤M , ∥υ∥X∞
≤M , then

∥f(u)− f(υ)∥Y s,p ≤ C (M)
[(
∥u∥X∞

− ∥υ∥X∞

)
(∥u∥Y s,p + ∥υ∥Y s,p)(

∥u∥X∞
+ ∥υ∥X∞

)γ−1
,

∥f(u)− f(υ∥X1
≤ C (M)

(
∥u∥X∞

+ ∥υ∥X∞

)γ−1
(
∥u∥Xp

+ ∥υ∥Xp

)
∥u− υ∥Xp

.

Let H0 denotes the real interpolation space between Y s,p (A,H) and Xp with θ = 1
2p , i.e.

H0p = (Y s,p (A,H) , Xp) 1
2p

,p .

Remark 3.1. By using J. Lions-J. Peetre result (see e.g [33, � 1.8]) we obtain that the map u→ u (t0),
t0 ∈ [0, T ] is continuous and surjective from Y 2,s,p (A,H) onto H0p and there is a constant C1 such that

∥u (t0)∥H0p
≤ C1 ∥u∥Y 2,s,p(A,H) , 1 ≤ p ≤ ∞. (3.6)

Here,

Y0 = Y0 (A) = Y s,p
∞ (A,H) .

First all of, we de�ne the space Y (T ) = C ([0, T ] ;Y0) equipped with the norm de�ned by

∥u∥Y (T ) = max
t∈[0,T ]

[
∥u∥Y s,p(A,H) + ∥u∥X∞

]
, u ∈ Y (T ) .

Condition 3.1. Assume:

(1) the Condition 2.1 holds for s > 2pn
(2p−1)q , p ∈ [1,∞], for a q ∈ [1, 2] and 0 ≤ α < 1− 1

2p ;

(3) the function u→ f (u): continuous from u ∈ H0p into H, f ∈ Ck (R;H) with k an integer, k ≥ s > n
p

and f (u) = O
(
|u|γ+1

)
for u→ 0, γ ≥ 1 be a positive integer.

Main aim of this section is to prove the following results:

Theorem 3.1. Let the Condition 3.1 holds. Then there exists a constant δ > 0 such that for any

φ ∈ H0p ∩X1 (A
α), and ψ ∈ H1p ∩X1 (A

α) satisfying

∥φ∥H0p
+ ∥Aαφ∥X1

+ ∥ψ∥H1p
+ ∥Aαψ∥X1

≤ δ, (3.7)

problem (1.1) − (1.2) has a unique local strong solution u ∈ C ([0, T0) ;Y0), where T0 is a maximal time

interval that is appropriately relative to δ. Moreover, if

sup
t∈[0, T0)

(
∥u∥Y0

+ ∥ut∥Y0

)
<∞ (3.8)
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then T0 = ∞.
Proof. By (2.5), ((2.6)) the problem of �nding a solution u of (1.1) − (1.2) is equivalent to �nding a

�xed point of the mapping

G (u) = C1 (t)φ (x) + S1 (t)ψ (x) +Q (u) , (3.9)

where C1 (t), S1 (t) are de�ned by (2.6) and Q (u) is a map de�ned by

Q (u) = −
t∫

0

F−1
[
U (ξ, t− τ) f̂ (u) (ξ, τ)

]
dτ.

We de�ne the metric space

Q (T,A) =
{
u ∈ Y (T ) , ∥u∥Y (T ) ≤ δ + 1

}
where δ > 0 satis�es (3.7) and C0 is a constant in Theorem 2.1 and 2.2. It is easy to prove that Q (T,A)
is a complete metric space. From imbedding in Sobolev-Lions space Y s,p (A,H) (see e.g. [27] Theorem 1)

and trace result (3.6) we got that ∥u∥X∞
≤ 1 if we take that δ is enough small. For φ ∈ Y0 (A

α) and ψ ∈
Y1 (A

α), let
∥φ∥H0p

+ ∥Aαφ∥X1
+ ∥ψ∥H1p

+ ∥Aαψ∥X1
= δ.

