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AREA FORMULAS FOR A TRIANGLE IN THE m−PLANE

Ö. GELİŞGEN - T. ERMİŞ

Abstract. In this paper, we give three area formulas for a triangle in the

m-plane in terms of the m−distance. The two of them are m−version of the

standart area formula for a triangle in the Euclidean plane, and the third one
is a m−version of the well-known Heron′s formula.

1. Introduction

If one want to measure the distance between two points on a plane, then one
can use frequently Euclidean distance which is defined as the length of segment
between these points. Although it is the most popular distance function, it is not
practical when we measure the distance which we actually move in the real world.
So taxicab distance and Chinese checkers distance were introduced. Taxicab and
Chinese checkers distance functions are similar to moving with a car or Chinese
chess in the real world. Later, Tian [16] introduced α-distance function which
includes the taxicab and Chinese checkers metrics as special cases. Then, some
authors developed and studied on these topics (see [7], [8], [10]). In [5] Colakoğlu
and Kaya gave a new distance function in the real plane which includes alpha,
Chinese checkers, taxicab distances as special cases. The distance function is called
m-distance. If P = (x1, y1) and Q = (x2, y2) are two points in R2, then for each
real numbers u, v and m such that u ≥ v ≥ 0 6= u, the distance function

dm : R2 × R2 → [0,∞)

defined by

dm(P,Q) = (u∆PQ + vδPQ) /
(√

1 +m2
)

where ∆PQ = max {|(x1 − x2) +m(y1 − y2)| , |m(x1 − x2)− (y1 − y2)|} and
δPQ = min {|(x1 − x2) +m(y1 − y2)| , |m(x1 − x2)− (y1 − y2)|} . Obviously, there
are infinitely many different distance function depending on values u, v and m. But
we suppose that values u and v are initially determined and fixed unless otherwise
stated.
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According to m-distance function, the m−distance between points P and Q is
constant u multiple of the Euclidean length of one of the shortest paths from P
to Q composed of line segments each parallel to one of lines with slope m, −1/m,[
m(u2 − v2) + 2uv

]
/
[
(u2 − v2)− 2uvm

]
or
[
m(u2 − v2)− 2uv

]
/
[
(u2 − v2) + 2uvm

]
.

See Figure 1.

In this paper, we give area formulas for a triangle in the m-plane in terms of
the m−distance. In this study, we use the usual Euclidean area notion. One can
easily see that in the m-plane, there are triangles whose -lengths of corresponding
sides are the same, while areas of these triangles are different (see Figure 2).This
fact arises a natural question: How can one compute the area of a triangle in the
m-plane? It is obvious that every formula to compute the area of a triangle depends
on some parameters, and using different parameters gives different formulas. Here
we give three formulas to compute the area of a triangle in the m-plane, using
different parameters.

Let the line AB be parallel to the line y = mx, let C1 be a m−circle with center
A and radius b, C2 a m−circle with center B and radius b + c, and C and D two
points in C1 ∩ C2. For different C and D such that C and D are not symmetric
to the line AB, Area(ABC) 6= Area(ABD), while dm(A,C) = dm(A,D) and
dm(B,C) = dm(B,D).
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2. Area of a Triangle in the m-plane

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and H is the point of orthogonal projection of the point A on the line BC, then
standard area formula for the triangle ABC is A = ah/2, where a = dE(B,C)
and h = dE(A,H) or h = dE(A,BC) (see Figure 3). In this section, we give two
m-versions of standard area formula in terms of m-distance. Clearly, a m-version
of standard area formula for triangle ABC would be an equation that relates the
two m-distances a and h, where a = dm(B,C), h = dm(A,H) or h = dm(A,BC)
and area A of triangle ABC. Here, we give two m-versions of the area formula that
depend on one parameter, namely, the slope of the base segment, in addition to the
other parameters. Note that the real numbers u, v and m are fixed.

The following equation, which relates the Euclidean distance to the m-distance
between two points in the Cartesian coordinate plane, plays an important role in
the first m-version of the area formula. Following two proposition are given without
proofs. One can see [2] for proofs.

