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SOME RESULTS ON THE SENSITIVITY OF SCHUR STABILITY

OF LINEAR DIFFERENCE EQUATIONS WITH CONSTANT

COEFFICIENTS

AHMET DUMAN AND KEMAL AYDIN

Abstract. In this work, new results on the sensitivity problem of the Schur

stability of linear difference equation systems with constant coefficients and

scalar-linear difference equations with order k are obtained and some examples
illustrating the efficiency of the theorems are given.

1. Introduction

In this article we consider the following linear system of difference equations with
constant coefficients:

(1.1) x(n+ 1) = Ax(n), n ∈ Z.

where A is a matrix of dimensions N ×N . The asymptotic stability of the system
(1.1) is equivalent to the asymptotic stability of the coefficient matrix A. It is well-
known that with respect to Lyapunov, a matrix A is discrete-asymptotically stable if
and only if the discrete-Lyapunov matrix equations A∗XA−X+C = 0, C = C∗ > 0
has a solution matrix X which is positive definite matrix, i.e. X = X∗ > 0.

Moreover, this solution given by X =
∑∞
k=0 (A∗)

k
CAk and also according to the

spectral criteria, a matrix A is discrete-asymptotically stable if and only if the
eigenvalues of the coefficient matrix A lay in the unit disc, i.e. |λi(A)| < 1 for
all i = 1, 2, . . . , N , where λi (i = 1, 2, . . . , N) stands for the eigenvalues of the
coefficient matrix A [1, 2, 3, 4]. Such systems are also called as Schur stable [5, 6, 7].
Throughout the study, we focus our attention to the concept of Schur stability.

In the literature, some restrictions on the perturbation matrix B are assumed to
study the Schur stability of the following system

(1.2) y(n+ 1) = (A+B)y(n), n ∈ Z,
where A is the coefficient matrix of the Schur stable system (1.1). So called contin-
uation are used to study the sensitivity of the ω∗− Schur stability and the Schur
stabilitiy of the system (1.1) [1, 2, 4, 8].

2000 Mathematics Subject Classification. 39A11.
Key words and phrases. Schur stability, difference equations, sensitivity, perturbation systems.

1



2 AHMET DUMAN AND KEMAL AYDIN

In this work, some results on the sensitivity of the Schur stability and the ω∗−
Schur stability of the difference equation system (1.1) were presented. We have also
applied the results to the delay difference equations.

2. Sensitivity of Systems

In this section, we give some results in the literature on the sensitivity of the
Schur stability of the systems with constant coefficients.

Let’s start with the parameter ω(A) that shows the quality of Schur stability of
the system (1.1) and holds and an important place in the theory of stability.

Schur stability parameter ω(A) is defined as follows:

ω(A) = ||H||; H =

∞∑
k=0

(A∗)
k
Ak, H = H∗ > 0, A∗HA−H + I = 0

where I is unit matrix, A∗ is adjoint of the matrix A, ||A|| = max‖x‖=1 ‖Ax‖ is the
spectral norm of the matrix A, furthermore the norm ||x|| is Euclidean norm for
the vector x = (x1, x2, . . . , xN )T . Linear difference system (1.1) is Schur stable if
and only if ω(A) < ∞ holds and so it is clear that the perturbed linear difference

system (1.2) is Schur stable if and only if ω(A+ B) = ||H̃|| <∞ holds, where the

matrix H̃ =
∑∞
k=0 (A∗ +B∗)

k
(A+B)k is positive definite solution of the discrete-

Lyapunov matrix equation (A∗ + B∗)H̃(A + B) − H̃ + I = 0. Moreover, let ω∗

be the practical Schur stability parameter of the system (1.1), then the matrix A
is called as practically Schur stable (ω∗− Schur stable) provided that ω∗ > 1 and
ω(A) ≤ ω∗ hold. If ω(A) > ω∗ holds, then the matrix A is called as ω∗− Schur
unstable matrix [1, 3, 9].

Theorem 2.1 ([3]). Let A be a Schur stable matrix (ω(A) <∞). If ‖B‖ ≤ 1
6πω(A)

then the matrix A+B is Schur stable. Moreover, if (2 ‖B‖ ‖A‖+ ‖B‖2)ω(A) < 0.5
then the inequality

|ω(A+B)− ω(A)| ≤ 2ω2(A)(2 ‖A‖+ ‖B‖) ‖B‖ ,

holds.

Corollary 2.1 ([10]). Suppose that A is a Schur stable matrix, that is ω(A) <∞.

If the matrix B satisfies ‖B‖ <
√
‖A‖2 + 1

ω(A) − ‖A‖, then A+B is Schur stable.

Moreover, the inequality

|ω(A+B)− ω(A)| ≤ (2 ‖A‖+ ‖B‖) ‖B‖ω2(A)

1− (2 ‖A‖+ ‖B‖) ‖B‖ω(A)
,

holds.

Now, considering Theorem 2.1 and Corollary 2.1 we give the continuity theorem
which allows the greater perturbe than others without disturbing the Schur stability
for the linear difference equation systems with constant coefficients.