So, we will �nd T and δ so that G is a contraction in Q (T,A). By Theorems 2.1, 2.2 and Corollary 3.3

f (u) ∈ Y s,p
1 . So, problem (1.1)− (1.2) has a solution satis�es the following

G (u) (x, t) = C1 (t)φ+ S1 (t)ψ +Q (u) , (3.10)

where C1 (t), S1 (t) are de�ned by (2.5) and (2.6). By assumptions, it is easy to see that the map G is well

de�ned for f ∈ C [s]+1 (H0p;H). First, let us prove that the map G has a unique �xed point in Q (T,A). For
this aim, it is su�cient to show that the operator G maps Q (T,A) into Q (T,A) and G is strictly contractive

if δ is suitable small. In fact, by (2.7) in Theorem 2.1, Corollary 3.3 and in view of (3.7), we have

∥AαG (u)∥X∞
+ ∥AαGt (u)∥X∞

≤ 2C0

[
∥φ∥H0p

+ ∥Aαφ∥X1
+ (3.11)

∥ψ∥H1p
+ ∥Aαψ∥X1

+

t∫
0

(∥∥∥f̂ ((u))∥∥∥
Y s,p

+
∥∥∥f̂ ((u))∥∥∥

X1

)
dτ

 ≤

2C0δ + C

t∫
0

(
∥u (τ)∥Y s,p ∥u (τ)∥γX∞

+ ∥u (τ)∥pXp
∥u (τ)∥γ−1

X∞

)
dτ ≤

2C0δ + C ∥u∥γ+1
C2,s,p(T,A)

.

On the other hand, by (2.17), Corollary 3.3 and (3.7), we get

(∥AαG (u)∥Y s,p + ∥AαGt (u)∥Y s,p) ≤ (3.12)

2C0

∥φ∥H0p
+ ∥Aαφ∥X1

+ ∥ψ∥H1p
+ ∥Aαψ∥X1

+

t∫
0

∥∥∥f̂ ((u))∥∥∥
Y s,p

dτ

 ≤

2C0δ +

t∫
0

[
∥u (τ)∥Y s,p ∥u (τ)∥γX∞

]
dτ ≤ 2C0δ + C ∥u∥γ+1

C2,s,p(T,A)
.
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Hence, combining (3.11) with (3.12) we obtain

∥AαG (u)∥Y s,p
∞

+ ∥AαGt (u)∥Y s,p
∞

≤ 4C0δ + C ∥u∥γ+1
C2,s,p(T,A)

. (3.13)

So, taking that δ is enough small such that C (5C0δ)
γ < 1

5 , by Theorems 2.1, 2.2 and (3.13), G maps Q (T,A)
into Q (T,A). Now, we are going to prove that the map G is strictly contractive. Let u1, u2 ∈ Q (T,A)
given. From (3.10), we get

G (u1)−G (u2) =

t∫
0

[
S (x, t− τ)

(
f̂ (u1) (τ)− f̂ (u2) (τ)

)]
dτ , t ∈ (0, T ) .

By (2.7) in Theorem 2.1 and Corollary 3.3, we have

∥Aα [G (u1)−G (u2)]∥X∞
+ ∥Aα [G (u1)−G (u2)]t∥X∞

≤ (3.14)

t∫
0

(∥∥∥[f̂ (u1)− f̂ (u2)
]∥∥∥

Y s,p
+
∥∥∥[f̂ (u1)− f̂ (u2)

]∥∥∥
X1

)
dτ ≲

t∫
0

{
∥u1 − u2∥X∞

(∥u1∥Y s,p + ∥u2∥Y s,p)
(
∥u1∥X∞

+ ∥u2∥X∞

)γ−1
+

∥u1 − u2∥Y s,p

(
∥u1∥X∞

+ ∥u2∥X∞

)γ
+(

∥u1∥X∞
+ ∥u2∥X∞

)γ−1 ∥u1 + u2∥Xp
∥u1 − u2∥Xp

}
.