Proposition 2.1. For any two points P and Q in the Cartesian plane that do not
lie on a vertical line, if n is the slope of the line through P and Q, then

dE(P,Q) = ρ(n)dm(P,Q)

where ρ(n) =

√
(1 + n2) (1 +m2)

umax{|1 +mn| , |m− n|}+ vmin{|1 +mn| , |m− n|}
.

If P and Q lie on a vertical line, then by definition,

dE(P,Q) =

√
1 +m2

umax{1, |m|}+ vmin{1, |m|}
dm(P,Q).

If P and Q lie on the lines y = mx or y = −1
m x, then

dE(P,Q) =
1

u
dm(P,Q).

Another useful fact that can be verified by direct calculation is:

Proposition 2.2. For any real number n 6= 0

ρ(n) = ρ(−1/n).

We first note by Proposition 1 and Proposition 2 that them-distance between two
points is invariant under all translations. If b/a 6=

√
2− 1 in m-plane, the rotations

of π/2 , π and 3π/2 radians around a point, and the reflections about the lines par-

allel to y = nx+c such that n ∈
{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m

}
preserve the m−distance.

If b/a =
√

2−1 in the m−plane, the rotations of π/4, π/2, 3π/4, π, 5π/4, 3π/2 and
7π/4 radians around a point, and the reflections about the lines parallel to y = nx+c
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such that

n ∈

{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m
,

(1−
√

2)m− 1

(1−
√

2) +m
,

(1 +
√

2)m− 1

(1 +
√

2) +m
,

(1−
√

2)m+ 1

(1−
√

2)−m
,

(1 +
√

2)m+ 1

(1 +
√

2)−m

}
preserve the m−distance (see [5]).

The following theorem gives a m-version of the well-known Euclidean area for-
mula of a triangle:

Theorem 2.1. Let ABC be a triangle with the area A in the m-plane, H be
orthogonal projection (in the Euclidean sense) of the point A on the line BC, n be
the slope of the line BC, and let a = dm(B,C) and h = dm(A,H).
(i) If BC is parallel to one of the lines y = mx or y = −1

m x, then

A =
1

u2

ah

2
.

(ii) If BC is parallel to a coordinate axis, then

A = [ρ(n)]
2 ah

2
,

where ρ(n) =

√
1 + n2

umax{|n| , 1}+ vmin{|n| , 1}
.

(iii) f BC is not parallel to any one of coordinate axes or the lines y = mx or
y = −1

m x, then

A = [ρ(n)]
2 ah

2

where ρ(n) =

√
(1 + n2) (1 +m2)

umax{|1 +mn| , |m− n|}+ vmin{|1 +mn| , |m− n|}
.

Proof. Let a = dE(B,C) and h = dE(A,H). Then A =
ah

2
.

(i) If BC is parallel to one of the lines y = mx or y = −1
m x, then obviously a = 1

ua

and h = 1
uh. Hence A = 1

u2
ah
2 .

(ii) If BC not be parallel to any one of the lines y = mx or y = −1
m x, and let the

slpe of the line BC be n. Then the slope of the line AH is −1
n . By proposition 1

and Proposition 2, a = ρ(n)a, h =ρ(n)h, hence A = [ρ(n)]
2 ah

2 . �

In the m-plane, m-distance from a point P to a line l is defined by

dm(P, l) = min
Q∈l
{dm(P,Q)}

as in the Euclidean plane. It is well-known that in the Euclidean plane, Euclidean
distance from a point P = (x0, y0) to a line l : ax+ by+ c = 0 can be calculated by
the following formula:

(2.1) dE(P, l) = |ax0 + by0 + c|�(a2 + b2)1/2.

In Proposition 4 we give a similar formula for dm(P, l), using m-circles (see [2]).
One can see by calculation that if 0 < v/u < 1, then the unit m−circle is an
octagon with vertices A1 = ( 1

uk ,
m
uk ), A2 = ( 1−m

(u+v)k ,
1+m

(u+v)k ), A3 = (−muk ,
1
uk ),

A4 = ( −1−m
(u+v)k ,

1−m
(u+v)k ), A5 = (−1

uk ,
−m
uk ), A6 = ( m−1

(u+v)k ,
−1−m
(u+v)k ), A7 = ( muk ,

−1
uk ),

A8 = ( 1+m
(u+v)k ,

m−1
(u+v)k ), where k =

√
1 +m2. If u = v or v = 0, then unit m−circle
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is a square with vertices A1, A3, A5, A7 or A2, A4, A6, A8, respectively (See figure
4).