Theorem 2.2 ([10]). Suppose that A is a Schur stable matrix, that is ω(A) <∞.
If the matrix B satisfies ‖B‖ < γ, then A + B is Schur stable. Moreover, if
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‖B‖ <
√
‖A‖2 + 1

ω(A) − ‖A‖, then the following inequalities

ω(A+B) ≤ ω(A)
1−(2‖A‖+‖B‖)‖B‖ω(A) , |ω(A+B)− ω(A)| ≤ (2‖A‖+‖B‖)‖B‖ω2(A)

1−(2‖A‖+‖B‖)‖B‖ω(A)

holds, where γ = max
{

1
6πω(A) ,

√
‖A‖2 + 1

ω(A) − ‖A‖
}

.

Corollary 2.2 ([10]). Let ‖A‖ < 1. If the matrix B satisfies ‖A‖+ ‖B‖ < 1 then
the matrix A+B is Schur stable. Moreover, the following inequalities

ω(A+B) ≤ 1
1−(‖A‖+‖B‖)2 , |ω(A+B)− ω(A)| ≤ ‖B‖

1−‖A‖
1

1−(‖A‖+‖B‖)2

holds.

Theorem 2.3 ([10]). Let A be a ω∗− Schur stable matrix (ω(A) ≤ ω∗). If the

matrix B satisfies ‖B‖ ≤
√
‖A‖2 + ω∗−ω(A)

ω∗ω(A) −‖A‖ then A+B is ω∗− Schur stable.

Corollary 2.3. Let ‖A‖ < 1 and A be a ω∗− Schur stable matrix (ω(A) ≤ ω∗). If

the matrix B satisfies ‖A‖ + ‖B‖ < 1 and ‖B‖ ≤
√

ω∗−1
ω∗ − ‖A‖ then the matrix

A+B is ω∗− Schur stable.

Proof. Let ‖A‖ < 1 and A be a ω∗− Schur stable. ‖A‖ + ‖B‖ < 1 and ‖B‖ ≤√
ω∗−1
ω∗ − ‖A‖ are satisfied. From the second inequality

=⇒ ‖A‖+ ‖B‖ ≤
√

ω∗−1
ω∗

=⇒ (‖A‖+ ‖B‖)2 ≤ ω∗−1
ω∗

=⇒ 1 ≤ ω∗
(

1− (‖A‖+ ‖B‖)2
)

and therefore the inequality

1

1− (‖A‖+ ‖B‖)2
≤ ω∗

is obtained. Since ω(A + B) ≤ 1
1−(‖A‖+‖B‖)2 is valid from Corollary 2.2, the in-

equality ω(A+B) ≤ ω∗ is found. This completes the proof. �

3. Some Results on the Sensitivity of Scalar-Linear Difference
Equations with Order k

Consider the following scalar-linear difference equations with order k

(3.1) x(n+ 1)− a0x(n)− a1x(n− 1)− ...− ak−1x(n− k + 1) = 0, n ≥ 0.

The equation (3.1) can be written as

(3.2) y(n+ 1) = Cy(n), n ≥ 0

in matrix-vector form where the matrix C is companion matrix as follows

C =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
ak−1 ak−2 ak−3 · · · a0

 , c = (ak−1, ak−2, . . . , a0).
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Consider the perturbation of the equation (3.1) and so, of the system (3.2)

(3.3) z(n+ 1) = (C +D) z(n), n ≥ 0,

and the set Bγ called as the nD−ball, i.e. the n−dimensional ball [11], where

D =


0 0 0 · · · 0
0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0
dk−1 dk−2 dk−3 · · · d0

 , Bγ = {x = (x1, x2, . . . , xn)| ‖x‖ < γ} .

Let

• d = (dk−1, dk−2, . . . , d0),

• γ(C) = max
{

1
6πω(C) ,

√
‖C‖2 + 1

ω(C) − ‖C‖
}

,

• δ∗3(C) =
√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) − ‖C‖.

Theorem 3.1 ([10]). Let the system (3.2) be a Schur stable (the companian matrix
C is Schur stable). If the k−tuple d ∈ Bγ(C), then the perturbed system (3.3) is a
Schur stable.

Theorem 3.2 ([10]). Let the system (3.2) be ω∗−Schur stable (the companian
matrix C is ω∗−Schur stable). If the k−tuple d ∈ Bδ∗3 (C), then the perturbed system
(3.3) is also ω∗−Schur stable.

Theorem 3.3. limω→∞Bγ(C) = ∅.

Proof. The equality limω→∞ γ(C) = 0 holds, where limω→∞
1

6πω(C) = 0 and

limω→∞

√
‖C‖2 + 1

ω(C) − ‖C‖ = 0.

Thus limω→∞ {x = (x1, x2, . . . , xn)| ‖x‖ < γ(C)} = ∅. �

Theorem 3.4. The set sequence
{
Bγ(C)

}
is increasing according to γ(C).