On the other hand, by (2.17) in Theorem 2.2, Corollary 3.3 and (3.7), we get(
∥Aα [G (u1)−G (u2)]∥Y s,p + ∥Aα [G (u1)−G (u2)]t∥Y s,p

)
≤

C

t∫
0

∥∥∥f̂ (u1) (τ)− f̂ (u2) (τ)
∥∥∥
Y s,p

dτ ≤ (3.15)

C

t∫
0

{
∥u1 − u2∥X∞

(∥u1∥Y s,p + ∥u2∥Y s,p)
(
∥u1∥X∞

+ ∥u2∥X∞

)γ−1
+

∥u1 − u2∥Y s,p

(
∥u1∥X∞

+ ∥u2∥X∞

)γ}
dτ.

Combining (3.14) with (3.15) yields
∥G (u1)−G (u2)∥Y (T ) ≤ (3.16)

C
(
∥u1∥Y (T ) + ∥u2∥Y (T )

)γ
∥u1 − u2∥Y (T ) .

Taking δ is enough small, from (3.16) we obtain that G is strictly contractive in Q (T,A). Using the

contraction mapping principle, we get that G (u) has a unique �xed point u (x, t) ∈ Q (T,A) and u (x, t) is
the solution of (1.1)− (1.2). Let us show that this solution is a unique in Y (T ). Let u1, u2 ∈ Y (T ) are two
solution of (1.1)− (1.2). Then for u = u1 − u2, we have

utt − Lu+Au = [f (u1)− f (u2)] . (3.17)
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Hence, by Minkowski's inequality for integrals and by Theorem 2.2 from (3.17), we obtain

∥u1 − u2∥Y s,p ≤ C2 (T )

t∫
0

∥u1 − u2∥Y s,p dτ. (3.18)

From (3.18) and Gronwall's inequality, we have ∥u1 − u2∥Y s,p = 0, i.e. problem (1.1) − (1.2) has a unique

solution in Y (T ). That is, we obtain the �rst part of the assertion. Now, let [0 , T0) be the maximal time

interval of existence for u ∈ Y (T0). It remains only to show that if (3.8) is satis�ed, then T0 = ∞. Assume

contrary that, (3.8) holds and T0 <∞. For T ∈ [0, T0), we consider the following integral equation

υ (x, t) = C1 (t)u (x, T ) + S1 (t)ut (x, T )− (3.19)

t∫
0

F−1
[
S (t− τ, ξ) f̂ (υ) (ξ, τ)

]
dτ, t ∈ (0, T ) .

By virtue of (3.8) for T ′ > T , we have

sup
t∈[0, T )

(
∥u∥Y0

+ ∥ut∥Y0

)
<∞.

By reasoning as a �rst part of theorem and by contraction mapping principle, there is a T ∗ ∈ (0, T0) such
that for each T ∈ [0, T0), the equation (3.19) has a unique solution υ ∈ Y (T ∗). By reasoning as in the �rst

part T ∗ can be selected independently of T ∈ [0, T0). Set T = T0 − T ∗

2 and de�ne

ũ (x, t) =

{
u (x, t) , t ∈ [0, T ]

υ (x, t− T ) , t ∈
[
T, T0 +

T ∗

2

] .

By construction ũ (x, t) is a solution of the problem (1.1) − (1.2) on
[
T, T0 +

T ∗

2

]
and in view of local

uniqueness, ũ (x, t) extends u. This is against to the maximality of [0, T0), i.e we obtain T0 = ∞.

4. Application to degenerate wave equations

Consider the problem (1.4). Let

Xp,2 = Lp
(
Rn;L2 (0, 1)

)
, Y s,p,2 = Hs,p

(
Rn;L2 (0, 1)

)
,

Y s,p,2
q = Hs,p

(
Rn;L2 (0, 1)

)
∩ Lq

(
Rn;L2 (0, 1)

)
,

Y s,p,2 = Hs,p
(
Rn;H2 (0, 1) , L2 (0, 1)

)
, 1 ≤ p ≤ ∞,

H0p,2 =
(
Y s,p

(
A,L2 (0, 1)

)
∩Xp.2, Xp,2

)
1
2p

,p
,

H1p,2 =
(
Y s,p

(
A,L2 (0, 1)

)
∩Xp,2, Xp,2

)
1+p
2p

,p
.