The next proposition introduced m−distance from a point P to a line l. For the
proof of proposition, one can see in [2].

Proposition 2.3. Given a point P = (x0, y0), and a line l : ax+ by+ c = 0 in the
m-plane. Then the m-distance from the point P to the line l can be calculated by
the following formula:
(2.2)

dm(P, l) =



|ax0 + by0 + c|
√

1 +m2

max
{
|a+bm|
u , |am−b|u

} , u = v

|ax0 + by0 + c|
√

1 +m2

max
{
|a(1−m)+b(1+m)|

u , |a(1+m)−b(1−m)|
u

} , v = 0

|ax0 + by0 + c|
√

1 +m2

max
{
|a+bm|
u , |am−b|u , |a(1−m)+b(1+m)|

u+v , |a(1+m)−b(1−m)|
u+v

} , 0 < v/u < 1.

The following equation, which relates the Euclidean distance to the m-distance
from a point to a line in the Cartesian coordinate plane, plays an important role in
the second m-version of the area formula.

Proposition 2.4. Given a point P , and a line l in the Cartesian plane that is not
a vertical line, if n is the slope of the line l, then

(2.3) dE(P, l) = τ(n)dα(P, l)
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where τ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
√

(1 + n2) (1 +m2)
, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
√

(1 + n2) (1 +m2)
, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
√

(1 + n2) (1 +m2)
, 0 < v/u < 1

If l is a vertical line, then

τ(n) =



max

{
|m|
u
,

1

u

}
√

1 +m2
, u = v

max

{
|1−m|
u

,
|1 +m|
u

}
√

1 +m2
, v = 0

max

{
|m|
u
,

1

u
,
|1−m|
u+ v

,
|1 +m|
u+ v

}
√

1 +m2
, 0 < v/u < 1

.

Proof. Let P = (x0, y0) be a point, and l : ax+by+c = 0 be a line in the Cartesian
plane. If l is not a vertical line, then b 6= 0 and n = −ab . Using n in equation 2.1

and equation 2.2, one gets dE(P, l) = |ax0 + by0 + c|� |b| (1 + n2)1/2 and

dm(P, l) =



|ax0 + by0 + c|
√

1 +m2

|b|max
{
|1+nm|

u , |m−n|u

} , u = v

|ax0 + by0 + c|
√

1 +m2

|b|max
{
|n(1−m)−(1+m)|

u , |n(1+m)+(1−m)|
u

} , v = 0

|ax0 + by0 + c|
√

1 +m2

|b|max
{
|1+nm|

u , |m−n|u , |n(1−m)−(1+m)|
u+v , |n(1+m)+(1−m)|

u+v

} , 0 < v/u < 1.

Hence, dE(P, l)=τ(n)dm(P, l) where

τ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
√

(1 + n2) (1 +m2)
, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
√

(1 + n2) (1 +m2)
, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
√

(1 + n2) (1 +m2)
, 0 < v/u < 1.
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If l is a vertical line, then b = 0 and a 6= 0. Therefore, dE(P, l) = |ax0 + c|� |a|
and

dm(P, l) =



|ax0 + c|
√

1 +m2

|a|max
{

1
u ,
|m|
u

} , u = v

|ax0 + c|
√

1 +m2

|a|max
{
|1−m|
u , |1+m|

u

} , v = 0

|ax0 + c|
√

1 +m2

|a|max
{

1
u ,
|m|
u , |1−m|u , |1+m|

u

} , 0 < v/u < 1

,

hence

τ(n) =



max

{
|m|
u
,

1

u

}
√

1 +m2
, u = v

max

{
|1−m|
u

,
|1 +m|
u

}
√

1 +m2
, v = 0

max

{
|m|
u
,

1

u
,
|1−m|
u+ v

,
|1 +m|
u+ v

}
√

1 +m2
, 0 < v/u < 1.