Proof. Let x(n + 1) = C1x(n) and y(n + 1) = C2y(n). If γ2(C) < γ1(C) then the
inequality Bγ2(C) ⊂ Bγ1(C) holds. �

Theorem 3.5. The set sequence
{
Bδ∗3

}
a) is an increasing sequence the according to ω∗,
b) is a bounded sequence.

Proof. a) ω∗1 , ω
∗
2 (ω∗1 < ω∗2) are practical Schur stability parameters of the sys-

tem y(n + 1) = Cy(n). 1
ω(C) −

1
ω∗

1
=

ω∗
1−ω(C)
ω∗

1ω(C) < 1
ω(C) −

1
ω∗

2
=

ω∗
2−ω(C)
ω∗

2ω(C) for

ω∗1 < ω∗2 . Therefore Bδ∗31 ⊂ Bδ∗32 for δ∗31 =
√
‖C‖2 +

ω∗
1−ω(C)
ω∗

1ω(C) − ‖C‖ < δ∗32 =√
‖C‖2 +

ω∗
2−ω(C)
ω∗

2ω(C) − ‖C‖.

b)∅ ⊂
{
Bδ∗3

}
⊂ {Bα} for 0 < δ∗3 =

√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) −‖C‖ < α =
√
‖C‖2 + 1

ω(C)−
‖C‖. �

Theorem 3.6. limω→ω∗ Bδ∗3 = ∅.

Proof. Since limω→ω∗ Bδ∗3 = ∅ for limω→ω∗ δ∗3 = limω→ω∗

√
‖C‖2 + ω∗−ω(C)

ω∗ω(C) −
‖C‖ = 0 the proof is obtained. �
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Theorem 3.7. limω∗→∞Bδ∗3 = Bα where α =
√
‖C‖2 + 1

ω(C) − ‖C‖.

Proof. limω∗→∞Bδ∗3 = Bα for limω∗→∞
ω∗−ω(C)
ω∗ω(C) = 1

ω(C) so the proof is completed.

�

4. Numerical Examples

Example 4.1. A1 =

(
0.5 0
0 0.1

)
and A2 =

(
0.5 9
0 0.1

)
.

• ‖A1‖ = 0.5, ω(A1) = 4
3

We have calculated δ∗ =
√

ω∗−1
ω∗ −‖A‖ = 0.494987 and α∗ =

√
‖A‖2 + ω∗−ω(A)

ω∗ω(A)

− ‖A‖ = 0.494987 for ω∗ = 100. Let us the perturbation matrix B =(
0.494987 0

0 0.494987

)
for δ∗ = α∗ = 0.494987. We have A1 + B, thus we see

that ω(A1 +B) = 99.9913 < 100 holds, therefore the matrix A1 +B is 100−Schur
stable matrix.

• ‖A2‖ = 9.01443, ω(A2) = 121.915

For ω∗ = 125, α∗ = 1.12284e − 05 and Corollary 2.3 fail to apply, therefore
the values δ∗ cannot be calculated. Suitable perturbation matrices for these values

may be selected as B =

(
1.12284e− 05 0

0 1.12284e− 05

)
. Hence we obtain

ω(A2 +B) = 121.919 < 125.

Example 4.2. Consider the delay difference equations xn+1 − xn = − 21
100xn−1 −

1
100xn−2, xn+1+xn = − 1

10xn−1−
1

100xn−2 and xn+1−xn = − 1
2xn−1−

3
10xn−2. The

companion matrices C1 =

 0 1 0
0 0 1
− 1

100 − 21
100 1

, C2 =

 0 1 0
0 0 1
− 1

100 − 1
10 −1

 and

C3 =

 0 1 0
0 0 1
− 3

10 − 1
2 1

.

It is easy to check that ω(C1) = 10.0889, ω(C2) = 16.4554, ω(C3) = 33.3264 and
Bγ1 = {(d2, d1, 0)| ‖d‖ < 0.0342529}, Bγ2 = {(d2, d1, 0)| ‖d‖ < 0.0212722}, Bγ3 =
{(d2, d1, 0)| ‖d‖ < 0.0098588}. As is clearly seen from Figure 1, Bγ3 ⊂ Bγ2 ⊂ Bγ1 .
Therefore Theorem 3.4 is satisfied.
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Figure 1. The regions of Bγ1 , Bγ2 and Bγ3

Since ω(C1) < ∞ the equation (4) is Schur stable. Let ω∗1 = 15, ω∗2 = 60. It is
easy to check that Bδ∗31 = {(d2, d1, 0)| ‖d‖ < 0.0113043}, Bδ∗32 = {(d2, d1, 0)| ‖d‖ <
0.0285496} and it is clear that ω∗1 < ω∗2 ⇒ Bδ∗31 ⊂ Bδ∗32 . Therefore a option of
Theorem 3.5 is satisfied.

Figure 2. The regions of Bδ∗31 , and Bδ∗32

Remark 4.1. The numerical examples have been computed by using matrix vector
calculator MVC [12].
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