Let ω1 = ω1 (y), ω2 = ω2 (y) be roots of equation b1 (y)ω
2 + 1 = 0. Let

µ (y) =

∣∣∣∣ (−ω1)
m1 α1 β1ω

m1
1

(−ω2)
m2 α2 β2ω

m2
2

∣∣∣∣ , AL = [L (ξ) +A]
1
2 .

Here,

Hip2 = Hip

(
L2 (0, 1)

)
=
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Hs(1−θi),p
(
Rn;L2 (0, 1)

)
∩ Lp

(
Rn;H2(1−θi) (0, 1)

)
,

θi =
1 + ip

2p
, i = 0, 1.

From Theorem 3.1 we obtain the following result

Theorem 4.1. Suppose the the following conditions are satis�ed:

(1) Condition 2.0 holds, 0 ≤ κ < 1− 1
p , 0 ≤ α < 1− 1

2p , p ∈ [1,∞] and µ (y) ̸= 0 for all y ∈ [0, 1];

(2) b1 ∈ C ([0, 1]), b0 is a bounded function on [0, 1], Reωk ̸= 0 and λ
ωk

∈ S (ϕ1) for ϕ1 ∈ [0 π) ,
b1 (0) = b1 (1) , b0 (0) = b0 (1) ;
(3) φ ∈ Y s,p,2

1 , ψ ∈ Y s−1,p,2
1 and f (., t) ∈ Y s,p,2

1 for s > 2pn
(2p−1)q , q ∈ [1, 2] and t ∈ [0, T ] .

(4) the function u → F (u) is continuous in u ∈ H0p2 for x, t ∈ Rn × [0, T ] ; moreover F (u) ∈
C(1)

(
H0p2;L

2 (0, 1)
)
.

Then there exists a constant δ > 0 such that for any φ ∈ H0p2 and ψ ∈ H1p2 satisfying

∥φ∥H0p2
+ ∥Aα

1φ∥X1,2
+ ∥ψ∥H1p2

+ ∥Aα
1ψ∥X1,2

≤ δ,

problem (1.4) has a unique local strong solution u ∈ C ([0, T0) ;Y0 (A1)) if T0 is a maximal time interval

that is appropriately relative to δ. Moreover, if

sup
t∈[0, T0)

(
∥u∥Y0(A1)

+ ∥ut∥Y0(A1)

)
<∞

then T0 = ∞.
Proof. By virtue of [32], L2 (0, 1) is a Fourier type space. By virtue of [30], the operator A1 de�ned by

(1.3) is sectorial in L2 (0, 1) and by virtue of [24, � 3.14, 3.16] the operator A2
1 +ω is a generator of bounded

cosine function in L2 (0, 1). Moreover, by interpolation of Banach spaces [33, � 1.3], we have

H0p,2 =
(
W s,p

(
Rn;H2 (0, 1) , L2 (0, 1)

)
, Lp

(
Rn;L2 (0, 1)

))
1
2p

,p
=

B
s
(
1− 1

2p

)
p,2

(
Rn;H

2l
(
1− 1

2p

)
(0, 1) , L2 (0, 1)

)
.

Then, by using the properties of spaces Y s,p,2, Y s,p,2
∞ , H0p,2 we get that all conditions of Theorem 3.1 are

hold, i,e., we obtain the conclusion.