�

The following theorem gives another α-version of the well-known Euclidean area
formula of a triangle:

Theorem 2.2. Let ABC be a triangle with area A in the m-plane, n be the slope
of the line BC, and let a = dα(B,C) and h = dα(A,BC). Then the area of ABC
is

A = σ(n)ah/2

(i) If BC is parallel to lines y = mx or y = −1
m x, then

σ(n) =

{
1/u2 , u = v or v = 0
1/u(u+ v) , 0 < v/u < 1

(ii) If BC is not parallel to any one of the lines y = mx or y = −1
m x, then

σ(n) =



max

{
|1 + nm|

u
,
|m− n|

u

}
umax {|1 + nm| , |m− n|}+ umin {|1 + nm| , |m− n|}

, u = v

max

{
|n(1−m)− (1 +m)|

u
,
|n(1 +m) + (1−m)|

u

}
umax {|1 + nm| , |m− n|}

, v = 0

max

{
|1 + nm|

u
,
|m− n|

u
,
|n(1−m)− (1 +m)|

u+ v
,
|n(1 +m) + (1−m)|

u+ v

}
umax {|1 + nm| , |m− n|}+ vmin {|1 + nm| , |m− n|}

, 0 < v/u < 1.

Proof. Let a = dE(B,C) and h = dE(A,BC). Then, A = ah/2.
(i) If BC is parallel to lines y = mx or y = −1

m x, then clearly a = 1
ua and h = τ(n)h,
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where

τ(n) =


1

u
, u = v or v = 0

1

max {u, u+ v}
, 0 < v/u < 1.

Hence, A = σ(n)ah/2.
(ii) Let BC not be parallel to any one of the coordinate axes, and let the slope of
the line BC be n. Then, by Proposition 1 and Proposition 5, a = ρ(n)a, h = τ(n)h,
hence A = ρ(n)τ(n)ah/2. Since ρ(n)τ(n) = σ(n), we get A = σ(n)ah/2. �

3. m Version of Heron’s Formula

It is well-known that if ABC is a triangle with the area A in the Euclidean plane,
and a = dE(B,C), b = dE(A,C), c = dE(A,B), and p = (a + b + c)/2, then

A = [p(p− a)(p− b)(p− c)]
1/2

, which is known as Heron’s formula. In this sec-
tion, we give an m-version of this formula in terms of m-distance. Clearly, an
m-version of Heron’s formula for triangle ABC would be an equation that relates
the three m-distances a, b and c, where a = dα(B,C), b = dα(A,C), c = dα(A,B),
and the area A of triangle ABC. Here, we give an m-version of Heron’s formula
that depend on three new parameters in addition to a, b, c and A .

We need following two definitions which is revised according to given in [15] and
[13] respectively, to give an m-version of Heron’s formula:

Definition 3.1. Let ABC be any triangle in the m-plane. Clearly, there exists a
pair of lines passing through every vertex of the triangle, each of which is parallel
to lines y = mx or y = −1

m x. A line l is called a base line of ABC if and only if
(1) l passes through a vertex,
(2) l is parallel to lines y = mx or y = −1

m x,
(3) l intersects the opposite side (as a line segment) of the vertex in (1).

Clearly, at least one of vertices of the triangle always has one or two base lines.
Such a vertex of the triangle is called a basic vertex. A base segment is a line
segment on a base line, which is bounded by a basic vertex and its opposite side.

Definition 3.2. A line with slope n is called a steep line, a gradual line and a
separator if n > 1+m

1−m or n < −1+m
1+m or n → ∞, −1+m

1+m < n < 1+m
1−m and n = m or

n = −1
m for 0 ≤ m ≤ 1, respectively.

The following theorem gives an α-version of Heron’s formula:

Theorem 3.1. Let ABC be a triangle with area A in the m-plane, such that C
is a basic vertex, a = dm(B,C), b = dm(A,C) and c = dm(A,B). Let D be the
intersection point of a base line and AB, the opposite side of the basic vertex C.
Let H1 and H2 be orthogonal projections (in the Euclidean sense) of A and B on
the base line CD, respectively. Then,

A=


l

2u

[√
1 +m2(2p− c)− v(l1 + l2)

]
; if C1 is valid

l
2v

[√
1 +m2(2p− c)− u(l1 + l2)

]
; if C2 is valid

l
2uv

[√
1 +m2 (2p− c+ (v − 1) b+ (u− 1) a)−

(
v2l1 + u2l2

)]
; if C3 is valid

l
2uv

[√
1 +m2 (2p− c+ (u− 1) b+ (v − 1) a)−

(
u2l1 + v2l2

)]
; if C4 is valid

where p = (a+ b+ c)/2, l = dm(C,D), l1 = dm(C,H1), l2 = dm(C,H2),
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C1 : lines AC and BC are not gradual and base line CD is horizontal, or lines AC
and BC are not steep and base line CD is vertical,

C2 : lines AC and BC are not steep and base line CD is horizontal, or lines AC
and BC are not gradual and base line CD is vertical,

C3 : line AC is not gradual, line BC is not steep and base line CD is horizontal,
or line AC is not steep, line BC is not gradual and base line CD is vertical,

C4 : line AC is not steep, line BC is not gradual and base line CD is horizontal,
or line AC is not gradual, line BC is not steep and base line CD is vertical.

Proof. Let ABC be a triangle with area A in the m-plane, such that C is a basic
vertex, a = dm(B,C), b = dm(A,C) and c = dm(A,B). Let D be the intersection
point of a base line and AB, the opposite side of the basic vertex C. Let H1 and H2

be orthogonal projections of A and B on the base line CD, respectively. And let
p = (a+ b+ c)/2, l = dm(C,D), l1 = dm(C,H1), l2 = dm(C,H2), h1 = dm(A,H1),
h2 = dm(B,H2). The m-distance between two points is invariant under all trans-

lations. If b/a 6=
√

2 − 1 in m-plane, the rotations of π/2 , π and 3π/2 radians
around a point, and the reflections about the lines parallel to y = nx + c such

that n ∈
{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m

}
preserve the m−distance. If b/a =

√
2 − 1 in

the m−plane, the rotations of π/4, π/2, 3π/4, π, 5π/4, 3π/2 and 7π/4 radians
around a point, and the reflections about the lines parallel to y = nx+ c such that

n ∈

{
m,
−1

m
,
m− 1

1 +m
,

1 +m

1−m
,

(1−
√

2)m− 1

(1−
√

2) +m
,

(1 +
√

2)m− 1

(1 +
√

2) +m
,

(1−
√

2)m+ 1

(1−
√

2)−m
,

(1 +
√

2)m+ 1

(1 +
√

2)−m

}
preserve the m−distance. Therefore Figure 5 represent all triangles for which C1

holds, Figure 6 represent all triangles for which C2 holds, Figure 7 represent all
triangles for which C3 holds, and finally Figure 8 represent all triangles for which
C4 holds.

In Figure 5, a = (uh2 + vl2) /
√

1 +m2 and b = (uh1 + vl1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2
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values, one gets A =
l

2u

[√
1 +m2 (2p− c)− v(l1 + l2)

]
.

In Figure 6, a = (ul2 + vh2) /
√

1 +m2 and b = (ul1 + vh1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2

values, one gets A =
l

2v

[√
1 +m2 (2p− c)− u(l1 + l2)

]
.

In Figure 7, a = (ul2 + vh2) /
√

1 +m2 and b = (uh1 + vl1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC) + A(BDC) = l

2 (h1 + h2), using h1 and h2

values, one gets A =
l

2uv

[√
1 +m2 (2p− c+ (v − 1)b+ (u− 1) a)− v2l1 − u2l2

]
.

In Figure 8, a = (uh2 + vl2) /
√

1 +m2 and b = (ul1 + vh1) /
√

1 +m2 bym-distance
definition. Since A(ABC) = A(ADC)+A(BDC) = l

2 (h1+h2), using h1 and h2 val-

ues, one gets A =
l

2uv

[√
1 +m2 (2p− c+ (u− 1)b+ (v − 1) a)− u2l1 − v2l2

]
. �
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Since well-known taxicab, Chinese Checker and α−distances are special cases of
m-distance for m = 0 and u = v, v/u =

√
2 − 1 and 0 < v/u < 1, respectively,

Theorem 3, Theorem 6 and Theorem 7 give also taxicab, Chinese Checker and
α−versions of area formulas for a triangle, when m = 0 and u = v, v/u =

√
2 − 1

and 0 < v/u < 1, respectively, (see [12], [15], [11] and [6]).
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