As a second application, let us consider the problem (1.6). Let

Xp,2 = Lp
(
Rn;L2

(
Rd

))
, Y s,p,2 = Hs,p

(
Rn;L2

(
Rd

))
,

Y s,p,2
q = Hs,p

(
Rn;L2

(
Rd

))
∩ Lq

(
Rn;L2

(
Rd

))
,

Y s,p,2 = Hs,p
(
Rn;H2

(
Rd

)
, L2

(
Rd

))
, 1 ≤ p ≤ ∞,

H0p2 =
(
Y s,p

(
A,L2 (0, 1)

)
∩Xp.2, Xp,2

)
1
2p

,p
,

H1p2 =
(
Y s,p

(
A,L2

(
Rd

))
∩Xp,2, Xp,2

)
1+p
2p

,p
.

Here,

Hip2 = Hip

(
L2

(
Rd

))
=
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Hs(1−θi),p
(
Rn;L2

(
Rd

))
∩ Lp

(
Rn;H2(1−θi)

(
Rd

))
,

θi =
1 + ip

2p
, i = 0, 1.

From Theorem 3.1 we obtain the following result

Theorem 4.2. Suppose the the following conditions are satis�ed:

(1) Condition 2.0 holds, 0 ≤ α < 1− 1
2p , p ∈ [1,∞];

(2) L (ξ) =
∑
|α|≤l

âα(ξ) (iξ)
α ∈ Sφ1 , φ1 ∈ [0, π) for ξ ∈ Rn,

|L (ξ)| ≥ C
n∑

k=1

∣∣âα(l,k)∣∣ |ξk|l, α (l, k) = (0, 0, ..., l, 0, 0, ..., 0), i.e αi = 0, i ̸= k, αk = l;

âα ∈ C(n) (Rn) and

|ξ||β|
∣∣∣Dβ âα(ξ)

∣∣∣ ≤ C1, βk ∈ {0, 1} , 0 ≤ |β| ≤ n;

(3) φ ∈ Y s,p,2
1 , ψ ∈ Y s−1,p,2

1 and f (., t) ∈ Y s,p,2
1 for s > 2pn

(2p−1)q , q ∈ [1, 2] and t ∈ [0, T ] .

(4) the function u → F (u) is continuous in u ∈ H0p,2 for x, t ∈ Rn × [0, T ] ; moreover F (u) ∈
C(1)

(
H0p,2;L

2
(
Rd

))
.

Then there exists a constant δ > 0 such that for any φ ∈ H0p2 and ψ ∈ H1p2 satisfying

∥φ∥H0p2
+ ∥Aα

2φ∥X1,2
+ ∥ψ∥H1p2

+ ∥Aα
1ψ∥X1,2

≤ δ,

problem (1.6) has a unique local strong solution u ∈ C ([0, T0) ;Y0 (A2)), where T0 is a maximal time interval

that is appropriately relative to δ. Moreover, if

sup
t∈[0, T0)

(
∥u∥Y0(A2)

+ ∥ut∥Y0(A2)

)
<∞

then T0 = ∞.
Proof. By virtue of [32], L2

(
Rd

)
is a Fourier type space. By virtue of [30], the operator A1 de�ned by

(1.3) is sectorial in L2 (0, 1) and by virtue of [24, � 3.14, 3.16] the operator A2
1 +ω is a generator of bounded

cosine function in L2 (0, 1). Moreover, by interpolation of Banach spaces [33, � 1.3], we have

H0p,2 =
(
W s,p

(
Rn;H2

(
Rd

)
, L2

(
Rd

))
, Lp

(
Rn;L2

(
Rd

)))
1
2p

,p
=

B
s
(
1− 1

2p

)
p,2

(
Rn;H

2l
(
1− 1

2p

) (
Rd

)
, L2

(
Rd

))
.

Then, by using the properties of spaces Y s,p,2, Y s,p,2
∞ , H0p2 we get that all conditions of Theorem 3.1 are

hold, i,e., we obtain the conclusion.

Conclusion. Here, assuming enough smoothness on the initial data in terms of interpolation spaces

H (A), H and the sectorial operators, the existence, uniqueness, regularity properties of solutions are es-

tablished. By choosing the space H and A, the regularity properties of solutions of a wide class of wave

equations in the �eld of physics are obtained.

Data Availibility: Data sharing not applicable to this article as no datasets were generated or analysed

during the current study.
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